1
|
Safavi S, Munidasa S, Zanette B, Dai R, Stirrat E, Li D, Moraes TJ, Subbarao P, Santyr G. Evaluating post-bronchodilator response in well-controlled paediatric severe asthma using hyperpolarised 129Xe-MRI: A pilot study. Respir Med 2021; 180:106368. [PMID: 33740737 DOI: 10.1016/j.rmed.2021.106368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Pulmonary function tests (PFTs) are the main objective measures used to assess asthma in children. However, PFTs provide a global measure of lung function. Hyperpolarised xenon-129 magnetic resonance imaging (129Xe-MRI) can assess lung function spatially. This cross-sectional cohort study aimed to evaluate the use of 129Xe-MRI in detecting ventilation abnormalities in children with well-controlled severe asthma pre- and post-bronchodilator (BD). METHOD Six healthy children (aged 11 ± 3) and six with well-controlled severe asthma (14 ± 1) underwent spirometry, multiple breath washout (MBW), and 129Xe-MRI. These tests were repeated post-BD in the asthma cohort. Image analysis was performed in MATLAB. Wilcoxon signed-rank test, repeated measures analysis of variance (ANOVA), and Spearman's rank correlation coefficient were used for statistical analysis. RESULTS A significantly higher number of ventilation defects were found in the asthma cohort pre-BD compared to the healthy participants and post-BD within the asthma cohort (p = 0.02 and 0.01). A greater number of wedge-shaped defects were detected in the asthma cohort pre-BD compared to healthy participants and post-BD within the asthma cohort (p = 0.01 and 0.008, respectively). 129Xe ventilation defect percentage (VDP) and coefficient of variation (CoV) were significantly higher in the asthma cohort pre-BD compared to the healthy cohort (p = 0.006 for both). VDP and CoV were reduced significantly post-BD in the asthma cohort, to a level where there was no longer a significant difference between the two cohorts. CONCLUSION 129Xe-MRI is a sensitive marker of ventilation inhomogeneity in paediatric severe asthma and may potentially be used as a biomarker to assess disease progression and therapeutic response.
Collapse
Affiliation(s)
- Shahideh Safavi
- Respiratory Medicine Department, School of Medicine, University of Nottingham,Queen's Medical Centre Campus, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham, UK.
| | - Samal Munidasa
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Brandon Zanette
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Ruixue Dai
- Division of Respiratory Medicine, Department of Paediatrics, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Elaine Stirrat
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Daniel Li
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Theo J Moraes
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Respiratory Medicine, Department of Paediatrics, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Padmaja Subbarao
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Respiratory Medicine, Department of Paediatrics, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Giles Santyr
- The Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Nilsen K, Thompson BR, Zajakovski N, Kean M, Harris B, Cowin G, Robinson P, Prisk GK, Thien F. Airway closure is the predominant physiological mechanism of low ventilation seen on hyperpolarized helium-3 MRI lung scans. J Appl Physiol (1985) 2020; 130:781-791. [PMID: 33332988 DOI: 10.1152/japplphysiol.00163.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarized helium-3 MRI (3He MRI) provides detailed visualization of low- (hypo- and non-) ventilated lungs. Physiological measures of gas mixing may be assessed by multiple breath nitrogen washout (MBNW) and of airway closure by a forced oscillation technique (FOT). We hypothesize that in patients with asthma, areas of low-ventilated lung on 3He MRI are the result of airway closure. Ten control subjects, ten asthma subjects with normal spirometry (non-obstructed), and ten asthmatic subjects with reduced baseline lung function (obstructed) attended two testing sessions. On visit one, baseline plethysmography was performed followed by spirometry, MBNW, and FOT assessment pre and post methacholine challenge. On visit two, 3He MRI scans were conducted pre and post methacholine challenge. Post methacholine the volume of low-ventilated lung increased from 8.3% to 13.8% in the non-obstructed group (P = 0.012) and from 13.0% to 23.1% in the obstructed group (P = 0.001). For all subjects, the volume of low ventilation from 3He MRI correlated with a marker of airway closure in obstructive subjects, Xrs (6 Hz) and the marker of ventilation heterogeneity Scond with r2 values of 0.61 (P < 0.001) and 0.56 (P < 0.001), respectively. The change in Xrs (6 Hz) correlated well (r2 = 0.45, p < 0.001), whereas the change in Scond was largely independent of the change in low ventilation volume (r2 = 0.13, P < 0.01). The only significant predictor of low ventilation volume from the multi-variate analysis was Xrs (6 Hz). This is consistent with the concept that regions of poor or absent ventilation seen on 3He MRI are primarily the result of airway closure.NEW & NOTEWORTHY This study introduces a novel technique of generating high-resolution 3D ventilation maps from hyperpolarized helium-3 MRI. It is the first study to demonstrate that regions of poor or absent ventilation seen on 3He MRI are primarily the result of airway closure.
Collapse
Affiliation(s)
- Kris Nilsen
- The Alfred Hospital, Melbourne, Australia.,Swinburne University of Technology, Melbourne, Australia
| | - Bruce R Thompson
- Swinburne University of Technology, Melbourne, Australia.,Monash University, Melbourne, Australia
| | | | - Michael Kean
- The Royal Children's Hospital, Melbourne, Australia
| | - Benjamin Harris
- University of Sydney, Sydney, Australia.,Respiratory Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Phil Robinson
- The Royal Children's Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - G Kim Prisk
- University of California, San Diego, California
| | - Francis Thien
- Monash University, Melbourne, Australia.,Box Hill Hospital, Eastern Health, Melbourne, Australia
| |
Collapse
|