1
|
Bodor N, Zubovics Z, Kurucz I, Sólyom S, Bodor E. Potent analogues of etiprednol dicloacetate, a second generation of soft corticosteroids. J Pharm Pharmacol 2017; 69:1745-1753. [PMID: 28980320 DOI: 10.1111/jphp.12819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/26/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Loteprednol etabonate (LE) is the first, highly successful soft corticosteroid (SC) designed using the 'inactive metabolite' approach, starting with ∆1 -cortienic acid (d-CA). The next generation of SCs based on d-CA was etiprednol dicloacetate (ED). The 17α-dichloroacetyl function serves both as a unique pharmacophore and as the source of the molecule's softness. Highly potent SCs were designed based on a combination of ED and LE, introducing 6, 9 and 16 substituents in the molecule. METHODS The new 6α, 9α, 16α and β 17α-dichloroacetyl 17β-esters were synthesized from the correspondingly substituted ∆1 -cortienic acids. The anti-inflammatory activity was assessed using LPS-induced TNF α-release under various conditions to determine intrinsic activity vs. systemic biological stability. In vivo anti-inflammatory activity was studied in the widely used ovalbumin-sensitized and ovalbumin-challenged Brown Norway rat model. KEY FINDINGS The 6α or 9α-fluoro substitution produced highly potent corticosteroids, but the 17α-dichloroacetyl substituent provided 'softness' in all cases. Local application of these steroids will significantly reduce systemic activity, due to the facile hydrolytic deactivation of these molecules. CONCLUSIONS A 17α-dichloroacetyl derivative of fluticasone (FLU) is highly potent but much safer than the currently used propionate or furoate ester.
Collapse
Affiliation(s)
- Nicholas Bodor
- Bodor Laboratories, Inc., Miami, FL, USA.,Institute for Drug Research, Budapest, Hungary
| | | | | | | | - Erik Bodor
- Bodor Laboratories, Inc., Miami, FL, USA
| |
Collapse
|
2
|
de Azevedo-Quintanilha IG, Vieira-de-Abreu A, Ferreira AC, Nascimento DO, Siqueira AM, Campbell RA, Teixeira Ferreira TP, Gutierrez TM, Ribeiro GM, E Silva PMR, Carvalho AR, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin αDβ2 (CD11d/CD18) mediates experimental malaria-associated acute respiratory distress syndrome (MA-ARDS). Malar J 2016; 15:393. [PMID: 27473068 PMCID: PMC4967320 DOI: 10.1186/s12936-016-1447-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a potentially lethal complication of clinical malaria. Acute lung injury in MA-ARDS shares features with ARDS triggered by other causes, including alveolar inflammation and increased alveolar-capillary permeability, leading to leak of protein-rich pulmonary oedema fluid. Mechanisms and physiologic alterations in MA-ARDS can be examined in murine models of this syndrome. Integrin αDβ2 is a member of the leukocyte, or β2 (CD18), sub-family of integrins, and emerging observations indicate that it has important activities in leukocyte adhesion, accumulation and signalling. The goal was to perform analysis of the lungs of mice wild type C57Bl/6 (a D (+/+) ) and Knockout C57Bl/6 (a D (-/-) ) with malaria-associated acute lung injury to better determine the relevancy of the murine models and investigate the mechanism of disease. METHODS C57BL/6 wild type (a D (+/+) ) and deficient for CD11d sub-unit (a D (-/-) ) mice were monitored after infection with 10(5) Plasmodium berghei ANKA. CD11d subunit expression RNA was measured by real-time polymerase chain reaction, vascular barrier integrity by Evans blue dye (EBD) exclusion and cytokines by ELISA. Protein and leukocytes were measured in bronchoalveolar lavage fluid (BALF) samples. Tissue cellularity was measured by the point-counting technique, F4/80 and VCAM-1 expression by immunohistochemistry. Respiratory function was analysed by non-invasive BUXCO and mechanical ventilation. RESULTS Alveolar inflammation, vascular and interstitial accumulation of monocytes and macrophages, and disrupted alveolar-capillary barrier function with exudation of protein-rich pulmonary oedema fluid were present in P. berghei-infected wild type mice and were improved in αDβ2-deficient animals. Key pro-inflammatory cytokines were also decreased in lung tissue from α D (-/-) mice, providing a mechanistic explanation for reduced alveolar-capillary inflammation and leak. CONCLUSIONS The results indicate that αDβ2 is an important inflammatory effector molecule in P. berghei-induced MA-ARDS, and that leukocyte integrins regulate critical inflammatory and pathophysiologic events in this model of complicated malaria. Genetic deletion of integrin subunit αD in mice, leading to deficiency of integrin αDβ2, alters lung inflammation and acute lung injury in a mouse model of MA-ARDS caused by P. berghei.
Collapse
Affiliation(s)
- Isaclaudia G de Azevedo-Quintanilha
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil.
| | - Adriana Vieira-de-Abreu
- Program in Molecular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| | - André Costa Ferreira
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Daniele O Nascimento
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Alessandra M Siqueira
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Robert A Campbell
- Program in Molecular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tatiana P Teixeira Ferreira
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Rio de Janeiro, Brazil
| | - Tatiana M Gutierrez
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Gabriel M Ribeiro
- Laboratório de Engenharia Pulmonar no Programa de Engenharia Biomédica, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia-COPPE/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Rio de Janeiro, Brazil
| | - Alysson R Carvalho
- Laboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T Bozza
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil
| | - Guy A Zimmerman
- Program in Molecular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hugo C Castro-Faria-Neto
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Ozório de Almeida, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil.,Programa de Produtividade Científica, Universidade Estácio de Sá, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Mauser PJ, House A, Jones H, Correll C, Boyce C, Chapman RW. Pharmacological characterization of the late phase reduction in lung functions and correlations with microvascular leakage and lung edema in allergen-challenged Brown Norway rats. Pulm Pharmacol Ther 2013; 26:677-84. [PMID: 23523662 DOI: 10.1016/j.pupt.2013.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Late phase airflow obstruction and reduction in forced vital capacity are characteristic features of human asthma. Airway microvascular leakage and lung edema are also present in the inflammatory phase of asthma, but the impact of this vascular response on lung functions has not been precisely defined. This study was designed to evaluate the role of increased lung microvascular leakage and edema on the late phase changes in forced vital capacity (FVC) and peak expiratory flow (PEF) in allergen-challenged Brown Norway rats using pharmacological inhibitors of the allergic inflammatory response. Rats were sensitized and challenged with ovalbumin aerosol and forced expiratory lung functions (FVC, PEF) and wet and dry lung weights were measured 48 h after antigen challenge. Ovalbumin challenge reduced FVC (63% reduction) and PEF (33% reduction) and increased wet (65% increase) and dry (51% increase) lung weights. The antigen-induced reduction in FVC and PEF was completely inhibited by oral treatment with betamethasone and partially attenuated by inhibitors of arachidonic acid metabolism including indomethacin (cyclooxygenase inhibitor), 7-TM and MK-7246 (CRTH2 antagonists) and montelukast (CysLT1 receptor antagonist). Antagonists of histamine H1 receptors (mepyramine) and 5-HT receptors (methysergide) had no significant effects indicating that these pre-formed mast cell mediators were not involved. There was a highly significant (P < 0.005) correlation for the inhibition of FVC reduction and increase in wet and dry lung weights by these pharmacological agents. These results strongly support the hypothesis that lung microvascular leakage and the associated lung edema contribute to the reduction in forced expiratory lung functions in antigen-challenged Brown Norway rats and identify an important role for the cyclooxygenase and lipoxygenase products of arachidonic acid metabolism in these responses.
Collapse
Affiliation(s)
- Peter J Mauser
- Merck Research Laboratories, 2015, Galloping Hill Road, Kenilworth, NJ 07033-0539, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Lee B, Sur B, Shim I, Lee H, Hahm DH. Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:79-89. [PMID: 22563252 PMCID: PMC3339292 DOI: 10.4196/kjpp.2012.16.2.79] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/17/2012] [Accepted: 03/03/2012] [Indexed: 01/06/2023]
Abstract
We examine whether Phellodendron amurense (PA) and its major alkaloid compound, berberine (BER), improved memory defects caused by administering scopolamine in rats. Effects of PA and BER on the acetylcholinergic system and pro-inflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses for 14 days of PA (100 and 200 mg/kg, i.p.) and BER (20 mg/kg, i.p.) 30 min before scopolamine injection (2 mg/kg, i.p.). Daily administration of PA and BER improved memory impairment as measured by the passive avoidance test and reduced the escape latency for finding the platform in the Morris water maze test. Administration of PA and BER significantly alleviated memory-associated decreases in cholinergic immunoreactivity and restored brain-derived neurotrophic factor and cAMP-response element-binding protein mRNA expression in the hippocampus. PA and BER also decreased significantly the expression of proinflammatory cytokines such as interleukin-1β, tumor necrosis factor-α and cyclooxygenase-2 mRNA in the hippocampus. These results demonstrated that PA and BER had significant neuroprotective effects against neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that PA and BER may be useful as therapeutic agents for improving cognitive functioning by stimulating cholinergic enzyme activity and alleviating inflammatory responses.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Bongjun Sur
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
5
|
Bao F, Chen Y, Schneider KA, Weaver LC. An integrin inhibiting molecule decreases oxidative damage and improves neurological function after spinal cord injury. Exp Neurol 2008; 214:160-7. [PMID: 18926823 DOI: 10.1016/j.expneurol.2008.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 11/19/2022]
Abstract
Our previous studies have shown that treatment with an alpha4beta1 integrin blocking antibody after spinal cord injury (SCI) in rats decreases intraspinal inflammation and oxidative damage, improving neurological function. Here, we studied effects of a high affinity small molecule alpha4beta1 inhibitor, BIO5192. First, rats were treated intravenously with BIO5192 (10 mg/kg) or with vehicle (controls) to assess effects of integrin blockade for 24 h or 72 h after thoracic clip-compression SCI. BIO5192 treatment significantly decreased the MPO enzymatic activity (neutrophil infiltration) and ED-1 expression (macrophage density) by 40% and 38% at 24 h and by 52% and 25% at 72 h post injury, respectively. In cord homogenates, BIO5192 treatment decreased expression of the oxidative enzymes gp91(phox), inducible nitric oxide and cyclooxygenase-2 by approximately 40% at both times of analysis. Free radical concentration decreased by 30% and lipid peroxidation decreased by 34% and 46%, respectively, at 24 h and 72 h after SCI. Next, after blockade by BIO5192 for 72 h, neurological outcomes were analyzed for 1-6 weeks after SCI. Motor function significantly improved when assessed by an open-field test. Treated rats planter placed their hind paws and/or dorsal stepped, with weight support, whereas controls only swept their hindlimbs. BIO5192 treatment also decreased mechanical allodynia elicited from the trunk and hind paw by up to 35%. This improved function correlated with decreased lesion size and spared myelin-containing white matter. The neurological improvement offered by this neuroprotective strategy supports the potential for an anti-integrin treatment for SCI.
Collapse
Affiliation(s)
- Feng Bao
- Spinal Cord Injury Laboratory, BioTherapeutics Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, PO Box 5015, 100 Perth Drive, London, Ontario Canada.
| | | | | | | |
Collapse
|
6
|
Leung SY, Williams AS, Nath P, Dinh QT, Oates T, Blanc FX, Eynott PR, Chung KF. Dose-dependent inhibition of allergic inflammation and bronchial hyperresponsiveness by budesonide in ovalbumin-sensitised Brown-Norway rats. Pulm Pharmacol Ther 2008; 21:98-104. [PMID: 17331766 DOI: 10.1016/j.pupt.2007.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Corticosteroids are known to inhibit bronchial hyperresponsiveness (BHR) and allergic inflammation but there is little information on its dose-dependence. We examined the effect of different doses of the glucocorticosteroid budesonide in an allergic model. Brown-Norway rats were sensitised to ovalbumin (OVA) and pretreated with an intra-gastric dose of budesonide (0.1, 1.0, or 10 mgkg(-1)). Exposure to OVA induced BHR, accumulation of eosinophils in the bronchoalveolar lavage (BAL) fluid and in the airways submucosa. Budesonide dose-dependently inhibited BAL fluid influx of lymphocytes, eosinophils and neutrophils, tissue eosinophils and lymphocytes and BHR. At 0.1 mgkg(-1), budesonide did not inhibit these parameters but at 1 mgkg(-1), BAL fluid eosinophils and T-cells, and submucosal T-cells were significantly reduced. At 10 mgkg(-1), budesonide suppressed BHR, BAL fluid inflammatory cells numbers and tissue eosinophilia. T-cell numbers were more related to BHR than eosinophil numbers. Budesonide inhibited both airway inflammation and BHR, but BAL fluid eosinophil cell counts may be dissociated from BHR.
Collapse
Affiliation(s)
- Sum Yee Leung
- Thoracic Medicine, National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse St., London SW3 6LY, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cortijo J, Sanz MJ, Iranzo A, Montesinos JL, Nabah YNA, Alfón J, Gómez LA, Merlos M, Morcillo EJ. A small molecule, orally active, alpha4beta1/alpha4beta7 dual antagonist reduces leukocyte infiltration and airway hyper-responsiveness in an experimental model of allergic asthma in Brown Norway rats. Br J Pharmacol 2006; 147:661-70. [PMID: 16432509 PMCID: PMC1751336 DOI: 10.1038/sj.bjp.0706658] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
alpha(4)beta(1) and alpha(4)beta(7) integrins are preferentially expressed on eosinophils and mononuclear leukocytes and play critical roles in their recruitment to inflammatory sites. We investigated the effects of TR14035, a small molecule, alpha(4)beta(1)/alpha(4)beta(7) dual antagonist, in a rat model of allergic asthma. Actively sensitized rats were challenged with aerosol antigen or saline on day 21, and the responses evaluated 24 and 48-h later. TR14035 (3 mg kg(-1), p.o.) was given 1-h before and 4-h after antigen or saline challenge. Airway hyper-responsiveness to intravenous 5-hydroxytryptamine was suppressed in TR14035-treated rats. Eosinophil, mononuclear cell and neutrophil counts, and eosinophil peroxidase and protein content in the bronchoalveolar lavage fluid (BALF) were decreased in TR14035-treated rats. Histological study showed a marked reduction of lung inflammatory lesions by TR14035. At 24-h postchallenge, antigen-induced lung interleukin (IL)-5 mRNA upregulation was suppressed in TR14035-treated rats. By contrast, IL-4 levels in BALF were not significantly affected by TR14035 treatment. IL-4 selectively upregulates vascular cell adhesion molecule-1 (VCAM-1), which is the main endothelial ligand of alpha(4) integrins. Intravital microscopy within the rat mesenteric microcirculation showed that 24-h exposure to 1 microg per rat of IL-4 induced a significant increase in leukocyte rolling flux, adhesion and emigration. These responses were decreased by 48, 100 and 99%, respectively in animals treated with TR14035. In conclusion, TR14035, by acting on alpha(4)beta(1) and alpha(4)beta(7) integrins, is an orally active inhibitor of airway leukocyte recruitment and hyper-responsiveness in animal models with potential interest for the treatment of asthma.
Collapse
Affiliation(s)
- Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain
- Research Foundation, University General Hospital Consortium, Valencia, Spain
| | - María-Jesús Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain
| | - Arantxa Iranzo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain
| | - José Luis Montesinos
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain
| | - Yafa Naim Abu Nabah
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain
| | - José Alfón
- Research Center, J. Uriach y Compañía S.A., Palau-solità i Plegamans, Barcelona, Spain
| | - Luis A Gómez
- Research Center, J. Uriach y Compañía S.A., Palau-solità i Plegamans, Barcelona, Spain
| | - Manuel Merlos
- Research Center, J. Uriach y Compañía S.A., Palau-solità i Plegamans, Barcelona, Spain
| | - Esteban J Morcillo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain
- Author for correspondence:
| |
Collapse
|
8
|
Kurucz I, Tóth S, Németh K, Török K, Csillik-Perczel V, Pataki A, Salamon C, Nagy Z, Székely JI, Horváth K, Bodor N. Potency and specificity of the pharmacological action of a new, antiasthmatic, topically administered soft steroid, etiprednol dicloacetate (BNP-166). J Pharmacol Exp Ther 2003; 307:83-92. [PMID: 12893841 DOI: 10.1124/jpet.103.053652] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, the pharmacological effects of etiprednol dicloacetate (BNP-166; ethyl-17alpha-dichloroacetoxy-11beta-hydroxyandrosta-1,4-diene-3-one-17beta-carboxylate), a new soft steroid, intended to use for the treatment of asthma, were investigated in an animal model of allergen sensitized and challenged Brown Norway rats using local treatment. The examinations involved the determination of the effect of the compound on the extent of allergen induced broncho-alveolar fluid and lung tissue eosinophilia, goblet cell hyperplasia and mucus production, perivascular edema formation, and airways hyperresponsiveness. The activity of etiprednol dicloacetate was compared with that of budesonide. Using in vitro methods, the soft character of etiprednol dicloacetate was investigated together with its capability to dissociate transrepressing and transactivating properties. We found that combining all the examined parameters etiprednol dicloacetate was at least equipotent with budesonide in the animal model, but in several investigated variables it surpassed the activity of budesonide. The effect of etiprednol dicloacetate in vitro was shown to be the function of the quantity of the serum, present in the assay, it was also strongly affected by the incubation time and decreased significantly when it was preincubated with human plasma. These features are characteristics of a soft drug that is quickly inactivated in the systemic circulation. In addition, it was revealed that while the transrepressing potential of etiprednol dicloacetate remained high, its transactivating activity was greatly reduced. These data indicate that the strong local effect of the compound will very likely be accompanied with a significantly reduced systemic activity predicting favorable selectivity in the pharmacological action of etiprednol dicloacetate.
Collapse
Affiliation(s)
- István Kurucz
- Department of Immunopharmacology, IVAX Drug Research Institute, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Leone DR, Giza K, Gill A, Dolinski BM, Yang W, Perper S, Scott DM, Lee WC, Cornebise M, Wortham K, Nickerson-Nutter C, Chen LL, LePage D, Spell JC, Whalley ET, Petter RC, Adams SP, Lobb RR, Pepinsky RB. An assessment of the mechanistic differences between two integrin alpha 4 beta 1 inhibitors, the monoclonal antibody TA-2 and the small molecule BIO5192, in rat experimental autoimmune encephalomyelitis. J Pharmacol Exp Ther 2003; 305:1150-62. [PMID: 12626659 DOI: 10.1124/jpet.102.047332] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integrin alpha 4 beta 1 plays an important role in inflammatory processes by regulating the migration of lymphocytes into inflamed tissues. Here we evaluated the biochemical, pharmacological, and pharmacodynamic properties and efficacy in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, of two types of alpha 4 beta 1 inhibitors, the anti-rat alpha 4 monoclonal antibody TA-2 and the small molecule inhibitor BIO5192 [2(S)-[[1-(3,5-dichloro-benzenesulfonyl)-pyrrolidine-2(S)-carbonyl]-amino]-4-[4-methyl-2(S)-(methyl-[2-[4-(3-o-tolyl-ureido)-phenyl]-acetyl]-amino)-pentanoylamino]-butyric acid]. TA-2 has been extensively studied in rats and provides a benchmark for assessing function. BIO5192 is a highly selective and potent (KD of <10 pM) inhibitor of alpha 4 beta 1. Dosing regimens were identified for both inhibitors, which provided full receptor occupancy during the duration of the study. Both inhibitors induced leukocytosis, an effect that was used as a pharmacodynamic marker of activity, and both were efficacious in the EAE model. Treatment with TA-2 caused a decrease in alpha 4 integrin expression on the cell surface, which resulted from internalization of alpha 4 integrin/TA-2 complexes. In contrast, BIO5192 did not modulate cell surface alpha 4 beta 1. Our results with BIO5192 indicate that alpha 4 beta 7 does not play a role in this model and that blockade of alpha 4 beta 1/ligand interactions without down-modulation is sufficient for efficacy in rat EAE. BIO5192 is highly selective and binds with high affinity to alpha 4 beta 1 from four of four species tested. These studies demonstrate that BIO5192, a novel, potent, and selective inhibitor of alpha 4 beta 1 integrin, will be a valuable reagent for assessing alpha 4 beta 1 biology and may provide a new therapeutic for treatment of human inflammatory diseases.
Collapse
Affiliation(s)
- D R Leone
- Biogen, Inc., 12 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Pain can be effectively controlled by endogenous mechanisms based on neuroimmune interactions. In inflamed tissue immune cell-derived opioid peptides activate opioid receptors on peripheral sensory nerves leading to potent analgesia. This is brought about by a release of opioids from inflammatory cells after stimulation by stress or corticotropin-releasing hormone (CRH). Immunocytes migrate from the circulation to inflamed tissue in multiple steps, including their rolling, adhesion, and transmigration through the vessel wall. This is orchestrated by adhesion molecules on leukocytes and vascular endothelium. Intercellular adhesion molecule-1 [ICAM-1 (or CD54)] is expressed by endothelium and mediates adhesion and extravasation of leukocytes. The goal of this study was to show that ICAM-1 regulates the homing of opioid-producing cells and the subsequent generation of analgesia within sites of painful inflammation. This was accomplished using immunofluorescence, flow cytometry, and behavioral (paw pressure) testing. We found that ICAM-1 is upregulated on the vascular endothelium, simultaneously with an enhanced immigration of opioid-containing immune cells into inflamed paw tissue. The intravenous administration of a monoclonal antibody against ICAM-1 markedly decreased the migration of opioid-containing leukocytes and of granulocytes, monocytes-macrophages, and T cells to the inflamed tissue. At the same time, circulating immunocytes increased in numbers, and macroscopic inflammation (hyperalgesia, paw volume, and paw temperature) remained primarily unchanged. Most importantly, peripheral opioid analgesia elicited either by cold water swim stress or by intraplantar administration of CRH was dramatically reduced. Together, these findings indicate that ICAM-1 expressed on vascular endothelium recruits immunocytes containing opioids to promote the local control of inflammatory pain.
Collapse
|
11
|
Hele DJ, Birrell MA, Webber SE, Foster ML, Belvisi MG. Mediator involvement in antigen-induced bronchospasm and microvascular leakage in the airways of ovalbumin sensitized Brown Norway rats. Br J Pharmacol 2001; 132:481-8. [PMID: 11159698 PMCID: PMC1572587 DOI: 10.1038/sj.bjp.0703847] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2000] [Revised: 11/08/2000] [Accepted: 11/08/2000] [Indexed: 11/08/2022] Open
Abstract
1. To determine which mediators are involved in antigen-induced bronchospasm and microvascular leakage in the airways of ovalbumin sensitised Brown Norway rats we investigated the effect of a histamine H(1) receptor antagonist, mepyramine, a 5-HT receptor antagonist, methysergide, and a cys-leukotriene-1 receptor antagonist, montelukast. 2. Ovalbumin at 1 mg kg(-1) i.v. caused a significant increase in microvascular leakage in the airways and at 3 mg kg(-1) i.v. caused a significant increase in airways resistance. 3. Histamine (1 mg kg(-1) i.v.), 5-HT (0.1 mg kg(-1) i.v.) and leukotriene D(4) (LTD(4), 50 microg kg(-1) i.v.) caused a significant increase in microvascular leakage in the airways. 4. Mepyramine (1 mg kg(-1) i.v.), methysergide (0.1 mg kg(-1) i.v.), or montelukast (30 mg kg(-1) i.v.) inhibited histamine, 5-HT or LTD(4) -induced microvascular leakage respectively. 5. Methysergide (0.1 mg kg(-1) i.v.) reduced ovalbumin-induced microvascular leakage in the trachea and at 0.3 mg kg(-1) i.v. inhibited bronchospasm (38 and 58%, respectively). Montelukast (30 mg kg(-1) p.o.) reduced ovalbumin-induced microvascular leakage in airway tissue to basal levels (78%) and inhibited ovalbumin-induced bronchospasm (50%). Mepyramine (3 mg kg(-1) i.v.) had no effect on ovalbumin-induced leakage or bronchospasm. 6. A combination of all three compounds (mepyramine, methysergide and montelukast) reduced ovalbumin-induced microvascular leakage in airway tissue to basal levels (70 - 78%) and almost completely inhibited bronchospasm (92%). 7. Antigen-induced bronchospasm appears to equally involve the activation of 5-HT and cys-leukotriene-1 receptors whereas ovalbumin-induced microvascular leakage appears to be predominantly mediated by cys-leukotriene-1 receptors.
Collapse
Affiliation(s)
- Dave J Hele
- Respiratory Pharmacology Group, Department of Cardiothoracic Surgery, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, Chelsea, London SW3 6LY
| | - Mark A Birrell
- Respiratory Pharmacology Group, Department of Cardiothoracic Surgery, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, Chelsea, London SW3 6LY
| | - Stephen E Webber
- Department of Pharmacology, Aventis Pharma, Rainham Road South, Dagenham, Essex RM10 7XS
| | - Martyn L Foster
- Department of Pharmacology, Aventis Pharma, Rainham Road South, Dagenham, Essex RM10 7XS
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Department of Cardiothoracic Surgery, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, Chelsea, London SW3 6LY
| |
Collapse
|
12
|
Kodani M, Sakata N, Takano Y, Kamiya H, Katsuragi T, Hugli TE, Abe M. Intratracheal administration of anaphylatoxin C5a potentiates antigen-induced pulmonary reactions through the prolonged production of cysteinyl-leukotrienes. IMMUNOPHARMACOLOGY 2000; 49:263-74. [PMID: 10996024 DOI: 10.1016/s0162-3109(00)00240-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of intratracheal administration of anaphylatoxin C5a on airway inflammation have been studied using two sources of material, zymosan activated serum (ZAS) and purified rat C5a des Arg, in order to determine the influence of complement activation on allergic airway disorders.The intratracheal administration of ovalbumin (OA) to OA-sensitized rats generated two phases of airway response, an immediate airway response (IAR) occurring within 15 min and a late airway response (LAR) beginning 4-6 h after the allergen challenge. The simultaneous administration of ZAS and OA into the trachea generated a sustained elevation of airway resistance (Raw) following IAR, while that of OA or ZAS alone resulted in Raw returning nearly to the baseline just after the IAR. The elevation of Raw after the combined challenge of OA and ZAS was significantly inhibited by pretreatment with a CysLT(1) receptor antagonist, pranlukast 30 mg/kg, but after that OA or ZAS alone was not significantly inhibited by pranlukast. The intratracheal administration of purified C5a produced an airway response that was similar to, but higher than, that evoked by ZAS. Namely, the challenge with OA plus C5a resulted in a higher IAR than OA plus ZAS, and also caused an early animal death up to 6 h, which was prevented by a combined pretreatment with pranlukast and the H(1) receptor antagonist, diphenhydramine.A histological examination at 6 h after the OA challenge identified an infiltration of inflammatory cells into the bronchial submucosal tissue, with a predominance of neutrophils and fewer eosinophils. On the other hand, a histological examination after the OA and ZAS challenge showed more severe infiltration of granulocytes into the bronchial submucosal tissue than that with OA or ZAS alone. The challenge with OA plus C5a was associated with severe perivascular leakage in the lungs and the combined pretreatment with both the antagonists led to a marked reduction in perivascular leakage. The quantitation of N-acetyl-leukotriene E(4) (N-Ac-LTE(4)), a major metabolite of cysteinyl-leukotrienes (cysLTs), in the bile indicated a significantly greater and longer excretion of cysLTs, from 1 to 6 h after the combined challenge, than that after either OA or ZAS alone. This suggested a prolonged generation of cysLTs in the lung by the combined challenge.In conclusion, our findings suggest that anaphylatoxin C5a may mediate the airway inflammatory response induced by a specific antigen challenge partly through a prolonged production of cysLTs and the release of histamine.
Collapse
Affiliation(s)
- M Kodani
- Department of Pharmacology, School of Pharmaceutical Sciences, Fukuoka University, 814-0180, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Klemm A, Tschernig T, Ermert L, Althoff A, Merkle M, Gebert A, Ermert M, Seeger W, Pabst R. Blockade of leucocyte function-associated antigen-1 (LFA-1) decreases lymphocyte trapping in the normal pulmonary vasculature: studies in the isolated buffer-perfused rat lung. Clin Exp Immunol 2000; 121:375-83. [PMID: 10931156 PMCID: PMC1905710 DOI: 10.1046/j.1365-2249.2000.01265.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion molecules regulate the migration of lymphocytes in lymphoid and non-lymphoid organs. In the lung, little is known about lymphocyte sticking and migration through the pulmonary vascular endothelium in physiological or pathological situations. Therefore the isolated buffer-perfused rat lung was used to investigate the mobilization of lymphocytes out of the normal lung into the venous effluent and to the bronchoalveolar space. The lymphocyte subset composition was characterized in the venous effluent, the lung tissue and the bronchoalveolar lavage (BAL) using immunocytology. Lymphocytes continuously left the normal lung at a total of 5.0 +/- 0.7 x 106 cells within the first hour of perfusion. The injection of 200 x 106 lymphocytes via the pulmonary trunk increased the venous release of lymphocytes by 170%. To investigate the effect of LFA-1 and CD44 on the adhesion of lymphocytes to the pulmonary endothelium, lymphocytes preincubated with an anti-LFA-1 MoAb, which blocks the interaction of LFA-1 and intercellular adhesion molecule-1 (ICAM-1), or lymphocytes preincubated with an anti-CD44 MoAb, were injected. The injection of LFA-1-blocked lymphocytes led to an increase by 70% of injected cells recovered in the perfusate within the first hour, whereas anti-CD44 treatment of injected lymphocytes had no effect. The LFA-1-blocked lymphocytes showed higher numbers of T and B cells in the effluent. Thus, the present experiments demonstrate that LFA-1 influences the trapping of lymphocytes in the vasculature of the healthy rat lung.
Collapse
Affiliation(s)
- A Klemm
- Department of Functional and Applied Anatomy, Medical School of Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sugiura H, Ichinose M, Oyake T, Mashito Y, Ohuchi Y, Endoh N, Miura M, Yamagata S, Koarai A, Akaike T, Maeda H, Shirato K. Role of peroxynitrite in airway microvascular hyperpermeability during late allergic phase in guinea pigs. Am J Respir Crit Care Med 1999; 160:663-71. [PMID: 10430744 DOI: 10.1164/ajrccm.160.2.9807160] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of peroxynitrite, which is formed by a rapid reaction between nitric oxide (NO) and superoxide anion (O(2)(-)), in the airway microvascular hyperpermeability during the late allergic response (LAR) in sensitized guinea pigs in vivo. The occurrence of LAR was assessed as a 100% increase in the transpulmonary pressure, which was monitored by the esophageal catheter technique. Airway microvascular permeability was assessed by Monastral blue dye trapping between the endothelium using an image analyzer. In the LAR phase (4 to 6 h after antigen inhalation), microvascular hyperpermeability and eosinophil infiltration within the airway wall were observed. NO production and xanthine oxidase (XO)/xanthine dehydrogenase activity, which are responsible for O(2)(-) production, were enhanced during the LAR. Peroxynitrite formation assessed by nitrotyrosine immunostaining was also exaggerated at that time. The microvascular hyperpermeability during the LAR was largely reduced by NO synthase inhibitor (L-NAME, 72.7% inhibition; p < 0.05), XO inhibitor (AHPP, 60.8% inhibition; p < 0. 05) and peroxynitrite scavenger (ebselen, 81.0% inhibition; p < 0. 05). L-NAME had a small but significant inhibitory effect on airway eosinophil accumulation, but AHPP and ebselen had no effect. These results suggest that excessive production of O(2)(-) and NO occurs in the LAR. These two molecules appear to cause airway microvascular hyperpermeability via peroxynitrite formation.
Collapse
Affiliation(s)
- H Sugiura
- First Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|