1
|
Silverstein TP. Explaining neuronal membrane potentials: The Goldman equation vs. Lee's TELC hypothesis. Neuroscience 2025; 567:1-8. [PMID: 39755228 DOI: 10.1016/j.neuroscience.2024.12.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
In two recent papers (Curr Trends Neurol 17: 83-98, 2023; J Neurophysiol 124: 1029-1044, 2020), James Lee has argued that his Transmembrane Electrostatically-Localized Cations (TELC) hypothesis offers a model of neuron transmembrane potentials that is superior to Hodgkin-Huxley classic cable theory and the Goldman-Hodgkin-Katz (GHK) equation. Here we examine critically the arguments in these papers, finding key weaknesses and fallacies. We also examine closely the literature cited by Lee, and find (i) strong support for the GHK equation; (ii) published measurements that contradict TELC predictions; and (iii) no convincing support for the TELC hypothesis.
Collapse
|
2
|
Tamagawa H, Delalande B. The membrane potential arising from the adsorption of ions at the biological interface. Biol Futur 2022; 73:455-471. [PMID: 36463564 DOI: 10.1007/s42977-022-00139-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022]
Abstract
Membrane theory makes it possible to compute the membrane potential of living cells accurately. The principle is that the plasma membrane is selectively permeable to ions and that its permeability to mobile ions determines the characteristics of the membrane potential. However, an artificial experimental cell system with an impermeable membrane can exhibit a nonzero membrane potential, and its characteristics are consistent with the prediction of the Goldman-Hodgkin-Katz eq., which is a noteworthy concept of membrane theory, despite the membrane's impermeability to mobile ions. We noticed this troublesome facet of the membrane theory. We measured the potentials through permeable and impermeable membranes where we used the broad varieties of membranes. Then we concluded that the membrane potential must be primarily, although not wholly, governed by the ion adsorption-desorption process rather than by the passage of ions across the cell membrane. A theory based on the Association-Induction Hypothesis seems to be a more plausible mechanism for the generation of the membrane potential and to explain this unexpected physiological fact. The Association-Induction Hypothesis states that selective ion permeability of the membrane is not a condition for the generation of the membrane potential in living cells, which contradicts the prediction of the membrane theory. Therefore, the Association-Induction Hypothesis is the actual cause of membrane potential. We continued the theoretical analysis by taking into account the Association-Induction Hypothesis and saw that its universality as a cause of potential generation mechanism. We then concluded that the interfacial charge distribution is one of the fundamental causes of the membrane potential.
Collapse
Affiliation(s)
- Hirohisa Tamagawa
- Department of Mechanical Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | | |
Collapse
|
3
|
Pinilla E, Sánchez A, Martínez MP, Muñoz M, García‐Sacristán A, Köhler R, Prieto D, Rivera L. Endothelial K Ca 1.1 and K Ca 3.1 channels mediate rat intrarenal artery endothelium-derived hyperpolarization response. Acta Physiol (Oxf) 2021; 231:e13598. [PMID: 33314681 DOI: 10.1111/apha.13598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
Abstract
AIM Endothelium-derived hyperpolarization (EDH)-mediated response plays an essential role in the control of kidney preglomerular circulation, but the identity of the K+ channels involved in this response is still controversial. We hypothesized that large- (KCa 1.1), intermediate- (KCa 3.1) and small (KCa 2.3) -conductance Ca2+ -activated K+ (KCa ) channels are expressed in the endothelium of the preglomerular circulation and participate in the EDH-mediated response. METHODS We study the functional expression of different K+ channels in non-cultured, freshly isolated native endothelial cells (ECs) of rat intrarenal arteries using immunofluorescence and the patch-clamp technique. We correlate this with vasorelaxant responses ex vivo using wire myography. RESULTS Immunofluorescence revealed the expression of KCa 1.1, KCa 3.1 and KCa 2.3 channels in ECs. Under voltage-clamp conditions, acetylcholine induced a marked increase in the outward currents in these cells, sensitive to the blockade of KCa 1.1, KCa 3.1 and KCa 2.3 channels respectively. Isometric myography experiments, under conditions of endothelial nitric oxide synthase and cyclooxygenase inhibition, showed that blockade either of KCa 1.1 or KCa 3.1 channels was able to reduce the endothelium-derived vasorelaxation of isolated interlobar arteries, while their combined blockade completely abolished it. In contrast, blockade of KCa 2.3 channels did not reduce this vasorelaxant response, despite being functionally expressed in the endothelial cells. CONCLUSION This study shows that KCa 1.1 and KCa 3.1 channels are functionally expressed at the renal vascular endothelium and play a central role in the EDH-mediated relaxation of kidney preglomerular arteries, which is important in the control of renal blood flow and glomerular filtration rate.
Collapse
Affiliation(s)
- Estéfano Pinilla
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology Aarhus University Aarhus Denmark
| | - Ana Sánchez
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - María P. Martínez
- Department of Compared Anatomy and Pathological Anatomy, Faculty of Veterinary Complutense University of Madrid Madrid Spain
| | - Mercedes Muñoz
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Albino García‐Sacristán
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Ralf Köhler
- Aragonese Agency for Investigation and Development & IACS/IIS Translational ResearchMiguel Servet Hospital Zaragoza Spain
| | - Dolores Prieto
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Luis Rivera
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| |
Collapse
|
4
|
Lee JW. Protonic conductor: better understanding neural resting and action potential. J Neurophysiol 2020; 124:1029-1044. [PMID: 32816602 DOI: 10.1152/jn.00281.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With the employment of the transmembrane electrostatic proton localization theory with a new membrane potential equation, neural resting and action potential is now much better understood as the voltage contributed by the localized protons/cations at a neural liquid- membrane interface. Accordingly, the neural resting/action potential is essentially a protonic/cationic membrane capacitor behavior. It is now understood with a newly formulated action potential equation: when action potential is <0 (negative number), the localized protons/cations charge density at the liquid-membrane interface along the periplasmic side is >0 (positive number); when the action potential is >0, the concentration of the localized protons and localized nonproton cations is <0, indicating a "depolarization" state. The nonlinear curve of the localized protons/cations charge density in the real-time domain of an action potential spike appears as an inverse mirror image to the action potential. The newly formulated action potential equation provides biophysical insights for neuron electrophysiology, which may represent a complementary development to the classic Goldman-Hodgkin-Katz equation. With the use of the action potential equation, the biological significance of axon myelination is now also elucidated as to provide protonic insulation and prevent any ions both inside and outside of the neuron from interfering with the action potential signal, so that the action potential can quickly propagate along the axon with minimal (e.g., 40 times less) energy requirement.NEW & NOTEWORTHY The newly formulated action potential equation provides biophysical insights for neuron electrophysiology, which may represent a complementary development to the classic Goldman-Hodgkin-Katz equation. The nonlinear curve of the localized protons/cations charge density in the real-time domain of an action potential spike appears as an inverse mirror image to the action potential. The biological significance of axon myelination is now elucidated as to provide protonic insulation and prevent any ions from interfering with action potential signal.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
5
|
Endothelial Dysfunction Following Enhanced TMEM16A Activity in Human Pulmonary Arteries. Cells 2020; 9:cells9091984. [PMID: 32872351 PMCID: PMC7563136 DOI: 10.3390/cells9091984] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial dysfunction is one of the hallmarks of different vascular diseases, including pulmonary arterial hypertension (PAH). Ion channelome changes have long been connected to vascular remodeling in PAH, yet only recently has the focus shifted towards Ca2+-activated Cl− channels (CaCC). The most prominent member of the CaCC TMEM16A has been shown to contribute to the pathogenesis of idiopathic PAH (IPAH) in pulmonary arterial smooth muscle cells, however its role in the homeostasis of healthy human pulmonary arterial endothelial cells (PAECs) and in the development of endothelial dysfunction remains underrepresented. Here we report enhanced TMEM16A activity in IPAH PAECs by whole-cell patch-clamp recordings. Using adenoviral-mediated TMEM16A increase in healthy primary human PAECs in vitro and in human pulmonary arteries ex vivo, we demonstrate the functional consequences of the augmented TMEM16A activity: alterations of Ca2+ dynamics and eNOS activity as well as decreased NO production, PAECs proliferation, wound healing, tube formation and acetylcholine-mediated relaxation of human pulmonary arteries. We propose that the ERK1/2 pathway is specifically affected by elevated TMEM16A activity, leading to these pathological changes. With this work we introduce increased TMEM16A activity in the cell membrane of human PAECs for the development of endothelial dysfunction in PAH.
Collapse
|
6
|
McCarron JG, Wilson C, Heathcote HR, Zhang X, Buckley C, Lee MD. Heterogeneity and emergent behaviour in the vascular endothelium. Curr Opin Pharmacol 2019; 45:23-32. [PMID: 31005824 PMCID: PMC6700393 DOI: 10.1016/j.coph.2019.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
The endothelium is the single layer of cells lining all blood vessels, and it is a remarkable cardiovascular control centre. Each endothelial cell has only a small number (on average six) of interconnected neighbours. Yet this arrangement produces a large repertoire of behaviours, capable of controlling numerous cardiovascular functions in a flexible and dynamic way. The endothelium regulates the delivery of nutrients and removal of waste by regulating blood flow and vascular permeability. The endothelium regulates blood clotting, responses to infection and inflammation, the formation of new blood vessels, and remodelling of the blood vessel wall. To carry out these roles, the endothelium autonomously interprets a complex environment crammed with signals from hormones, neurotransmitters, pericytes, smooth muscle cells, various blood cells, viral or bacterial infection and proinflammatory cytokines. It is generally assumed that the endothelium responds to these instructions with coordinated responses in a homogeneous population of endothelial cells. Here, we highlight evidence that shows that neighbouring endothelial cells are highly heterogeneous and display different sensitivities to various activators. Cells with various sensitivities process different extracellular signals into distinct streams of information in parallel, like a vast switchboard. Communication occurs among cells and new ‘emergent’ signals are generated that are non-linear composites of the inputs. Emergent signals cannot be predicted or deduced from the properties of individual cells. Heterogeneity and emergent behaviour bestow capabilities on the endothelial collective that far exceed those of individual cells. The implications of heterogeneity and emergent behaviour for understanding vascular disease and drug discovery are discussed.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Helen R Heathcote
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
7
|
Tamagawa H, Ikeda K. Another interpretation of the Goldman-Hodgkin-Katz equation based on Ling's adsorption theory. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:869-879. [PMID: 30203188 DOI: 10.1007/s00249-018-1332-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
According to standard membrane theory, the generation of membrane potential is attributed to transmembrane ion transport. However, there have been a number of reports of membrane behavior in conflict with the membrane theory of cellular potential. Putting aside the membrane theory, we scrutinized the generation mechanism of membrane potential from the view of the long-dismissed adsorption theory of Ling. Ling's adsorption theory attributes the membrane potential generation to mobile ion adsorption. Although Ling's adsorption theory conflicts with the broadly accepted membrane theory, we found that it well reproduces experimentally observed membrane potential behavior. Our theoretical analysis finds that the potential formula based on the GHK eq., which is a fundamental concept of membrane theory, coincides with the potential formula based on Ling's adsorption theory. Reinterpreting the permeability coefficient in the GHK eq. as the association constant between the mobile ion and adsorption site, the GHK eq. turns into the potential formula from Ling's adsorption theory. We conclude that the membrane potential is generated by ion adsorption as Ling's adsorption theory states and that the membrane theory of cellular potential should be amended even if not discarded.
Collapse
Affiliation(s)
- Hirohisa Tamagawa
- Department of Mechanical Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan.
| | - Kota Ikeda
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1, Nakano, Nakano-ku, Tokyo, 165-8525, Japan
| |
Collapse
|
8
|
McCarron JG, Lee MD, Wilson C. The Endothelium Solves Problems That Endothelial Cells Do Not Know Exist. Trends Pharmacol Sci 2017; 38:322-338. [PMID: 28214012 PMCID: PMC5381697 DOI: 10.1016/j.tips.2017.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
The endothelium is the single layer of cells that lines the entire cardiovascular system and regulates vascular tone and blood-tissue exchange, recruits blood cells, modulates blood clotting, and determines the formation of new blood vessels. To control each function, the endothelium uses a remarkable sensory capability to continuously monitor vanishingly small changes in the concentrations of many simultaneously arriving extracellular activators that each provides cues to the physiological state. Here we suggest that the extraordinary sensory capabilities of the endothelium do not come from single cells but from the combined activity of a large number of endothelial cells. Each cell has a limited, but distinctive, sensory capacity and shares information with neighbours so that sensing is distributed among cells. Communication of information among connected cells provides system-level sensing substantially greater than the capabilities of any single cell and, as a collective, the endothelium solves sensory problems too complex for any single cell.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
9
|
Dayeh NR, Ledoux J, Dupuis J. Lung Capillary Stress Failure and Arteriolar Remodelling in Pulmonary Hypertension Associated with Left Heart Disease (Group 2 PH). Prog Cardiovasc Dis 2016; 59:11-21. [PMID: 27195752 DOI: 10.1016/j.pcad.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 11/25/2022]
Abstract
Left heart diseases (LHD) represent the most prevalent cause of pulmonary hypertension (PH), yet there are still no approved therapies that selectively target the pulmonary circulation in LHD. The increase in pulmonary capillary pressure due to LHD is a triggering event leading to physical and biological alterations of the pulmonary circulation. Acutely, mechanosensitive endothelial dysfunction and increased capillary permeability combined with reduced fluid resorption lead to the development of interstitial and alveolar oedema. From repeated cycles of such capillary stress failure originate more profound changes with pulmonary endothelial dysfunction causing increased basal and reactive pulmonary vascular tone. This contributes to pulmonary vascular remodelling with increased arterial wall thickness, but most prominently, to alveolar wall remodelling characterized by myofibroblasts proliferation with collagen and interstitial matrix deposition. Although protective against acute pulmonary oedema, alveolar wall thickening becomes maladaptive and is responsible for the development of a restrictive lung syndrome and impaired gas exchanges contributing to shortness of breath and PH. Increasing awareness of these processes is unraveling novel pathophysiologic processes that could represent selective therapeutic targets. Thus, the roles of caveolins, of the intermediate myofilament nestin and of endothelial calcium dyshomeostasis were recently evaluated in pre-clinical models. The pathophysiology of PH due to LHD (group II PH) is distinctive from other groups of PH. Therefore, therapies targeting PH due to LHD must be evaluated in that context.
Collapse
Affiliation(s)
- Nour R Dayeh
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Département de Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Jocelyn Dupuis
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada; Département de Physiologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
11
|
Paddenberg R, König P, Faulhammer P, Goldenberg A, Pfeil U, Kummer W. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices. Respir Res 2006; 7:93. [PMID: 16808843 PMCID: PMC1524949 DOI: 10.1186/1465-9921-7-93] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/29/2006] [Indexed: 11/10/2022] Open
Abstract
Background Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) which serves to match lung perfusion to ventilation. The underlying mechanisms are not fully resolved yet. The major vascular segment contributing to HPV, the intra-acinar artery, is mostly located in that part of the lung that cannot be selectively reached by the presently available techniques, e.g. hemodynamic studies of isolated perfused lungs, recordings from dissected proximal arterial segments or analysis of subpleural vessels. The aim of the present study was to establish a model which allows the investigation of HPV and its underlying mechanisms in small intra-acinar arteries. Methods Intra-acinar arteries of the mouse lung were studied in 200 μm thick precision-cut lung slices (PCLS). The organisation of the muscle coat of these vessels was characterized by α-smooth muscle actin immunohistochemistry. Basic features of intra-acinar HPV were characterized, and then the impact of reactive oxygen species (ROS) scavengers, inhibitors of the respiratory chain and Krebs cycle metabolites was analysed. Results Intra-acinar arteries are equipped with a discontinuous spiral of α-smooth muscle actin-immunoreactive cells. They exhibit a monophasic HPV (medium gassed with 1% O2) that started to fade after 40 min and was lost after 80 min. This HPV, but not vasoconstriction induced by the thromboxane analogue U46619, was effectively blocked by nitro blue tetrazolium and diphenyleniodonium, indicating the involvement of ROS and flavoproteins. Inhibition of mitochondrial complexes II (3-nitropropionic acid, thenoyltrifluoroacetone) and III (antimycin A) specifically interfered with HPV, whereas blockade of complex IV (sodium azide) unspecifically inhibited both HPV and U46619-induced constriction. Succinate blocked HPV whereas fumarate had minor effects on vasoconstriction. Conclusion This study establishes the first model for investigation of basic characteristics of HPV directly in intra-acinar murine pulmonary vessels. The data are consistent with a critical involvement of ROS, flavoproteins, and of mitochondrial complexes II and III in intra-acinar HPV. In view of the lack of specificity of any of the classical inhibitors used in such types of experiments, validation awaits the use of appropriate knockout strains and siRNA interference, for which the present model represents a well-suited approach.
Collapse
Affiliation(s)
- Renate Paddenberg
- University of Giessen Lung Center, Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Peter König
- University of Giessen Lung Center, Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Petra Faulhammer
- University of Giessen Lung Center, Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Anna Goldenberg
- University of Giessen Lung Center, Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Uwe Pfeil
- University of Giessen Lung Center, Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Wolfgang Kummer
- University of Giessen Lung Center, Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
12
|
Ikehara T, Yamaguchi H, Hosokawa K, Miyamoto H, Aizawa K. Effects of ELF magnetic field on membrane protein structure of living HeLa cells studied by Fourier transform infrared spectroscopy. Bioelectromagnetics 2003; 24:457-64. [PMID: 12955750 DOI: 10.1002/bem.10120] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of exposure to a 50 Hz magnetic field (maximum of 41.7 to 43.6 mT) on the membrane protein structures of living HeLa cells were studied using attenuated total reflection infrared spectroscopy. One min of such exposure shifted peak absorbance of the amide I band to a smaller wave number, reduced peak absorbance of the amide II band, and increased absorbance at around 1600 cm(-1). These results suggest that exposure to the ELF magnetic field has reversible effects on the N-H inplane bending and C-N stretching vibrations of peptide linkages, and changes the secondary structures of alpha-helix and beta-sheet in cell membrane proteins.
Collapse
Affiliation(s)
- Toshitaka Ikehara
- Department of Physiology, Course of Preventive Medicine, School of Medicine, The University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|
13
|
Olschewski H, Olschewski A, Rose F, Schermuly R, Schütte H, Weissmann N, Seeger W, Grimminger F. Physiologic basis for the treatment of pulmonary hypertension. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 138:287-97. [PMID: 11709653 DOI: 10.1067/mlc.2001.119329] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- H Olschewski
- Medical Clinic II, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|