1
|
Varricchi G, Poto R, Lommatzsch M, Brusselle G, Braido F, Virchow JC, Canonica GW. Biologics and airway remodeling in asthma: early, late, and potential preventive effects. Allergy 2025; 80:408-422. [PMID: 39520155 PMCID: PMC11804314 DOI: 10.1111/all.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Although airway remodeling in severe and/or fatal asthma is still considered irreversible, its individual components as a cause of clinical symptoms and/or lung function changes remain largely unknown. While inhaled glucocorticoids have not consistently been shown to affect airway remodeling, biologics targeting specific pathways of airway inflammation have been shown to improve lung function, mucus plugging, and airway structural changes that can exceed those seen with glucocorticoids. This superiority of biologic treatment, which cannot be solely explained by insufficient doses or limited durations of glucocorticoid therapies, needs to be further explored. For this field of research, we propose a novel classification of the potential effects of biologics on airway remodeling into three temporal effects: early effects (days to weeks, primarily modulating inflammatory processes), late effects (months to years, predominantly affecting structural changes), and potential preventive effects (outcomes of early treatment with biologics). For the identification of potential preventive effects of biologics, we call for studies exploring the impact of early biological treatment on airway remodeling in patients with moderate-to-severe asthma, which should be accompanied by a long-term evaluation of clinical parameters, biomarkers, treatment burden, and socioeconomic implications.
Collapse
Affiliation(s)
- G. Varricchi
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | - R. Poto
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
| | - M. Lommatzsch
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - F. Braido
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
| | - J. C. Virchow
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. W. Canonica
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Asthma & Allergy Unit‐IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
2
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Khayal EES. Perfluorooctanoic acid induced lung toxicity via TGF-β1/Smad pathway, crosstalk between airway hyperresponsiveness and fibrosis: withdrawal impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4989-5007. [PMID: 39900883 DOI: 10.1007/s11356-025-36005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
Perfluorooctanoic acid (PFOA) is an environmental persistent agent to which humans are exposed daily through food and water. This study investigated the lung toxic effects induced by ingested PFOA (30 mg/kg/day) for 8 weeks in adult male rats and the impact following 8 weeks of its withdrawal. PFOA increased MDA and reduced TAC inducing oxidative stress. It induced airway hyperresponsiveness (AHR) via increased bronchoalveolar lavage fluid (BALF) IL-4, IL-5, IL-13, IL-9, eosinophil count, TNF-α, and IL-1ß; reduced IL-12; increased serum IgE; and increased urocortin expression in lung tissues. Moreover, it induced pulmonary fibrosis via increased serum KL-6, and SFTP-D, altered pulmonary structure, and increased deposition of collagen fibers in lung tissues. Furthermore, it increased TGF-β1, Smad2, and Smad3 and reduced Smad7 gene expression in lung tissues. These gene alterations were positively correlated with AHR and fibrosis-related factors. The recovered lung upon PFOA withdrawal showed complete resolution of oxidative stress and slight amelioration of other studying parameters. Exposure to PFOA induced lung toxicity by disrupting the TGF-β1/Smad signaling pathway, which acts as a crosstalk between AHR and fibrosis. Additionally, PFOA altered pulmonary architecture, triggered inflammation, and caused oxidative stress. The lung exhibited partial alleviation upon recovery.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
3
|
Scotland BL, Dharmaraj S, Cottingham AL, Truong N, Chapoval SP, Keegan AD, Pearson RM. Impact of antigen loading in tolerogenic nanoparticles to mitigate Th2-mediated allergic lung inflammation. Drug Deliv Transl Res 2024; 14:2930-2944. [PMID: 38862755 PMCID: PMC11608010 DOI: 10.1007/s13346-024-01632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Allergic disease is a major global health concern that imposes significant life-altering and economic burdens on affected individuals. However, there is still no cure. Polymer-based nanoparticles (NP) have shown the potential to induce antigen (Ag)-specific immune tolerance in various Th1/17 and Th2-mediated immune disorders including autoimmunity and allergy. Common methods by which Ags are associated with NPs are through surface conjugation or encapsulation. However, these Ag delivery strategies can be associated with several caveats that dampen their effectiveness such as uncontrolled Ag loading, a high Ag burst release, and an increased immune recognition profile. We previously developed Ag-polymer conjugate NPs (acNPs) to overcome those noted limitations, while allowing for controlled delivery of precise quantities of Ag to innate immune cells for Ag-specific CD4 T cell modulation. Here, we utilized ovalbumin (OVA) protein-poly(lactic-co-glycolic acid) (PLGA) conjugate NPs (acNP-OVA) to elucidate the impact of Ag loading on the induction of Th2 tolerance using a prophylactic and therapeutic OVA/ALUM-induced mouse model of allergic lung inflammation (ALI) in comparison to Ag-encapsulated PLGA NPs (NP(Ag)). We demonstrate that acNP-OVA formulations reduced OVA-specific IgE and inhibited Th2 cytokine secretions in an Ag loading-dependent manner when administered prophylactically. Administration of acNP-OVA to pre-sensitized mice did not affect OVA-specific IgE and Th2 cytokines tended to be reduced, however, there was no clear Ag loading dependency. acNP-OVA with medium-to-low Ag loadings were well tolerated, while formulations with high Ag loadings, including NP(Ag) resulted in anaphylaxis. Overall, our results clarify the relationship between Ag loading and Ag-specific IgE and Th2 cytokine responses in a murine model of ALI, which provides insight useful for future design of tolerogenic NP-based immunotherapies.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 W. Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 W. Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Kashiwa K, Kurosawa H, Fujishiro K, Kubo H, Inokuchi R, Bougaki M, Kawamura G, Sato M, Konoeda C, Nakajima J, Doi K. Increased white blood cell count is associated with an increased demand for unfractionated heparin during veno-arterial extracorporeal oxygenation in lung transplantation. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2024; 56:108-113. [PMID: 39303132 PMCID: PMC11415038 DOI: 10.1051/ject/2024022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/22/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND This retrospective observational study aimed to examine whether clinical inflammatory parameters were associated with the requirement dosage of unfractionated heparin (UFH) to maintain the range of ACT in veno-arterial extracorporeal membrane oxygenation (V-A ECMO) during lung transplantation surgery. METHODS Among all patients who underwent lung transplantation using V-A ECMO from January 2021 to May 2022, 27 patients were included. These patients were divided into two groups based on whether the infusion rate of UFH was increased from the initial infusion rate (7-8 units/kg/h) (increased group, n = 10) or the infusion rate was maintained or decreased (non-increased group, n = 17). The infusion rate was adjusted with an activated clotting time (ACT) target of 160-200 s. RESULTS At 1-2 h after starting ECMO, ACT was significantly lower (179.0 (166.5-188.5) versus 224.0 (193.0-242.0) sec, p = 0.006) and white blood cell (WBC) counts were higher in the increased group (12.6 ± 3.3 versus 9.5 ± 4.0 × 103/μL, p = 0.046). The UFH infusion rates were higher in the increased group during the surgery. The cutoff value of WBC count at 1-2 h after starting ECMO for discriminating the need for increasing the UFH dosage was determined as 10.2 × 103/μL (sensitivity 90.0%, specificity 58.8%, area under the curve 0.712) and discrimination of this cut-off value was confirmed as statistically significant (p = 0.018). CONCLUSION These data suggested that WBC count was associated with the requirement of an increase in the UFH infusion rate of V-A ECMO during lung transplantation surgery. Further evaluation is necessary to clarify the role of WBC count in determining the optimal UFH dosage.
Collapse
Affiliation(s)
- Koichi Kashiwa
-
Department of Clinical Engineering, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Hideo Kurosawa
-
Department of Clinical Engineering, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Kazuki Fujishiro
-
Department of Clinical Engineering, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Hitoshi Kubo
-
Department of Clinical Engineering, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Ryota Inokuchi
-
Department of Clinical Engineering, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Masahiko Bougaki
-
Department of Anesthesiology, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Gaku Kawamura
-
Department of Anesthesiology, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Masaaki Sato
-
Department of Thoracic Surgery, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Chihiro Konoeda
-
Department of Thoracic Surgery, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Jun Nakajima
-
Department of Thoracic Surgery, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| | - Kent Doi
-
Department of Clinical Engineering, The University of Tokyo Hospital 7-3-1, Hongo Bunkyo-city, Tokyo 113-8655 Japan
| |
Collapse
|
5
|
AbuJabal R, Ramakrishnan RK, Bajbouj K, Hamid Q. Role of IL-5 in asthma and airway remodelling. Clin Exp Allergy 2024; 54:538-549. [PMID: 38938056 DOI: 10.1111/cea.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024]
Abstract
Asthma is a common and burdensome chronic inflammatory airway disease that affects both children and adults. One of the main concerns with asthma is the manifestation of irreversible tissue remodelling of the airways due to the chronic inflammatory environment that eventually disrupts the whole structure of the airways. Most people with troublesome asthma are treated with inhaled corticosteroids. However, the development of steroid resistance is a commonly encountered issue, necessitating other treatment options for these patients. Biological therapies are a promising therapeutic approach for people with steroid-resistant asthma. Interleukin 5 is recently gaining a lot of attention as a biological target relevant to the tissue remodelling process. Since IL-5-neutralizing monoclonal antibodies (mepolizumab, reslizumab and benralizumab) are currently available for clinical use, this review aims to revisit the role of IL-5 in asthma pathogenesis at large and airway remodelling in particular, in addition to exploring its role as a target for biological treatments.
Collapse
Affiliation(s)
- Rola AbuJabal
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qutayba Hamid
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada
| |
Collapse
|
6
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Khare S, Jog R, Bright A, Burgess DJ, Chakder SK, Gokulan K. Evaluation of mucosal immune profile associated with Zileuton nanocrystal-formulated BCS-II drug upon oral administration in Sprague Dawley rats. Nanotoxicology 2023; 17:583-603. [PMID: 38146991 DOI: 10.1080/17435390.2023.2289940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023]
Abstract
Nanocrystal drug formulation involves several critical manufacturing procedures that result in complex structures to improve drug solubility, dissolution, bioavailability, and consequently the efficacy of poorly soluble Biopharmaceutics Classification System (BCS) II and IV drugs. Nanocrystal formulation of an already approved oral drug may need additional immunotoxic assessment due to changes in the physical properties of the active pharmaceutical ingredient (API). In this study, we selected Zileuton, an FDA-approved drug that belongs to BCS-II for nanocrystal formulation. To evaluate the efficacy and mucosal immune profile of the nanocrystal drug, 10-week-old rats were dosed using capsules containing either API alone or nanocrystal formulated Zileuton (NDZ), or with a physical mixture (PM) using flexible oral gavage syringes. Control groups consisted of untreated, or placebo treated animals. Test formulations were administrated to rats at a dose of 30 mg/kg body weight (bw) once a day for 15 days. The rats treated with NDZ or PM had approximately 4.0 times lower (7.5 mg/kg bw) API when compared to the micron sized API treated rats. At the end of treatment, mucosal (intestinal tissue) and circulating cytokines were measured. The immunological response revealed that NDZ decreased several proinflammatory cytokines in the ileal mucosa (Interleukin-18, Tumor necrosis Factor-α and RANTES [regulated upon activation, normal T cell expressed and secreted]). A similar pattern in the cytokine profile was also observed for the micron sized API and PM treated rats. The cytokine production revealed that there was a significant increase in the production of IL-1β and IL-10 in the females in all experimental groups. Additionally, NDZ showed an immunosuppressive effect on proinflammatory cytokines both locally and systemically, which was similar to the response in micron sized API treated rats. These findings indicate that NDZ significantly decreased several proinflammatory cytokines and it displays less immunotoxicity, probably due to the nanocrystal formulation. Thus, the nanocrystal formulation is more suitable for oral drug delivery, as it exhibited better efficacy, safety, and reduced toxicity.
Collapse
Affiliation(s)
- Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Rajan Jog
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Anshel Bright
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Sushanta K Chakder
- Center for Drug Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
8
|
Siddiqui S, Bachert C, Bjermer L, Buchheit KM, Castro M, Qin Y, Rupani H, Sagara H, Howarth P, Taillé C. Eosinophils and tissue remodeling: Relevance to airway disease. J Allergy Clin Immunol 2023; 152:841-857. [PMID: 37343842 DOI: 10.1016/j.jaci.2023.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
The ability of human tissue to reorganize and restore its existing structure underlies tissue homeostasis in the healthy airways, but in disease can persist without normal resolution, leading to an altered airway structure. Eosinophils play a cardinal role in airway remodeling both in health and disease, driving epithelial homeostasis and extracellular matrix turnover. Physiological consequences associated with eosinophil-driven remodeling include impaired lung function and reduced bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis with nasal polyps. Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling is an important therapeutic consideration. Indeed, there is early evidence that eosinophil attenuation may reduce remodeling and disease progression in asthma. This review provides an overview of tissue remodeling in both health and airway disease with a particular focus on eosinophilic asthma and chronic rhinosinusitis with nasal polyps, as well as the role of eosinophils in these processes and the implications for therapeutic interventions. Areas for future research are also noted, to help improve our understanding of the homeostatic and pathological roles of eosinophils in tissue remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Claus Bachert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Münster, Münster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China; Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Leif Bjermer
- Department of Clinical Sciences, Respiratory Medicine, and Allergology, Lund University, Lund, Sweden
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Allergic Diseases Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Mario Castro
- Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, NC
| | - Yimin Qin
- Global Medical Affairs, Global Specialty and Primary Care, GlaxoSmithKline, Research Triangle Park, NC
| | - Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Hironori Sagara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Peter Howarth
- Global Medical, Global Specialty and Primary Care, GlaxoSmithKline, Brentford, Middlesex, United Kingdom
| | - Camille Taillé
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unit 1152, University of Paris Cité, Paris, France
| |
Collapse
|
9
|
Gong X, Han Z, Fan H, Wu Y, He Y, Fu Y, Zhu T, Li H. The interplay of inflammation and remodeling in the pathogenesis of chronic rhinosinusitis: current understanding and future directions. Front Immunol 2023; 14:1238673. [PMID: 37771597 PMCID: PMC10523020 DOI: 10.3389/fimmu.2023.1238673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Chronic rhinosinusitis (CRS), a common clinical condition characterized by persistent mucosal inflammation and tissue remodeling, has a complex pathogenesis that is intricately linked to innate and adaptive immunity. A number of studies have demonstrated that a variety of immune cells and cytokines that play a vital role in mediating inflammation in CRS are also involved in remodeling of the nasal mucosa and the cells as well as different cytokines involved in remodeling in CRS are also able to exert some influence on inflammation, even though the exact relationship between inflammation and remodeling in CRS has not yet been fully elucidated. In this review, the potential role of immune cells and cytokines in regulating inflammation and remodeling of CRS mucosa has been described, starting with the immune cells and cytokines that act together in inflammation and remodeling. The goal is to aid researchers in understanding intimate connection between inflammation and remodeling of CRS and to offer novel ideas for future research.
Collapse
Affiliation(s)
- Xinru Gong
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhoutong Han
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongli Fan
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Wu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuanqiong He
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yijie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Tianmin Zhu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
10
|
Chung KF. Staphylococcus aureus Enterotoxin-Specific IgE Sensitization in Severe Eosinophilic Asthma Phenotype. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:119-121. [PMID: 37021499 PMCID: PMC10079517 DOI: 10.4168/aair.2023.15.2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Affiliation(s)
- Kian Fan Chung
- Experimental Studies Unit, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
11
|
Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, Paoletti G, Virchow JC, Heffler E, Canonica WG. Biologics and airway remodeling in severe asthma. Allergy 2022; 77:3538-3552. [PMID: 35950646 PMCID: PMC10087445 DOI: 10.1111/all.15473] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic inflammatory airway disease resulting in airflow obstruction, which in part can become irreversible to conventional therapies, defining the concept of airway remodeling. The introduction of biologics in severe asthma has led in some patients to the complete normalization of previously considered irreversible airflow obstruction. This highlights the need to distinguish a "fixed" airflow obstruction due to structural changes unresponsive to current therapies, from a "reversible" one as demonstrated by lung function normalization during biological therapies not previously obtained even with high-dose systemic glucocorticoids. The mechanisms by which exposure to environmental factors initiates the inflammatory responses that trigger airway remodeling are still incompletely understood. Alarmins represent epithelial-derived cytokines that initiate immunologic events leading to inflammatory airway remodeling. Biological therapies can improve airflow obstruction by addressing these airway inflammatory changes. In addition, biologics might prevent and possibly even revert "fixed" remodeling due to structural changes. Hence, it appears clinically important to separate the therapeutic effects (early and late) of biologics as a new paradigm to evaluate the effects of these drugs and future treatments on airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Sebastian Ferri
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jack Pepys
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Emanuele Nappi
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Paoletti
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Enrico Heffler
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Walter G Canonica
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
12
|
Novel Lung Growth Strategy with Biological Therapy Targeting Airway Remodeling in Childhood Bronchial Asthma. CHILDREN 2022; 9:children9081253. [PMID: 36010143 PMCID: PMC9406359 DOI: 10.3390/children9081253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Anti-inflammatory therapy, centered on inhaled steroids, suppresses airway inflammation in asthma, reduces asthma mortality and hospitalization rates, and achieves clinical remission in many pediatric patients. However, the spontaneous remission rate of childhood asthma in adulthood is not high, and airway inflammation and airway remodeling persist after remission of asthma symptoms. Childhood asthma impairs normal lung maturation, interferes with peak lung function in adolescence, reduces lung function in adulthood, and increases the risk of developing chronic obstructive pulmonary disease (COPD). Early suppression of airway inflammation in childhood and prevention of asthma exacerbations may improve lung maturation, leading to good lung function and prevention of adult COPD. Biological drugs that target T-helper 2 (Th2) cytokines are used in patients with severe pediatric asthma to reduce exacerbations and airway inflammation and improve respiratory function. They may also suppress airway remodeling in childhood and prevent respiratory deterioration in adulthood, reducing the risk of COPD and improving long-term prognosis. No studies have demonstrated a suppressive effect on airway remodeling in childhood severe asthma, and further clinical trials using airway imaging analysis are needed to ascertain the inhibitory effect of biological drugs on airway remodeling in severe childhood asthma. In this review, we describe the natural prognosis of lung function in childhood asthma and the risk of developing adult COPD, the pathophysiology of allergic airway inflammation and airway remodeling via Th2 cytokines, and the inhibitory effect of biological drugs on airway remodeling in childhood asthma.
Collapse
|
13
|
Woo JH, Kim KC, Kim HY, Kim IH, Kim SH, Lee K. Comparative toxicity of polyhexamethylene guanidine phosphate in three strains of rats. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00169-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Lourenço LO, Ribeiro AM, Lopes FDTQDS, Tibério IDFLC, Tavares-de-Lima W, Prado CM. Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models. Clin Rev Allergy Immunol 2021; 62:240-263. [PMID: 34542807 DOI: 10.1007/s12016-021-08894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Asthma is a respiratory allergic disease presenting a high prevalence worldwide, and it is responsible for several complications throughout life, including death. Fortunately, asthma is no longer recognized as a unique manifestation but as a very heterogenic manifestation. Its phenotypes and endotypes are known, respectively, as pathologic and molecular features that might not be directly associated with each other. The increasing number of studies covering this issue has brought significant insights and knowledge that are constantly expanding. In this review, we intended to summarize this new information obtained from clinical studies, which not only allowed for the creation of patient clusters by means of personalized medicine and a deeper molecular evaluation, but also created a connection with data obtained from experimental models, especially murine models. We gathered information regarding sensitization and trigger and emphasizing the most relevant phenotypes and endotypes, such as Th2-high asthma and Th2-low asthma, which included smoking and obesity-related asthma and mixed and paucigranulocytic asthma, not only in physiopathology and the clinic but also in how these phenotypes can be determined with relative similarity using murine models. We also further investigated how clinical studies have been treating patients using newly developed drugs focusing on specific biomarkers that are more relevant according to the patient's clinical manifestation of the disease.
Collapse
Affiliation(s)
- Luiz Otávio Lourenço
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | | | | | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil. .,Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Treatment Challenges in Severe Eosinophilic Asthma: Differential Response to Anti-IL-5 and Anti-IL-5R Therapy. Int J Mol Sci 2021; 22:ijms22083969. [PMID: 33921360 PMCID: PMC8069413 DOI: 10.3390/ijms22083969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 01/10/2023] Open
Abstract
Severe asthma greatly affects patients' quality of life. Major advances have occurred in the management of severe eosinophilic asthma the past few years due to the new targeted biological therapies. There are three anti-IL-5 mAbs, mepolizumab, reslizumab and benralizumab. Despite the different mechanism of blocking IL-5 the clinical effects are quite similar as randomized controlled trials and real-life studies have shown. Moreover, there are reports of responding to one after failing to respond to another anti-IL-5 therapy. Accordingly, it is challenging to explore the possible differences in the response to anti-IL-5 treatments. This might help us not only understand possible mechanisms that contribute to the resistance to treatment in this particular asthma endotype, but also to phenotype within severe eosinophilic asthma in order to treat our patients more efficiently.
Collapse
|
16
|
Shastri MD, Chong WC, Dua K, Peterson GM, Patel RP, Mahmood MQ, Tambuwala M, Chellappan DK, Hansbro NG, Shukla SD, Hansbro PM. Emerging concepts and directed therapeutics for the management of asthma: regulating the regulators. Inflammopharmacology 2020; 29:15-33. [PMID: 33152094 DOI: 10.1007/s10787-020-00770-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Asthma is a common, heterogeneous and serious disease, its prevalence has steadily risen in most parts of the world, and the condition is often inadequately controlled in many patients. Hence, there is a major need for new therapeutic approaches. Mild-to-moderate asthma is considered a T-helper cell type-2-mediated inflammatory disorder that develops due to abnormal immune responses to otherwise innocuous allergens. Prolonged exposure to allergens and persistent inflammation results in myofibroblast infiltration and airway remodelling with mucus hypersecretion, airway smooth muscle hypertrophy, and excess collagen deposition. The airways become hyper-responsive to provocation resulting in the characteristic wheezing and obstructed airflow experienced by patients. Extensive research has progressed the understanding of the underlying mechanisms and the development of new treatments for the management of asthma. Here, we review the basis of the disease, covering new areas such as the role of vascularisation and microRNAs, as well as associated potential therapeutic interventions utilising reports from animal and human studies. We also cover novel drug delivery strategies that are being developed to enhance therapeutic efficacy and patient compliance. Potential avenues to explore to improve the future of asthma management are highlighted.
Collapse
Affiliation(s)
- Madhur D Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gregory M Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Malik Q Mahmood
- Faculty of Health, School of Medicine, Deakin University, Melbourne, Australia
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Belfast, Northern Ireland, UK
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia. .,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia. .,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
17
|
Kardas G, Kuna P, Panek M. Biological Therapies of Severe Asthma and Their Possible Effects on Airway Remodeling. Front Immunol 2020; 11:1134. [PMID: 32625205 PMCID: PMC7314989 DOI: 10.3389/fimmu.2020.01134] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Asthma is a chronic and heterogenic respiratory tract disorder with a high global prevalence. The underlying chronic inflammatory process and airway remodeling (AR) contribute to the symptomatology of the disease. The most severely ill asthma patients may now be treated using a variety of monoclonal antibodies aiming key inflammatory cytokines involved in asthma pathogenesis. Although clinical data shows much beneficial effects of biological therapies in terms of reduction of exacerbation rates, improvement of lung functions, asthma control and patients' quality of life, little is known on the effects of these monoclonal antibodies on AR—a key clinical trait of long-term asthma management. In this review, the authors summarize the data on the proven effects of monoclonal antibodies in asthma on AR. To date, in terms of reversing AR, the mostly studied was omalizumab. However, some studies also addressed this clinical issue in context of other severe asthma biological therapies (mepolizumab, benralizumab, tralokinumab). Still, data on effects of particular biological therapies on AR in severe asthma are incomplete and require further studies. According to the American Thoracic Society research recommendations, future research shall focus on AR in asthma and improve drugs targeting AR, including the available and future monoclonal antibodies.
Collapse
Affiliation(s)
- Grzegorz Kardas
- Clinic of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Łódz, Poland
| | - Piotr Kuna
- Clinic of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Łódz, Poland
| | - Michał Panek
- Clinic of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Łódz, Poland
| |
Collapse
|
18
|
Elevated eosinophils, IL5 and IL8 in induced sputum in asthma patients with accelerated FEV1 decline. Respir Med 2020; 162:105875. [PMID: 32056673 DOI: 10.1016/j.rmed.2020.105875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Some patients with asthma present with accelerated lung function decline. This phenomenon is mostly associated with severe exacerbations and with poor asthma control. OBJECTIVE Our aim was to detect the extent of FEV1 decline in patients with mild asthma and to discriminate clinical, functional and inflammatory factors associated with accelerated FEV1 decline. METHODS We recruited 50 patients with mild asthma for pulmonary function testing and induced sputum sampling 12-15 years after the initial diagnosis. In 33 patients, from whom sputum of a good quality was obtained, inflammatory cells were counted and concentrations of cytokines IL-2, IL-4, IL-5, IL-8, IL-10, IFN-γ, angiogenin and VEGF in the sputum were measured by cytometric bead array. RESULTS Eighteen of 33 patients presented with accelerated FEV1 decline of more than 30 ml/year, with a mean (SEM) of 43.2 (3.9) ml/year, compared to 15 control patients with a FEV1 decline of 14.4 (2.1) ml/year. In the accelerated FEV1 decline group, we found elevated sputum levels of IL5 with a median (IQR) of 1.8 (0.4-3.2) pg/ml vs. 0.2 (0.1-1.2) pg/ml, p = 0.04; IL8 with a mean (SEM) of 1503 (194) pg/ml vs. 938 (177) pg/ml, p = 0.04; and eosinophils with a median (IQR) of 223 (41-1020) cells/μl vs. 39 (1-190) cells/μl, p = 0.03. No significant differences in other measured parameters were detected between the two groups. CONCLUSION Elevated sputum eosinophils, IL5 and IL8, which have a potential to stimulate airway remodelling, might be a useful non-invasive biomarkers and therapeutic targets of accelerated FEV1 decline in asthma patients.
Collapse
|
19
|
Pelaia C, Paoletti G, Puggioni F, Racca F, Pelaia G, Canonica GW, Heffler E. Interleukin-5 in the Pathophysiology of Severe Asthma. Front Physiol 2019; 10:1514. [PMID: 31920718 PMCID: PMC6927944 DOI: 10.3389/fphys.2019.01514] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin-5 (IL-5) exerts a central pathogenic role in differentiation, recruitment, survival, and degranulation of eosinophils. Indeed, during the last years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the powerful actions of IL-5 finalized to the induction, maintenance, and amplification of eosinophilic inflammation. Therefore, IL-5 is a suitable target for add-on biological therapies based on either IL-5 inhibition (mepolizumab, reslizumab) or blockade of its receptor (benralizumab). These modern treatments can result in being definitely beneficial for patients with severe type 2 (T2)-high eosinophilic asthma, refractory to conventional anti-inflammatory drugs such as inhaled and even systemic corticosteroids.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Francesca Puggioni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Francesca Racca
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| |
Collapse
|
20
|
Wang Z, Yao N, Fu X, Wei L, Ding M, Pang Y, Liu D, Ren Y, Guo M. Butylphthalide ameliorates airway inflammation and mucus hypersecretion via NF-κB in a murine asthma model. Int Immunopharmacol 2019; 76:105873. [PMID: 31493665 DOI: 10.1016/j.intimp.2019.105873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023]
Abstract
Butylphthalide (NBP) is a phthalide compound contained in Angelicae Sinensis Radix which is one of the most widely used traditional Chinese medicines. This study aims to explore the therapeutic effect of NBP on airway inflammation, mucus hypersecretion and their possible mechanism in asthma mice. BALB/c mice were sensitized and challenged with ovalbumin (OVA) for establishment of asthma model and then treated with NBP during day 22-77. The pulmonary function of the mice was determined, and the pathology of lung tissue and goblet cell hyperplasia were observed through analyzing inflammation scores and goblet cell percentage, respectively. Cytokine IL-4, IL-8, IL-13 and tumor necrosis factor-alpha (TNF-α) in bronchoalveolar lavage fluid (BALF) and total immunogloblin E (T-IgE) and OVA-specific IgE in serum were examined by enzyme-linked immunosorbent assay (ELISA). The expressions of Mucin 5AC (Muc5ac) and nuclear transcription factor-kappa B (NF-κB) in lung tissues were evaluated by immunohistochemistry, western blot and real-time polymerase chain reaction (RT-PCR). The results show that 50 mg/kg NBP significantly reduced OVA-induced increase in inflammation scoring, goblet cell percentage and mucus secretion of airway tissue, and improved the pulmonary function. NBP could also decrease IL-4, IL-8 IL-13, and TNF-α in BALF and T-IgE and OVA-specific IgE in serum. The expression of Muc5ac and NF-κB in lung tissue was significantly down-regulated after NBP treatment. This study suggested that NBP may effectively inhibit airway inflammation and mucus hypersecretion in asthma by modulating NF-κB activation.
Collapse
Affiliation(s)
- Zhiwang Wang
- Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Gansu University of Chinese Medicine, Lanzhou, China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Nan Yao
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoyan Fu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lingxia Wei
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Maopeng Ding
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yarong Pang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Ren
- Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Gansu University of Chinese Medicine, Lanzhou, China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mei Guo
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
21
|
Zak M, Dengler HS, Rajapaksa NS. Inhaled Janus Kinase (JAK) inhibitors for the treatment of asthma. Bioorg Med Chem Lett 2019; 29:126658. [PMID: 31522830 DOI: 10.1016/j.bmcl.2019.126658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 01/18/2023]
Abstract
Multiple asthma-relevant cytokines including IL-4, IL-5, IL-13, and TSLP depend upon JAKs for signaling. JAK inhibition may, therefore, offer a novel intervention strategy for patients with disease refractory to current standards of care. Multiple systemically delivered JAK inhibitors have been approved for human use or are under clinical evaluation in autoimmune diseases such as rheumatoid arthritis. However, the on-target side effect profiles of these agents are likely not tolerable for many asthmatic patients. Limiting JAK inhibition to the lung is expected to improve therapeutic index relative to systemic inhibition. Thus, inhaled JAK inhibitors with lung-restricted exposure are of high interest as potential treatments for asthma.
Collapse
Affiliation(s)
- Mark Zak
- Genentech Inc., Discovery Chemistry, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Hart S Dengler
- Genentech Inc., Immunology Department, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Naomi S Rajapaksa
- Genentech Inc., Discovery Chemistry, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
22
|
Severe Eosinophilic Asthma. J Clin Med 2019; 8:jcm8091375. [PMID: 31480806 PMCID: PMC6780074 DOI: 10.3390/jcm8091375] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a heterogeneous disease with varying severity. Severe asthma is a subject of constant research because it greatly affects patients’ quality of life, and patients with severe asthma experience symptoms, exacerbations, and medication side effects. Eosinophils, although at first considered insignificant, were later specifically associated with features of the ongoing inflammatory process in asthma, particularly in the severe case. In this review, we discuss new insights into the pathogenesis of severe asthma related to eosinophilic inflammation and the pivotal role of cytokines in a spectrum that is usually referred to as “T2-high inflammation” that accounts for almost half of patients with severe asthma. Recent literature is summarized as to the role of eosinophils in asthmatic inflammation, airway remodeling, and airway hypersensitivity. Major advances in the management of severe asthma occurred the past few years due to the new targeted biological therapies. Novel biologics that are already widely used in severe eosinophilic asthma are discussed, focusing on the choice of the right treatment for the right patient. These monoclonal antibodies primarily led to a significant reduction of asthma exacerbations, as well as improvement of lung function and patient quality of life.
Collapse
|
23
|
Kandikattu HK, Upparahalli Venkateshaiah S, Mishra A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev 2019; 47:83-98. [PMID: 31126874 PMCID: PMC6781864 DOI: 10.1016/j.cytogfr.2019.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Eosinophils are circulating granulocytes that have pleiotropic effects in response to inflammatory signals in the body. In response to allergens or pathogens, exposure eosinophils are recruited in various organs that execute pathological immune responses. IL-5 plays a key role in the differentiation, development, and survival of eosinophils. Eosinophils are involved in a variety of allergic diseases including asthma, dermatitis and various gastrointestinal disorders (EGID). IL-5 signal transduction involves JAK-STAT-p38MAPK-NFκB activation and executes extracellular matrix remodeling, EMT transition and immune responses in allergic diseases. IL-18 is a classical cytokine also involved in immune responses and has a critical role in inflammasome pathway. We recently identified the IL-18 role in the generation, transformation, and maturation of (CD101+CD274+) pathogenic eosinophils. In, addition, several other cytokines like IL-2, IL-4, IL-13, IL-21, and IL-33 also contribute in advancing eosinophils associated immune responses in innate and adaptive immunity. This review discusses with a major focus (1) Eosinophils and its constituents, (2) Role of IL-5 and IL-18 in eosinophils development, transformation, maturation, signal transduction of IL-5 and IL-18, (3) The role of eosinophils in allergic disorders and (4) The role of several other associated cytokines in promoting eosinophils mediated allergic diseases.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States.
| |
Collapse
|
24
|
Venosa A, Katzen J, Tomer Y, Kopp M, Jamil S, Russo SJ, Mulugeta S, Beers MF. Epithelial Expression of an Interstitial Lung Disease-Associated Mutation in Surfactant Protein-C Modulates Recruitment and Activation of Key Myeloid Cell Populations in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:2760-2771. [PMID: 30910861 DOI: 10.4049/jimmunol.1900039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) often experience precipitous deteriorations, termed "acute exacerbations" (AE), marked by diffuse alveolitis and altered gas exchange, resulting in a significant loss of lung function or mortality. The missense isoleucine to threonine substitution at position 73 (I73T) in the alveolar type 2 cell-restricted surfactant protein-C (SP-C) gene (SFTPC) has been linked to clinical IPF. To better understand the sequence of events that impact AE-IPF, we leveraged a murine model of inducible SP-CI73T (SP-CI73T/I73TFlp+/- ) expression. Following administration of tamoxifen to 8-12-wk-old mice, an upregulation of SftpcI73T initiated a diffuse lung injury marked by increases in bronchoalveolar lavage fluid (BALF) protein and histochemical evidence of CD45+ and CD11b+ cell infiltrates. Flow cytometry of collagenase-digested lung cells revealed a transient, early reduction in SiglecFhiCD11blowCD64hiCD11chi macrophages, countered by the sequential accumulation of SiglecFloCD11b+CD64-CD11c-CCR2+Ly6C+ immature macrophages (3 d), Ly6G+ neutrophils (7 d), and SiglecFhiCD11bhiCD11clo eosinophils (2 wk). By mRNA analysis, BALF cells demonstrated a time-dependent phenotypic shift from a proinflammatory (3 d) to an anti-inflammatory/profibrotic activation state, along with serial elaboration of monocyte and eosinophil recruitment factors. The i.v. administration of clodronate effectively reduced total BALF cell numbers, CCR2+ immature macrophages, and eosinophil influx while improving survival. In contrast, resident macrophage depletion from the intratracheal delivery of clodronate liposomes enhanced SftpcI73T -induced mortality. These results using SftpcI73T mice provide a detailed ontogeny for AE-IPF driven by alveolar epithelial dysfunction that induces a polycellular inflammation initiated by the early influx of proinflammatory CCR2+Ly6Chi immature macrophages.
Collapse
Affiliation(s)
- Alessandro Venosa
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Yaniv Tomer
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Meghan Kopp
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Sarita Jamil
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Scott J Russo
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and.,Penn Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and .,Penn Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
25
|
Agumadu VC, Ramphul K, Mejias SG, Sonaye R, Sombans S, Lohana P. A Review of Three New Anti-interleukin-5 Monoclonal Antibody Therapies for Severe Asthma. Cureus 2018; 10:e3216. [PMID: 30416896 PMCID: PMC6223665 DOI: 10.7759/cureus.3216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 11/05/2022] Open
Abstract
Asthma is a chronic respiratory condition that is characterized by reversible airflow obstruction. Interleukin-5 (IL-5) is involved in the pathophysiology of the disease and drugs targeting IL-5 have been studied for years as a possible treatment option for severe asthma. In this review, the authors searched PubMed for major drug therapies and clinical trials against IL-5. A total of 29 articles met the criteria for selection and were shortlisted; of these, 10 papers were on benralizumab, 14 on mepolizumab, and five on reslizumab. The three drugs proved to be safe and efficacious for patients with severe asthma, leading to decreased rates of asthma exacerbations, lowered levels of eosinophils, and improved pulmonary functions in various studies. Patients also reported an improvement in the quality of life. The side effects of these three drugs were mild and no deaths directly linked to the drug were reported. However, longer duration studies are required to draw firm and strong conclusions on the safety of these therapeutic agents.
Collapse
Affiliation(s)
- Vivian C Agumadu
- Medicine, International University of the Health Sciences School of Medicine, Basseterre, KNA
| | - Kamleshun Ramphul
- Pediatrics, Shanghai Jiao Tong University School of Medicine/Shanghai Xin Hua Hospital, Shanghai, CHN
| | - Stephanie G Mejias
- Pediatrics, The University Iberoamericana Unibe School of Medicine/Robert Reid Cabral Children's Hospital, Santo Domingo, DOM
| | - Ruhi Sonaye
- Bharati Vidyapeeth Deemed University Medical College and Hospital, Thane, IND
| | - Shaheen Sombans
- Internal Medicine, Bharati Vidyapeeth Deemed University Medical College and Hospital, Pune, IND
| | - Petras Lohana
- Medicine, Liaquat University of Medical and Health Sciences Hospital, Karachi, PAK
| |
Collapse
|
26
|
Menzella F, Galeone C, Bertolini F, Castagnetti C, Facciolongo N. Innovative treatments for severe refractory asthma: how to choose the right option for the right patient? J Asthma Allergy 2017; 10:237-247. [PMID: 28919788 PMCID: PMC5587160 DOI: 10.2147/jaa.s144100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The increasing understanding of the molecular biology and the etiopathogenetic mechanisms of asthma helps in identification of numerous phenotypes and endotypes, particularly for severe refractory asthma. For a decade, the only available biologic therapy that met the unmet needs of a specific group of patients with severe uncontrolled allergic asthma has been omalizumab. Recently, new biologic therapies with different mechanisms of action and targets have been approved for marketing, such as mepolizumab. Other promising drugs will be available in the coming years, such as reslizumab, benralizumab, dupilumab and lebrikizumab. Moreover, since 2010, bronchial thermoplasty has been successfully introduced for a limited number of patients. This is a nonpharmacologic endoscopic procedure which is considered a promising therapy, even though several aspects still need to be clarified. Despite the increasing availability of new therapies, one of the major problems of each treatment is still the identification of the most suitable patients. This sudden abundance of therapeutic options, sometimes partially overlapping with each other, increases the importance to identify new biomarkers useful to guide the clinician in selecting the most appropriate patients and treatments, without forgetting the drug-economic aspects seen in elevated direct cost of new therapies. The aim of this review is, therefore, to update the clinician on the state of the art of therapies available for refractory asthma and, above all, to give useful directions that will help understand the different choices that sometimes partially overlap and to dispel the possible doubts that still exist.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, IRCCS- Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Carla Galeone
- Department of Medical Specialties, Pneumology Unit, IRCCS- Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | | | - Claudia Castagnetti
- Department of Medical Specialties, Pneumology Unit, IRCCS- Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, IRCCS- Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| |
Collapse
|
27
|
Morikawa T, Fukuoka A, Matsushita K, Yasuda K, Iwasaki N, Akasaki S, Fujieda S, Yoshimoto T. Activation of group 2 innate lymphoid cells exacerbates and confers corticosteroid resistance to mouse nasal type 2 inflammation. Int Immunol 2017; 29:221-233. [DOI: 10.1093/intimm/dxx030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/21/2017] [Indexed: 12/13/2022] Open
|
28
|
Thiriou D, Morianos I, Xanthou G, Samitas K. Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. Int Immunopharmacol 2017; 48:43-54. [PMID: 28463786 DOI: 10.1016/j.intimp.2017.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/15/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
The respiratory system is constantly in direct contact with the environment and, has therefore, developed strong innate and adaptive immune responses to combat pathogens. Unlike adaptive immunity which is mounted later in the course of the immune response and is naive at the outset, innate immunity provides the first line of defense against microbial agents, while also promoting resolution of inflammation. In the airways, innate immune effector cells mainly consist of eosinophils, neutrophils, mast cells, basophils, macrophages/monocytes, dendritic cells and innate lymphoid cells, which attack pathogens directly or indirectly through the release of inflammatory cytokines and antimicrobial peptides, and coordinate T and B cell-mediated adaptive immunity. Airway epithelial cells are also critically involved in shaping both the innate and adaptive arms of the immune response. Chronic allergic airway inflammation and linked asthmatic disease is often considered a result of aberrant activation of type 2 T helper cells (Th2) towards innocuous environmental allergens; however, innate immune cells are increasingly recognized as key players responsible for the initiation and the perpetuation of allergic responses. Moreover, innate cells participate in immune response regulation through the release of anti-inflammatory mediators, and guide tissue repair and the maintenance of airway homeostasis. The scope of this review is to outline existing knowledge on innate immune responses involved in allergic airway inflammation, highlight current gaps in our understanding of the underlying molecular and cellular mechanisms and discuss the potential use of innate effector cells in new therapeutic avenues.
Collapse
Affiliation(s)
- Despoina Thiriou
- 2(nd) Respiratory Medicine Dept., Athens Chest Hospital "Sotiria", Athens, Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Konstantinos Samitas
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece; 7(th) Respiratory Medicine Dept. and Asthma Center, Athens Chest Hospital "Sotiria", Athens, Greece.
| |
Collapse
|
29
|
Guo ZQ, Dong WY, Xu J, Hong ZC, Zhao RW, Deng CR, Zhuang GS, Zhang RX. T-Helper Type 1-T-Helper Type 2 Shift and Nasal Remodeling after Fine Particulate Matter Exposure in a Rat Model of Allergic Rhinitis. Am J Rhinol Allergy 2017; 31:148-155. [PMID: 28401852 DOI: 10.2500/ajra.2017.31.4437] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Exposure to fine particulate matter (particulate matter ≤2.5 μm [PM2.5]) increases the risk of allergic rhinitis (AR), but the underlying mechanisms remains unclear. Thus, we investigated the roles of T-helper (Th)1–Th2 cytokines and nasal remodeling after ambient PM2.5 exposure in a rat model of AR. Methods Female Sprague-Dawley rats were randomized into six groups: a negative control group, a group of healthy rats exposed to 3000 μg/m3 PM2.5, an ovalbumin (OVA) induced AR model, and three PM2.5-exacerbated AR groups exposed to three different concentrations (200, 1000, and 3000 μg/m3) of PM2.5 for 30 days via inhalation. Nasal symptoms, levels of Th1–Th2 cytokines, the degree of eosinophilia in nasal lavage fluid (NLF), and the messenger RNA (mRNA) expressions of transcription factors GATA-3 and T-bet in the nasal mucosa were measured in each individual rat. Hyperplasia of globet cells and collagen deposition were examined by histology. Results PM2.5 significantly increased the number of sneezes and nasal rubs in rats with AR. PM2.5 also significantly decreased interferon gamma and increased interleukin (IL) 4 and IL-13 expressions as well as the number of eosinophils in NLF. The mRNA expression of GATA-3 in the nasal mucosa of rats with AR was upregulated by PM2.5, whereas T-bet was significantly downregulated. Statistically significant differences in OVA-specific serum immunoglobulin E, goblet cell hyperplasia, collagen deposition, and transforming growth factor beta 1 levels were observed between the PM2.5-exacerbated AR groups and the AR model group. Conclusion Analysis of our data indicated that an increase in the immune response with Th2 polarization and the development of nasal remodeling may be the immunotoxic mechanisms behind the exacerbation of AR after exposure to PM2.5.
Collapse
Affiliation(s)
- Zhi-Qiang Guo
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Wei-Yang Dong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jian Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zhi-Cong Hong
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Ren-Wu Zhao
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Cong-Rui Deng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Guo-Shun Zhuang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ru-Xin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Basu A, Dalal A, Canonica GW, Forshag M, Yancey SW, Nagar S, Bell CF. Economic analysis of the phase III MENSA study evaluating mepolizumab for severe asthma with eosinophilic phenotype. Expert Rev Pharmacoecon Outcomes Res 2017; 17:121-131. [PMID: 28277854 DOI: 10.1080/14737167.2017.1298444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Severe eosinophilic asthma patients are at risk of exacerbations, which are associated with substantial costs. Mepolizumab lowers eosinophil levels and reduces exacerbation risk in severe eosinophilic asthma. We evaluated asthma-related exacerbation costs in mepolizumab-treated patients (versus placebo). METHODS A within-trial economic analysis of the Mepolizumab as Adjunctive Therapy in Patients with Severe Asthma (MENSA) trial. Objectives were to quantify the incremental: (1) medical costs of asthma-related exacerbation; (2) asthma-related exacerbation emergency department visit/hospitalization costs; and (3) asthma-related total healthcare resource utilization. RESULTS Mean medical costs of asthma-related exacerbations at 8 months were $969, $852, and $1692 in the mepolizumab 75 mg intravenous (IV), mepolizumab 100 mg subcutaneous (SC), and placebo groups, respectively (p = 0.16). Mean medical costs from emergency department visits or hospitalizations due to asthma-related exacerbations were $901, $795, and $1557 in the mepolizumab 75 mg IV, mepolizumab 100 mg SC, and placebo groups (p = 0.020). Asthma-related healthcare resource utilization (all services) was lower for the mepolizumab groups versus placebo. CONCLUSIONS Adding mepolizumab to standard-of-care treatment for severe eosinophilic asthma lowered asthma exacerbation-related medical costs/healthcare resource utilization; although the cost savings ranged from $723-$840 per patient, differences were not statistically significant.
Collapse
Affiliation(s)
- Anirban Basu
- a Pharmaceutical Outcomes Research and Policy Program , University of Washington , Seattle , WA , USA
| | - Anand Dalal
- b US Value, Evidence and Outcomes, US Medical Affairs, GlaxoSmithKline , Durham , NC , USA
| | - Giorgio Walter Canonica
- c Personalized Medicine Asthma & Allergy Clinic Humanitas University, IRCCS-Humanitas Research Hospital , Rozzano-Milano , Italy
| | - Mark Forshag
- d US Medical Affairs, Respiratory Therapeutic Area, GlaxoSmithKline , Durham , NC , USA
| | - Steven W Yancey
- e R&D, Respiratory Therapeutic Area Unit, GlaxoSmithKline , Durham , NC , USA
| | - Saurabh Nagar
- f Health Economics, RTI-Health Solutions , Research Triangle Park , NC , USA
| | - Christopher F Bell
- b US Value, Evidence and Outcomes, US Medical Affairs, GlaxoSmithKline , Durham , NC , USA
| |
Collapse
|
31
|
Th1/Th17-Related Cytokines and Chemokines and Their Implications in the Pathogenesis of Pemphigus Vulgaris. Mediators Inflamm 2017; 2017:7151285. [PMID: 28321152 PMCID: PMC5340942 DOI: 10.1155/2017/7151285] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 11/17/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune disease characterized by the presence of IgG autoantibodies against desmoglein-3. Despite the variety of findings, the chemokine and cytokine profiles that characterize the immune response in the disease are still poorly explored. Thus, 20 PV patients and 20 controls were grouped according to gender, ethnicity, place of residence, and clinical parameters of the disease. Then, the levels of chemokines and of Th1/Th2/Th17/Treg/Th9/Th22-related cytokines were assessed in the serum. PV patients had higher levels of inflammatory Th1/Th17 cytokines (IFN-γ, IL-17, and IL-23), as well as higher levels of CXCL8 and reduced levels of Th1/Th2-related chemokines (IP-10 and CCL11). However, no differences in the levels of IL-2, IL-6, TNF-α, IL-1β, IL-4, IL-9, IL-12, TGF-β, IL-33, MCP-1, RANTES, and MIP-1α were found between PV patients and their control counterparts. Furthermore, PV patients with skin lesions had higher serum levels of IL-6 and CXCL8 when compared to PV patients without lesions. Taken together, our findings describe the role of cytokines and chemokines associated with Th1/Th17 immune response in PV patients. Finally, these data are important for better understanding of the immune aspects that control disease outcome, and they may also provide important information about why patients develop autoantibodies against desmogleins.
Collapse
|
32
|
Lucinda N, Figueiredo MM, Pessoa NL, Santos BSÁDS, Lima GK, Freitas AM, Machado AMV, Kroon EG, Antonelli LRDV, Campos MA. Dendritic cells, macrophages, NK and CD8 + T lymphocytes play pivotal roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and granzyme B. Virol J 2017; 14:37. [PMID: 28222752 PMCID: PMC5320739 DOI: 10.1186/s12985-017-0692-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Background Herpes simplex virus type 1 (HSV-1) cause not only mild symptoms but also blindness and encephalitis. It was previously shown that the immune response against HSV-1 occurs mainly in the trigeminal ganglia (TG) and that Toll-like receptors 2 and 9 (TLR2/9) are important in mediating this response. It was also demonstrated that iNOS (nitric oxide synthase) and interleukin 1 beta (IL-1β) play an essential role in the defense against HSV-1 infection. Importantly, the present work aimed to identify the primary cells responsible for iNOS and IL-1β production and search for other important molecules and cells that might or might not depend on TLR2/9 receptors to mediate the immune response against HSV-1. Methods C57BL/6 (wild type, WT) and TLR2/9−/− mice were infected by the intranasal route with HSV-1 (1 × 106 p.f.u.). Cells were obtained from the TG and spleen tissues and the profile of immune cells was determined by flow cytometry in infected and mock infected WT and knockout mice. The percentage of cells producing iNOS, IL-1β, granzyme B and perforin was also determined by flow cytometry. Chemokine monocyte chemoattractant protein-1 (MCP1) was measured by Cytometric Bead Array (CBA) in the TG, spleen and lung. Expression of type I interferons (IFNs), interleukins (IL) 5 and 10, IL-1β and granzyme B were quantified by real time PCR. Results The results indicate that dendritic cells (DCs) and monocytes/macrophages (Mo/Mϕ) were the main sources of IL-1β and iNOS, respectively, which, together with type I IFNs, were essential for the immune response against HSV-1. Additionally, we showed that granzyme B produced by CD8+ T and NK lymphocytes and MCP-1 were also important for this immune response. Moreover, our data indicate that the robust production of MCP-1 and granzyme B is either TLR-independent or down regulated by TLRs and occurs in the TG of TLR2/9−/− infected mice. Conclusion Taken together, our data provide strong evidence that the responses mediated by DCs, Mo/Mϕ, NK and CD8+ T lymphocytes through IL-1β, iNOS and granzyme B production, respectively, together with the production of type I IFN early in the infection, are crucial to host defense against HSV-1. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0692-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natália Lucinda
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Maria Marta Figueiredo
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Natália Lima Pessoa
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Beatriz Senra Álvares da Silva Santos
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Graciela Kunrath Lima
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Arthur Molinari Freitas
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Alexandre Magalhães Vieira Machado
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Biologia e Imunologia Parasitária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Marco Antônio Campos
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil.
| |
Collapse
|
33
|
Nixon J, Newbold P, Mustelin T, Anderson GP, Kolbeck R. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. Pharmacol Ther 2016; 169:57-77. [PMID: 27773786 DOI: 10.1016/j.pharmthera.2016.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eosinophils have been linked with asthma for more than a century, but their role has been unclear. This review discusses the roles of eosinophils in asthma and chronic obstructive pulmonary disease (COPD) and describes therapeutic antibodies that affect eosinophilia. The aims of pharmacologic treatments for pulmonary conditions are to reduce symptoms, slow decline or improve lung function, and reduce the frequency and severity of exacerbations. Inhaled corticosteroids (ICS) are important in managing symptoms and exacerbations in asthma and COPD. However, control with these agents is often suboptimal, especially for patients with severe disease. Recently, new biologics that target eosinophilic inflammation, used as adjunctive therapy to corticosteroids, have proven beneficial and support a pivotal role for eosinophils in the pathology of asthma. Nucala® (mepolizumab; anti-interleukin [IL]-5) and Cinquair® (reslizumab; anti-IL-5), the second and third biologics approved, respectively, for the treatment of asthma, exemplifies these new treatment options. Emerging evidence suggests that eosinophils may contribute to exacerbations and possibly to lung function decline for a subset of patients with COPD. Here we describe the pharmacology of therapeutic antibodies inhibiting IL-5 or targeting the IL-5 receptor, as well as other cytokines contributing to eosinophilic inflammation. We discuss their roles as adjuncts to conventional therapeutic approaches, especially ICS therapy, when disease is suboptimally controlled. These agents have achieved a place in the therapeutic armamentarium for asthma and COPD and will deepen our understanding of the pathogenic role of eosinophils.
Collapse
Affiliation(s)
| | | | | | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
34
|
Menzella F, Lusuardi M, Galeone C, Facciolongo N, Zucchi L. The clinical profile of benralizumab in the management of severe eosinophilic asthma. Ther Adv Respir Dis 2016; 10:534-548. [PMID: 27612492 PMCID: PMC5933597 DOI: 10.1177/1753465816667659] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite several therapeutic choices, 10–20% of patients with severe uncontrolled
asthma do not respond to maximal best standard treatments, leading to a
healthcare expenditure of up to 80% of overall costs for asthma. Today, there
are new important therapeutic strategies, both pharmacological and
interventional, that can result in improvement of severe asthma management, such
as omalizumab, bronchial thermoplasty and other biological drugs, for example,
mepolizumab, reslizumab and benralizumab. The availability of these new
treatments and the increasing knowledge of the different asthmatic phenotypes
and endotypes makes correct patient selection increasingly complex and
important. In this article, we discuss the features of benralizumab compared
with other anti-interleukin-5 biologics and omalizumab, the identification of
appropriate patients, the safety profile and future developments.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Viale Risorgimento 56, 42123 Reggio Emilia, Italy
| | - Mirco Lusuardi
- Unit of Respiratory Rehabilitation, AUSL Reggio Emilia, S. Sebastiano Hospital, Correggio, Italy
| | - Carla Galeone
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Luigi Zucchi
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| |
Collapse
|
35
|
Menzella F, Lusuardi M, Galeone C, Taddei S, Facciolongo N, Zucchi L. Mepolizumab for severe refractory eosinophilic asthma: evidence to date and clinical potential. Ther Adv Chronic Dis 2016; 7:260-277. [PMID: 27803792 DOI: 10.1177/2040622316659863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Severe asthma is characterized by major impairment of quality of life, poor symptom control and frequent exacerbations. Inflammatory, clinical and causative factors identify different phenotypes and endotypes of asthma. In the last few years, new treatment options have allowed for targeted treatments according to the different phenotypes of the disease. To accurately select a specific treatment for each asthmatic variant, the identification of appropriate biomarkers is required. Eosinophilic asthma is a distinct phenotype characterized by thickening of the basement membrane and corticosteroid responsiveness. This review reports the latest evidence on an anti-IL-5 monoclonal antibody, mepolizumab, a new and promising biological agent recently approved by the FDA specifically for the treatment of severe eosinophilic refractory asthma.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Viale Risorgimento 56, 42123 Reggio Emilia, Italy
| | - Mirco Lusuardi
- Unit of Respiratory Rehabilitation, AUSL Reggio Emilia, S. Sebastiano Hospital, Correggio, Italy
| | - Carla Galeone
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Viale Risorgimento 56, 42123 Reggio Emilia, Italy
| | - Sofia Taddei
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Viale Risorgimento 56, 42123 Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Viale Risorgimento 56, 42123 Reggio Emilia, Italy
| | - Luigi Zucchi
- Department of Cardio-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, IRCCS - Arcispedale Santa Maria Nuova, Viale Risorgimento 56, 42123 Reggio Emilia, Italy
| |
Collapse
|
36
|
Pham TH, Damera G, Newbold P, Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir Med 2016; 111:21-9. [PMID: 26775606 DOI: 10.1016/j.rmed.2016.01.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/01/2015] [Accepted: 01/06/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophilic inflammation is frequently associated with increased asthma severity. Benralizumab is a humanized, afucosylated, anti-interleukin-5Rα monoclonal antibody that selectively depletes eosinophils and basophils through enhanced antibody-dependent cell-mediated cytotoxicity. OBJECTIVE To study effects of benralizumab on eosinophil counts and activity following administration to asthma patients. METHODS Sera were collected from asthma patients enrolled in two clinical studies. Placebo or benralizumab was subcutaneously administered to patients in Phase I (100 or 200 mg, multiple doses; N = 14; NCT00659659) and Phase IIa (25, 100, or 200 mg every 4 weeks; N = 24; NCT00783289) studies. Sera were also collected from healthy volunteers (N = 20) for comparison. Blood eosinophils, IL-5, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), eotaxin/chemokine (C-C motif) 11 (CCL11), eotaxin-2/CCL24, tumor necrosis factor (TNF), and interferon-γ (IFN-γ) were measured at baseline and post-treatment. RESULTS Increased EDN concentrations were observed in sera of patients from both studies relative to healthy volunteers (p < 0.05). At baseline, sera EDN concentrations correlated with blood eosinophil counts (rs = 0.5; p < 0.05). Benralizumab reduced blood eosinophil numbers and sera EDN and ECP relative to baseline (p < 0.05). No changes in TNF or IFN-γ were observed, while serum IL-5, eotaxin/CCL11, and eotaxin-2/CCL24 increased after benralizumab administration vs. placebo (p < 0.05). CONCLUSIONS In two independent studies, serum IL-5, EDN, and ECP were modulated following benralizumab. Eosinophil depletion after benralizumab also resulted in significant reductions in EDN and ECP concentrations, suggesting that cytotoxic granule proteins were not released after eosinophil reduction.
Collapse
Affiliation(s)
- Tuyet-Hang Pham
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, USA.
| | - Gautam Damera
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, USA.
| | - Paul Newbold
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, USA.
| | - Koustubh Ranade
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, USA.
| |
Collapse
|
37
|
Kim HY, Kang HK, Cho J, Jung ID, Yoon GY, Lee MG, Shin SJ, Park WS, Park JH, Ryu SW, Park YM, You JC. Heat shock protein X purified from Mycobacterium tuberculosis enhances the efficacy of dendritic cells-based immunotherapy for the treatment of allergic asthma. BMB Rep 2015; 48:178-83. [PMID: 25560695 PMCID: PMC4453021 DOI: 10.5483/bmbrep.2015.48.3.257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells play an important role in determining whether naïve T cells mature into either Th1 or Th2 cells. We determined whether heat-shock protein X (HspX) purified from Mycobacterium tuberculosis regulates the Th1/Th2 immune response in an ovalbumin (OVA)-induced murine model of asthma. HspX increased interferon-gamma, IL-17A, -12 and transforming growth factor (TGF)-β production and T-bet gene expression but reduced IL-13 production and GATA-3 gene expression. HspX also inhibited asthmatic reactions as demonstrated by an increase in the number of eosinophils in bronchoalveolar lavage fluid, inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyper-responsiveness. Furthermore, HspX enhanced OVA-induced decrease of regulatory T cells in the mediastinal lymph nodes. This study provides evidence that HspX plays critical roles in the amelioration of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of HspX with respect to its effects on a murine model of asthma. BMB Reports 2015; 48(3): 178-183]
Collapse
Affiliation(s)
- Hye-Young Kim
- Department of Pediatrics, Pusan National University School of Medicine, Medical Research Institute of Pusan National University Hospital, Pusan 602-739, Korea
| | - Hyun Kyu Kang
- Department of Microbiology and Immunology, School of Medicine, Pusan National University, Pusan 602-739, Korea
| | - Joon Cho
- Department of Neurosurgery, Konkuk University Hospital, Seoul 380-701, Korea
| | - In Duk Jung
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU open innovation center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Gun Young Yoon
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU open innovation center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Min-Goo Lee
- Department of Physiology, College of Medicine, Korea University, Seoul 136-705, Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Jong-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-711, Korea
| | - Seung-Wook Ryu
- Cell Signaling and Bioimaging Laboratory, Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, Korea
| | - Yeong-Min Park
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU open innovation center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
38
|
Bhattacharjee D, Chogtu B, Magazine R. Statins in Asthma: Potential Beneficial Effects and Limitations. Pulm Med 2015; 2015:835204. [PMID: 26618001 PMCID: PMC4651730 DOI: 10.1155/2015/835204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
Asthma's sustenance as a global pandemic, across centuries, can be attributed to the lack of an understanding of its workings and the inability of the existing treatment modalities to provide a long lasting cure without major adverse effects. The discovery of statins boosted by a better comprehension of the pathophysiology of asthma in the past few decades has opened up a potentially alternative line of treatment that promises to be a big boon for the asthmatics globally. However, the initial excellent results from the preclinical and animal studies have not borne the results in clinical trials that the scientific world was hoping for. In light of this, this review analyzes the ways by which statins could benefit in asthma via their pleiotropic anti-inflammatory properties and explain some of the queries raised in the previous studies and provide recommendations for future studies in this field.
Collapse
Affiliation(s)
- Dipanjan Bhattacharjee
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Bharti Chogtu
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Rahul Magazine
- Department of Pulmonary Medicine, Kasturba Medical College, Manipal University, Manipal 576104, India
| |
Collapse
|
39
|
Huang KL, Lee YH, Chen HI, Liao HS, Chiang BL, Cheng TJ. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:304-312. [PMID: 26010476 DOI: 10.1016/j.jhazmat.2015.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in industry. The metal composition of PM2.5 might contribute to the higher prevalence of asthma. To investigate the effects of ZnO NPs on allergic airway inflammation, mice were first exposed to different concentrations of ZnO NPs (0.1 mg/kg, 0.5 mg/kg) or to a combination of ZnO NPs and chicken egg ovalbumin (OVA) by oropharyngeal aspiration on day 0 and day 7 and then were sacrificed 5 days later. The subsequent time course of airway inflammation in the mice after ZnO NPs exposure was evaluated on days 1, 7, and 14. To further determine the role of zinc ions, ZnCl2 was also administered. The inflammatory cell count, cytokine levels in the bronchoalveolar lavage fluid (BALF), and lung histopathology were examined. We found significant neutrophilia after exposure to high-dose ZnO NPs on day 1 and significant eosinophilia in the BALF at 7 days. However, the expression levels of the T helper 2 (Th2) cytokines IL-4, IL-5, and IL-13 increased significantly after 24h of exposure to only ZnO NPs and then decreased gradually. These results suggested that ZnO NPs could cause eosinophilic airway inflammation in the absence of allergens.
Collapse
Affiliation(s)
- Kuo-Liang Huang
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Hsin Lee
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hau-Inh Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Huang-Shen Liao
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Menzella F, Lusuardi M, Galeone C, Taddei S, Zucchi L. Profile of anti-IL-5 mAb mepolizumab in the treatment of severe refractory asthma and hypereosinophilic diseases. J Asthma Allergy 2015; 8:105-14. [PMID: 26504401 PMCID: PMC4603708 DOI: 10.2147/jaa.s40244] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Asthma is a complex disorder frequently associated with a poor symptom control, concomitant morbidity, mortality, and significant health care costs due to lack of compliance or inadequate therapeutic options. Interleukin-5 (IL-5) plays a key role in the pathogenesis of eosinophilic disorders, and in the latest years has become a definite target for treatment. Besides asthma, other hypereosinophilic disorders include the hypereosinophilic syndrome, eosinophilic granulomatosis with polyangiitis, sinonasal polyposis, COPD with eosinophilic airway inflammation, allergic rhinitis, atopic dermatitis, eosinophilic esophagitis. The introduction of mepolizumab, a fully humanized monoclonal antibody that binds to IL-5, may represent a useful therapeutic option to control exacerbations and improve asthma-related quality of life in a subgroup of patients with persistent airway eosinophilia and moderate to severe asthma. Several studies carried out in recent years allow, at present, a careful patient selection for appropriate individualized treatment in severe asthma. Further research is anyway needed in order to better understand the pathogenetic mechanisms of asthma and to find new biomarkers. The high costs of biological agents as compared with standard drugs may be largely offset by increased clinical efficacy and good safety profile in selected patients.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Cardiac-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, Istituto di Ricovero e Cura a Carattere Scientifico-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Mirco Lusuardi
- Unit of Respiratory Rehabilitation, Azienda Unità Sanitaria Locale Reggio Emilia, S. Sebastiano Hospital, Correggio, Italy
| | - Carla Galeone
- Department of Cardiac-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, Istituto di Ricovero e Cura a Carattere Scientifico-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Sofia Taddei
- Department of Cardiac-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, Istituto di Ricovero e Cura a Carattere Scientifico-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Luigi Zucchi
- Department of Cardiac-Thoracic-Vascular and Intensive Care Medicine, Pneumology Unit, Istituto di Ricovero e Cura a Carattere Scientifico-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| |
Collapse
|
41
|
Mizutani N, Nabe T, Yoshino S. Semaphorin 7A plays a critical role in IgE-mediated airway inflammation in mice. Eur J Pharmacol 2015; 764:149-156. [PMID: 26144372 DOI: 10.1016/j.ejphar.2015.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Elevated allergen-specific IgE levels are a hallmark of allergic asthma, a disease involving chronic airway inflammation characterized by airway hyperresponsiveness (AHR); neutrophilic airway inflammation is found in patients with severe asthma. Furthermore, we have reported that interleukin (IL)-33 and IL-17A contribute to IgE-mediated AHR through neutrophilic inflammation in mice. Meanwhile, semaphorins regulating neuronal and immune function have been focused on in several diseases. Here, we investigated whether semaphorin 7A (SEMA7A) is related to IgE-mediated neutrophilic inflammation in mice. BALB/c mice sensitized with antigen-specific IgE monoclonal antibody were repeatedly challenged by the antigen. When anti-SEMA7A antibody was administered during the fourth to seventh challenges, the infiltration by macrophages, lymphocytes, neutrophils, and eosinophils in the lungs was reduced at the seventh challenge (P<0.05, 0.05, 0.01, and 0.05, respectively). However, the increased production of IL-4, IL-5, IL-13, IL-33, IL-17A, IL-6, and CXCL1 in the lungs was not suppressed. In histological analysis, the epithelial cells, blood vessels, and inflammatory cells in the lungs of IgE-sensitized mice showed SEMA7A expression; plexin C1 for the receptor was expressed in the inflammatory cells. Meanwhile, we examined the effect of anti-SEMA7A antibody on AHR and neutrophilic inflammation enhanced by the collaborative action of IL-33 and IL-17A in normal mice, resulting in the suppression of these responses (P<0.05 and 0.01, respectively). Collectively, we demonstrated that SEMA7A plays a critical role in IgE-mediated neutrophilic airway inflammation. Therefore, SEMA7A may be a potential therapeutic target for severe allergic asthma showing neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Takeshi Nabe
- Department of Pharmacology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto 607-8414, Japan; Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| |
Collapse
|
42
|
Abstract
Asthma remains a major health problem with significant morbidity, mortality and economic costs. In asthma, airway remodelling, which refers to all the microscopic structural changes seen in the airway tissue, has been recognised for many decades and remains one of the defining characteristics of the disease; however, it is still poorly understood. The detrimental pathophysiological consequences of some features of remodelling, like increased airway smooth muscle mass and subepithelial fibrosis, are well documented. However, whether targeting these by therapy would be beneficial is unknown. Although the prevailing thinking is that remodelling is an abnormal response to persistent airway inflammation, recent evidence, especially from studies of remodelling in asthmatic children, suggests that the two processes occur in parallel. The effects of asthma therapy on airway remodelling have not been studied extensively due to the challenges of obtaining airway tissue in the context of clinical trials. Corticosteroids remain the cornerstone of asthma therapy, and their effects on remodelling have been better studied than other drugs. Bronchial thermoplasty is the only asthma therapy to primarily target remodelling, although how it results in the apparent clinical benefits seen is not exactly clear. In this article we discuss the mechanisms of airway remodelling in asthma and review the effects of conventional and novel asthma therapies on the process.
Collapse
Affiliation(s)
- Rachid Berair
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP, UK
| | | |
Collapse
|
43
|
Knudson CJ, Hartwig SM, Meyerholz DK, Varga SM. RSV vaccine-enhanced disease is orchestrated by the combined actions of distinct CD4 T cell subsets. PLoS Pathog 2015; 11:e1004757. [PMID: 25769044 PMCID: PMC4358888 DOI: 10.1371/journal.ppat.1004757] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/20/2015] [Indexed: 12/24/2022] Open
Abstract
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells. RSV is a significant healthcare burden and is the leading cause of bronchiolitis and pneumonia during childhood. The failure of the 1960's FI-RSV vaccine trial to not only elicit protection against RSV infection, but also provoke enhanced morbidity and mortality in vaccinees has significantly hampered development of new RSV vaccines for fear of disease potentiation. Therefore we sought to determine the specific immunological mechanisms that mediate FI-RSV VED to provide a framework to evaluate factors associated with disease exacerbation. Work presented herein demonstrate for the first time that individual disease manifestations associated with FI-RSV-immunization are mediated by distinct CD4 T cell subsets and not by eosinophils. Our results stress the need to evaluate multiple disease parameters for future RSV vaccine candidates. Failure to thoroughly assess the immune response and disease manifestations associated with new candidate vaccines may lead to undesired results in vaccine trials and further hinder future vaccine development.
Collapse
Affiliation(s)
- Cory J. Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Stacey M. Hartwig
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
Patients with severe asthma or COPD have often a suboptimal symptom control due to inadequate treatment. A better understanding of pathogenetic mechanisms, phenotypes, endotypes and the new technologies available in the fields of molecular biology and immunogenetics have made it possible to synthesize specific monoclonal antibodies virtually able to interact with any target antigen, or to open a way for new therapeutic target options. At the moment, the only biologic drug available in clinical practice is omalizumab. To overcome the limits of omalizumab, the research has focused on new monoclonal antibodies presenting higher avidity for IgE (e.g. ligelizumab and lumiximab) and ability to interact also with low affinity IgE receptor (FcϵRII). At present, many new biological drugs with different mechanisms of action and targets are matter of research. It is very important to identify the asthmatic phenotype in order to select the most appropriate drug for the individual patient. The most promising agents are targeted against cytokines of Th2 pattern and related receptors, such as IL-2 (daclizumab) and IL-13 (lebrikizumab) or IL-5 in patients with hypereosinophilia (mepolizumab, reslizumab and benralizumab). Other interesting drugs have as a target TNF-α or its soluble receptor (infliximab, golimumab and etanercept) or IL-1 (canakinumab), a cytokine with an important systemic proinflammatory action. Finally, the discovery of increased levels of C5a in the airways of asthmatic patients has led to the synthesis of a specific monoclonal antibody (eculizumab). Further help should come from the identification of biomarkers that can guide in choosing the best treatment for the individual patient, such as IgE for omalizumab or periostin for lebrikizumab.
Collapse
|
45
|
Mucosal Eosinophils. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor β and severe asthma: a perfect storm. Respir Med 2014; 108:1409-23. [PMID: 25240764 DOI: 10.1016/j.rmed.2014.08.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory airway disease involving complex interplay between resident and infiltrative cells, which in turn are regulated by a wide range of host mediators. Identifying useful biomarkers correlating with clinical symptoms and degree of airway obstruction remain important to effective future asthma treatments. Transforming growth factor β (TGF-β) is a major mediator involved in pro-inflammatory responses and fibrotic tissue remodeling within the asthmatic lung. Its role however, as a therapeutic target remains controversial. The aim of this review is to highlight its role in severe asthma including interactions with adaptive T-helper cells, cytokines and differentiation through regulatory T-cells. Associations between TGF-β and eosinophils will be addressed and the effects of genetic polymorphisms of the TGF-β1 gene explored in the context of asthma. We highlight TGF-β1 as a potential future therapeutic target in severe asthma including its importance in identifying emerging clinical phenotypes in asthmatic subjects who may be suitable for individualized therapy through TGF-β modulation.
Collapse
Affiliation(s)
- Mazen Al-Alawi
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Tidi Hassan
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
47
|
Silva RA, Almeida FM, Olivo CR, Saraiva-Romanholo BM, Martins MA, Carvalho CRF. Airway remodeling is reversed by aerobic training in a murine model of chronic asthma. Scand J Med Sci Sports 2014; 25:e258-66. [DOI: 10.1111/sms.12311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 01/31/2023]
Affiliation(s)
- R. A. Silva
- Department of Physical Therapy; School of Medicine; University of São Paulo; São Paulo Brazil
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| | - F. M. Almeida
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| | - C. R. Olivo
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| | - B. M. Saraiva-Romanholo
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
- University City of São Paulo (UNICID); São Paulo Brazil
| | - M. A. Martins
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| | - C. R. F. Carvalho
- Department of Physical Therapy; School of Medicine; University of São Paulo; São Paulo Brazil
- Department of Clinical Medicine (LIM-20); School of Medicine; University of São Paulo; São Paulo Brazil
| |
Collapse
|
48
|
Liou CJ, Cheng PY, Huang WC, Chan CC, Chen MC, Kuo ML, Shen JJ. Oral lovastatin attenuates airway inflammation and mucus secretion in ovalbumin-induced murine model of asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:548-57. [PMID: 25374755 PMCID: PMC4214976 DOI: 10.4168/aair.2014.6.6.548] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/12/2013] [Accepted: 02/20/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE Lovastatin is an effective inhibitor of cholesterol synthesis. A previous study demonstrated that lovastatin can also suppress airway hyperresponsiveness (AHR) in murine model of asthma. We aimed to investigate the effect of lovastatin on mucus secretion and inflammation-associated gene expression in the lungs of murine model of asthma. METHODS Female BALB/c mice were sensitized and challenged with ovalbumin (OVA) by intraperitoneal injection, and orally administered lovastatin from days 14 to 27 post-injection. Gene expression in lung tissues was analyzed using real-time polymerase chain reaction. AHR and goblet cell hyperplasia were also examined. BEAS-2B human bronchial epithelial cells were used to evaluate the effect of lovastatin on the expression of cell adhesion molecules, chemokines, and proinflammatory cytokines in vitro. RESULTS We showed that lovastatin inhibits the expression of Th2-associated genes, including eotaxins and adhesion molecules, in the lungs of murine model of asthma. Mucin 5AC expression, eosinophil infiltration and goblet cell hyperplasia were significantly decreased in the lung tissue of murine model of asthma treated with lovastatin. Furthermore, lovastatin inhibited AHR and expression of Th2-associated cytokines in bronchoalveolar lavage fluid. However, a high dose (40 mg/kg) of lovastatin was required to decrease specific IgE to OVA levels in serum, and suppress the expression of Th2-associated cytokines in splenocytes. Activated BEAS-2B cells treated with lovastatin exhibited reduced IL-6, eotaxins (CCL11 and CCL24), and intercellular adhesion molecule-1 protein expression. Consistent with this, lovastatin also suppressed the ability of HL-60 cells to adhere to inflammatory BEAS-2B cells. CONCLUSIONS These data suggest that lovastatin suppresses mucus secretion and airway inflammation by inhibiting the production of eotaxins and Th2 cytokines in murine model of asthma.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Department of Nursing, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan. ; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan
| | - Pei-Yun Cheng
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Wen-Chung Huang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan. ; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan. ; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan
| | - Cheng-Chi Chan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Meng-Chun Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jiann-Jong Shen
- School of Traditional Chinese Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. ; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kuo, Tao-Yuan, Taiwan
| |
Collapse
|
49
|
Ijaz T, Pazdrak K, Kalita M, Konig R, Choudhary S, Tian B, Boldogh I, Brasier AR. Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma. World Allergy Organ J 2014; 7:13. [PMID: 24982697 PMCID: PMC4068075 DOI: 10.1186/1939-4551-7-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/16/2014] [Indexed: 11/10/2022] Open
Abstract
A pathological hallmark of asthma is chronic injury and repair, producing dysfunction of the epithelial barrier function. In this setting, increased oxidative stress, growth factor- and cytokine stimulation, together with extracellular matrix contact produces transcriptional reprogramming of the epithelial cell. This process results in epithelial-mesenchymal transition (EMT), a cellular state associated with loss of epithelial polarity, expression of mesenchymal markers, enhanced mobility and extracellular matrix remodeling. As a result, the cellular biology of the EMT state produces characteristic changes seen in severe, refractory asthma: myofibroblast expansion, epithelial trans-differentiation and subepithelial fibrosis. EMT also induces profound changes in epithelial responsiveness that affects innate immune signaling that may have impact on the adaptive immune response and effectiveness of glucocorticoid therapy in severe asthma. We discuss how this complex phenotype is beginning to be understood using systems biology-level approaches through perturbations coupled with high throughput profiling and computational modeling. Understanding the distinct changes induced by EMT at the systems level may provide translational strategies to reverse the altered signaling and physiology of refractory asthma.
Collapse
Affiliation(s)
- Talha Ijaz
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Konrad Pazdrak
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Mridul Kalita
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Rolf Konig
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Sanjeev Choudhary
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Bing Tian
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Istvan Boldogh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| | - Allan R Brasier
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA.,Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston 77555-1060, Texas, USA
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Most asthma patients are easily managed with a standard combination of therapies consisting of inhaled controller and reliever drugs, but there remains a large unmet need at the severe end of the disease spectrum. For these patients, development of safer and more effective therapies for asthmatic patients with severe refractory disease remains a top priority. Here, drugs in development for the severe asthma sufferers and their specific mechanism-based pharmacological rationale will be reviewed with a focus on biologics. A systematic search of the literature was made using Medline, and publications were selected on the basis of their relevance to the topic. Here, the authors will review the existing efficacy and safety data from clinical trials of some of the new biologic therapies that are in development for severe asthma. RECENT FINDINGS Despite strong preclinical data for many of the more recently identified asthma targets, especially those relating to the T-helper 2 allergic pathway, clinical trials with specific biologics have been largely disappointing. However, there is scope for their specific role in distinctively targeted subpopulations of severe asthmatic patients. SUMMARY It is clear that more efforts should be devoted towards establishing new and more efficient key targets. A closer interaction between industry, academia and health workers will be required to achieve this goal effectively.
Collapse
|