1
|
Dillard J, Meng X, Nelin L, Liu Y, Chen B. Nitric oxide activates AMPK by modulating PDE3A in human pulmonary artery smooth muscle cells. Physiol Rep 2021; 8:e14559. [PMID: 32914566 PMCID: PMC7507575 DOI: 10.14814/phy2.14559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/17/2023] Open
Abstract
Phosphodiesterase 3 (PDE3), of which there are two isoforms, PDE3A and PDE3B, hydrolyzes cAMP and cGMP—cyclic nucleotides important in the regulation of pulmonary vascular tone. PDE3 has been implicated in pulmonary hypertension unresponsive to nitric oxide (NO); however, contributions of the two isoforms are not known. Furthermore, adenosine monophosphate‐activated protein kinase (AMPK), a critical regulator of cellular energy homeostasis, has been shown to be modulated by PDE3 in varying cell types. While AMPK has recently been implicated in pulmonary hypertension pathogenesis, its role and regulation in the pulmonary vasculature remain to be elucidated. Therefore, we utilized human pulmonary artery smooth muscle cells (hPASMC) to test the hypothesis that NO increases PDE3 expression in an isoform‐specific manner, thereby activating AMPK and inhibiting hPASMC proliferation. We found that in hPASMC, NO treatment increased PDE3A protein expression and PDE3 activity with a concomitant decrease in cAMP concentrations and increase in AMPK phosphorylation. Knockdown of PDE3A using siRNA transfection blunted the NO‐induced AMPK activation, indicating that PDE3A plays an important role in AMPK regulation in hPASMC. Treatment with a soluble guanylate cyclase (sGC) stimulator increased PDE3A expression and AMPK activation similar to that seen with NO treatment, whereas treatment with a sGC inhibitor blunted the NO‐induced increase in PDE3A and AMPK activation. These results suggest that NO increases PDE3A expression, decreases cAMP, and activates AMPK via the sGC‐cGMP pathway. We speculate that NO‐induced increases in PDE3A and AMPK may have implications in the pathogenesis and the response to therapies in pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Julie Dillard
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Xiaomei Meng
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Leif Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
2
|
Jin H, Jiao Y, Guo L, Ma Y, Zhao R, Li X, Shen L, Zhou Z, Kim SC, Liu J. Astragaloside IV blocks monocrotaline‑induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling. Int J Mol Med 2020; 47:595-606. [PMID: 33416126 PMCID: PMC7797426 DOI: 10.3892/ijmm.2020.4813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with increased inflammation and abnormal vascular remodeling. Astragaloside IV (ASIV), a purified small molecular saponin contained in the well-know herb, Astragalus membranaceus, is known to exert anti-inflammatory and anti-proliferation effects. Thus, the present study investigated the possible therapeutic effects of ASIV on monocrotaline (MCT)-induced PAH. Rats were administered a single intraperitoneal injection of MCT (60 mg/kg), followed by treatment with ASIV at doses of 10 and 30 mg/kg once daily for 21 days. Subsequently, right ventricle systolic pressure, right ventricular hypertrophy and serum inflammatory cytokines, as well as pathological changes of the pulmonary arteries, were examined. The effects of ASIV on the hypoxia-induced proliferation and apoptotic resistance of human pulmonary artery smooth muscle cells (HPASMCs) and the dysfunction of human pulmonary artery endothelial cells (HPAECs) were evaluated. MCT elevated pulmonary artery pressure and promoted pulmonary artery structural remodeling and right ventricular hypertrophy in the rats, which were all attenuated by both doses of ASIV used. Additionally, ASIV prevented the increase in the TNF-α and IL-1β concentrations in serum, as well as their gene expression in lung tissues induced by MCT. In in vitro experiments, ASIV attenuated the hypoxia-induced proliferation and apoptotic resistance of HPASMCs. In addition, ASIV upregulated the protein expression of p27, p21, Bax, caspase-9 and caspase-3, whereas it downregulated HIF-1α, phospho-ERK and Bcl-2 protein expression in HPASMCs. Furthermore, in HPAECs, ASIV normalized the increased release of inflammatory cytokines and the increased protein levels of HIF-1α and VEGF induced by hypoxia. On the whole, these results indicate that ASIV attenuates MCT-induced PAH by improving inflammation, pulmonary artery endothelial cell dysfunction, pulmonary artery smooth muscle cell proliferation and resistance to apoptosis.
Collapse
Affiliation(s)
- Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yu Jiao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Linna Guo
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Rongjie Zhao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xuemei Li
- Experiment and Practice Training Center, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhongguang Zhou
- Basic Discipline of Chinese and Western Integrative Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
| | - Sang Chan Kim
- MRC‑GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsang 38610, Republic of Korea
| | - Jicheng Liu
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
3
|
Youness RA, Hafez HM, Khallaf E, Assal RA, Abdel Motaal A, Gad MZ. The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J Cell Physiol 2019; 234:20286-20297. [PMID: 30968427 DOI: 10.1002/jcp.28629] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive breast cancer subtype. Among young females, TNBC is the leading cause of cancer-related mortalities. Recently, long noncoding RNAs (lncRNAs) are representing a promising pool of regulators for tuning the aggressiveness of several solid malignancies. However, this still needs further investigations in TNBC. The main aim of this study is to unravel the expression pattern of sONE lncRNA and its mechanistic role in TNBC. Results showed that sONE is restrictedly expressed in TNBC patients; its expression level is inversely correlated with the aggressiveness of the disease. sONE acts as a posttranscriptional regulator to endothelial nitric oxide synthase (eNOS) and thus affecting eNOS-induced nitric oxide (NO) production from TNBC cells measured by Greiss reagent. Mechanistically, sONE is a potential tumor suppressor lncRNA in TNBC cells; repressing cellular viability, proliferation, colony-forming ability, migration, and invasion capacities of MDA-MB-231. Furthermore, sONE effects were found to be extended to affect the maestro tumor suppressor TP53 and the oncogenic transcription factor c-Myc. Knocking down of sONE resulted in a marked decrease in TP53 and increase in c-Myc and consequently altering the expression status of their downstream tumor suppressor microRNAs (miRNAs) such as miR-34a, miR-15, miR-16, and let-7a. In conclusion, this study highlights sONE as a downregulated tumor suppressor lncRNA in TNBC cells acting through repressing eNOS-induced NO production, affecting TP53 and c-Myc proteins levels and finally altering the levels of a panel of tumor suppressor miRNAs downstream TP53/c-Myc proteins.
Collapse
Affiliation(s)
- Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Hafez M Hafez
- Department of General Surgery, Faculty of Medicine, Cairo University, Kasr Al-Ainy, Cairo, Egypt
| | - Emad Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, Kasr Al-Ainy, Cairo, Egypt
| | - Reem A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
4
|
Schuoler C, Haider TJ, Leuenberger C, Vogel J, Ostergaard L, Kwapiszewska G, Kohler M, Gassmann M, Huber LC, Brock M. Aquaporin 1 controls the functional phenotype of pulmonary smooth muscle cells in hypoxia-induced pulmonary hypertension. Basic Res Cardiol 2017; 112:30. [PMID: 28409279 DOI: 10.1007/s00395-017-0620-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Vascular remodelling in hypoxia-induced pulmonary hypertension (PH) is driven by excessive proliferation and migration of endothelial and smooth muscle cells. The expression of aquaporin 1 (AQP1), an integral membrane water channel protein involved in the control of these processes, is tightly regulated by oxygen levels. The role of AQP1 in the pathogenesis of PH, however, has not been directly addressed so far. This study was designed to characterize expression and function of AQP1 in pulmonary vascular cells from human arteries and in the mouse model of hypoxia-induced PH. Exposure of human pulmonary vascular cells to hypoxia significantly induced the expression of AQP1. Similarly, levels of AQP1 were found to be upregulated in lungs of mice with hypoxia-induced PH. The functional role of AQP1 was further tested in human pulmonary artery smooth muscle cells demonstrating that depletion of AQP1 reduced proliferation, the migratory potential, and, conversely, increased apoptosis of these cells. This effect was associated with higher expression of the tumour suppressor gene p53. Using the mouse model of hypoxia-induced PH, application of GapmeR inhibitors targeting AQP1 abated the hypoxia-induced upregulation of AQP1 and, of note, reversed PH by decreasing both right ventricular pressure and hypertrophy back to the levels of control mice. Our data suggest an important functional role of AQP1 in the pathobiology of hypoxia-induced PH. These results offer novel insights in our pathogenetic understanding of the disease and propose AQP1 as potential therapeutic in vivo target.
Collapse
Affiliation(s)
- Claudio Schuoler
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas J Haider
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Caroline Leuenberger
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Johannes Vogel
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Louise Ostergaard
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | - Malcolm Kohler
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Lars C Huber
- Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Brock
- Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Endogenous Asymmetric Dimethylarginine Pathway in High Altitude Adapted Yaks. BIOMED RESEARCH INTERNATIONAL 2015; 2015:196904. [PMID: 26380264 PMCID: PMC4563057 DOI: 10.1155/2015/196904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/13/2015] [Indexed: 01/09/2023]
Abstract
Hypoxia-induced and high altitude pulmonary hypertension are a major problem in the mountain areas of the world. The asymmetric methylarginines (ADMA) inhibit nitric oxide (NO) synthesis by competing with L-arginine, and high levels of plasma ADMA predict adverse outcomes in pulmonary hypertension. However, little is known about the regulation of the ADMA-NO pathway in animals adapted to high altitudes. We measured the plasma ADMA concentration, endothelial NO synthase (eNOS), dimethylarginine dimethylaminohydrolases (DDAH) protein expression, and DDAH activities in the lungs from yaks. Although the yaks are hypoxemic, cardiac function and pulmonary arterial pressures are almost normal, and we found decreased DDAH expression and activity in association with reduced plasma ADMA concentrations. The eNOS expression was significantly higher in yaks. These results indicate that augmented endogenous NO activity in yaks through the ADMA-DDAH pathway and eNOS upregulation account for the low pulmonary vascular tone observed in high altitude adapted yaks.
Collapse
|
6
|
Mizuno S, Bogaard HJ, Ishizaki T, Toga H. Role of p53 in lung tissue remodeling. World J Respirol 2015; 5:40-46. [DOI: 10.5320/wjr.v5.i1.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/25/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene p53 regulates a wide range of cellular processes including cell cycle progression, proliferation, apoptosis and tissue development and remodeling. Lung cell apoptosis and tissue remodeling have critical roles in many lung diseases. Abnormal proliferation or resistance to apoptosis of lung cells will lead to structural changes of many lung tissues, including the pulmonary vascular wall, small airways and lung parenchyma. Among the many lung diseases caused by vascular cell apoptosis and tissue remodeling are chronic obstructive pulmonary disease, bronchial asthma and pulmonary arterial hypertension. Recent advances in biology and medicine have provided new insights and have resulted in new therapeutic strategies for tissue remodeling in human and animal models. This review is focused on lung disease susceptibility associated with the p53 pathway and describes molecular mechanisms upstream and downstream of p53 in lung tissue remodeling. Improved understanding of structural changes associated with pulmonary vascular remodeling and lung cell apoptosis induced by the p53 pathway may new provide therapeutic targets.
Collapse
|
7
|
Baicalin inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation via the AKT/HIF-1α/p27-associated pathway. Int J Mol Sci 2014; 15:8153-68. [PMID: 24821539 PMCID: PMC4057725 DOI: 10.3390/ijms15058153] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/27/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022] Open
Abstract
Baicalin, a flavonoid compound purified from the dry roots of Scutellaria baicalensis Georgi, has been shown to possess various pharmacological actions. Previous studies have revealed that baicalin inhibits the growth of cancer cells through the induction of apoptosis. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by enhanced pulmonary artery smooth muscle cell (PASMCs) proliferation and suppressed apoptosis. However, the potential mechanism of baicalin in the regulation of PASMC proliferation and the prevention of cardiovascular diseases remains unexplored. To test the effects of baicalin on hypoxia, we used rats treated with or without baicalin (100 mg·kg−1 each rat) at the beginning of the third week after hypoxia. Hemodynamic and pulmonary pathomorphology data showed that right ventricular systolic pressures (RVSP), the weight of the right ventricle/left ventricle plus septum (RV/LV + S) ratio and the medial width of pulmonary arterioles were much higher in chronic hypoxia. However, baicalin treatment repressed the elevation of RVSP, RV/LV + S and attenuated the pulmonary vascular structure remodeling (PVSR) of pulmonary arterioles induced by chronic hypoxia. Additionally, baicalin (10 and 20 μmol·L−1) treatment suppressed the proliferation of PASMCs and attenuated the expression of hypoxia-inducible factor-α (HIF-α) under hypoxia exposure. Meanwhile, baicalin reversed the hypoxia-induced reduction of p27 and increased AKT/protein kinase B phosphorylation p-AKT both in vivo and in vitro. These results suggested that baicalin could effectively attenuate PVSR and hypoxic pulmonary hypertension.
Collapse
|
8
|
Wey M, Phan V, Yepez G, Heo J. Superoxide inhibits guanine nucleotide exchange factor (GEF) action on Ras, but not on Rho, through desensitization of Ras to GEF. Biochemistry 2014; 53:518-32. [PMID: 24422478 PMCID: PMC4327825 DOI: 10.1021/bi401528n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ras and Rho GTPases are molecular switches for various vital cellular signaling pathways. Overactivation of these GTPases often causes development of cancer. Guanine nucleotide exchange factors (GEFs) and oxidants function to upregulate these GTPases through facilitation of guanine nucleotide exchange (GNE) of these GTPases. However, the effect of oxidants on GEF functions, or vice versa, has not been known. We show that, via targeting Ras Cys(51), an oxidant inhibits the catalytic action of Cdc25-the catalytic domain of RasGEFs-on Ras. However, the enhancement of Ras GNE by an oxidant continues regardless of the presence of Cdc25. Limiting RasGEF action by an oxidant may function to prevent the pathophysiological overactivation of Ras in the presence of both RasGEFs and oxidants. The continuous exposure of Ras to nitric oxide and its derivatives can form S-nitrosated Ras (Ras-SNO). This study also shows that an oxidant not only inhibits the catalytic action of Cdc25 on Ras-SNO but also fails to enhance Ras-SNO GNE. This lack of enhancement then populates the biologically inactive Ras-SNO in cells, which may function to prevent the continued redox signaling of the Ras pathophysiological response. Finally, this study also demonstrates that, unlike the case with RasGEFs, an oxidant does not inhibit the catalytic action of RhoGEF-Vav or Dbs-on Rho GTPases such as Rac1, RhoA, RhoC, and Cdc42. This result explains the results of the previous study in which, despite the presence of an oxidant, the catalytic action of Dbs in cells continued to enhance RhoC GNE.
Collapse
Affiliation(s)
- Michael Wey
- Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | | | | | | |
Collapse
|
9
|
Goncharova EA, Khavin IS, Goncharov DA, Krymskaya VP. Differential effects of formoterol on thrombin- and PDGF-induced proliferation of human pulmonary arterial vascular smooth muscle cells. Respir Res 2012. [PMID: 23186269 PMCID: PMC3545871 DOI: 10.1186/1465-9921-13-109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Increased pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PH). The long-acting β2-adrenergic receptor (β2AR) agonist formoterol, a racemate comprised of (R,R)- and (S,S)-enantiomers, is commonly used as a vasodilator in chronic obstructive pulmonary disease (COPD). PH, a common complication of COPD, increases patients’ morbidity and reduces survival. Recent studies demonstrate that formoterol has anti-proliferative effects on airway smooth muscle cells and bronchial fibroblasts. The effects of formoterol and its enantiomers on PAVSM cell proliferation are not determined. The goals of this study were to examine effects of racemic formoterol and its enantiomers on PAVSM cell proliferation as it relates to COPD-associated PH. Methods Basal, thrombin-, PDGF- and chronic hypoxia-induced proliferation of primary human PAVSM cells was examined by DNA synthesis analysis using BrdU incorporation assay. ERK1/2, mTORC1 and mTORC2 activation were determined by phosphorylation levels of ERK1/2, ribosomal protein S6 and S473-Akt using immunoblot analysis. Results We found that (R,R) and racemic formoterol inhibited basal, thrombin- and chronic hypoxia-induced proliferation of human PAVSM cells while (S,S) formoterol had lesser inhibitory effect. The β2AR blocker propranolol abrogated the growth inhibitory effect of formoterol. (R,R), but not (S,S) formoterol attenuated basal, thrombin- and chronic hypoxia-induced ERK1/2 phosphorylation, but had little effect on Akt and S6 phosphorylation levels. Formoterol and its enantiomers did not significantly affect PDGF-induced DNA synthesis and PDGF-dependent ERK1/2, S473-Akt and S6 phosphorylation in human PAVSM cells. Conclusions Formoterol inhibits basal, thrombin-, and chronic hypoxia-, but not PDGF-induced human PAVSM cell proliferation and ERK1/2, but has little effect on mTORC1 and mTORC2 signaling. Anti-proliferative effects of formoterol depend predominantly on its (R,R) enantiomer and require the binding with β2AR. These data suggest that (R,R) formoterol may be considered as potential adjuvant therapy to inhibit PAVSM cell proliferation in COPD-associated PH.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
10
|
Sigala I, Zacharatos P, Boulia S, Toumpanakis D, Michailidou T, Parthenis D, Roussos C, Papapetropoulos A, Hussain SN, Vassilakopoulos T. Nitric oxide regulates cytokine induction in the diaphragm in response to inspiratory resistive breathing. J Appl Physiol (1985) 2012; 113:1594-603. [PMID: 22961265 DOI: 10.1152/japplphysiol.00233.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Resistive breathing (encountered in chronic obstructive pulmonary disease and asthma) results in cytokine upregulation and decreased nitric oxide (NO) levels in the strenuously contracting diaphragm. NO can regulate gene expression. We hypothesized that endogenously produced NO downregulates cytokine production triggered by strenuous diaphragmatic contraction. Wistar rats treated with vehicle, the nonselective NO synthase inhibitor NG-nitro-l-arginine-methylester (l-NAME), or the NO donor diethylenetriamine-NONOate (DETA) were subjected to inspiratory resistive breathing (IRB; 50% of maximal inspiratory pressure) for 6 h or sham operation. Additional groups of rats were subjected to IRB for 6 h with concurrent administration of l-NAME and inhibitors of NF-κB (BAY-11-7082), ERK1/2 (PD98059), or P38 (SB203580). Inhibition of NO production (with l-NAME) resulted in upregulation of IRB-induced diaphragmatic IL-6, IL-10, IL-2, TNF-α, and IL-1β levels by 50%, 53%, 60%, 47%, and 45%, respectively. In contrast, the NO donor (DETA) attenuated the IRB-induced cytokine upregulation to levels characteristic of quietly breathing animals. l-NAME augmented IRB-induced activation of MAPKs (P38 and ERK1/2) and NF-κB, whereas DETA triggered the opposite effect. NF-κB and ERK1/2 inhibition in l-NAME-treated animals blunted the l-NAME-induced cytokine upregulation except IL-6, whereas P38 inhibition blunted all (including IL-6) cytokine upregulation. NO downregulates IRB-induced cytokine production in the strenuously contracting diaphragm through its action on MAPKs and NF-κB.
Collapse
Affiliation(s)
- Ioanna Sigala
- Department of Critical Care and Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, 45-47 Ipsilandou Str., Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huh JW, Kim SY, Lee JH, Lee YS. YC-1 attenuates hypoxia-induced pulmonary arterial hypertension in mice. Pulm Pharmacol Ther 2011; 24:638-46. [PMID: 21963997 DOI: 10.1016/j.pupt.2011.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/09/2011] [Accepted: 09/17/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and elevation of pulmonary arterial pressure, leading to right ventricular failure and eventual death. Currently, no curative therapy for PAH is available, and the overall prognosis is very poor. Recently, direct activators of soluble guanylyl cyclase (sGC) have been tested as a novel therapeutic modality in experimental models of pulmonary arterial hypertension (PAH). OBJECTIVE In this study, we used in vitro and in vivo models to evaluate the therapeutic potential of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), a dual functioning chemical, as a direct activator of guanylyl cyclase and an inhibitor of hypoxia-inducible factor-1. METHODS We analyzed the effects of YC-1 on cell proliferation and the levels of p21 and p53 in human pulmonary artery smooth muscle cells (HPASMCs) under hypoxia. We also determined the effects of YC-1 on expression of endothelin-1 (ET-1) and phosphorylation status of endothelial nitric oxide synthase (eNOS) at Ser(1179) in human pulmonary artery endothelial cells (HPAECs) under hypoxia. In mice, hypoxic PAH was induced by exposure to normobaric hypoxic conditions for 28 days. To assess preventive or therapeutic effects, randomized mice were subjected to once daily i.p. injections of YC-1 for the entire hypoxic period (5 mg/kg) or for the last seven days of a 28-day hypoxic period (5 and 10 mg/kg). On day 28, we measured the right ventricular systolic pressure (RVSP) and determined the degrees of right ventricular hypertrophy (RVH) and vascular remodeling. RESULTS In HPASMCs, YC-1 inhibited hypoxia-induced proliferation and induction of p53 and p21 in a concentration-dependent manner. Also, YC-1 suppressed the hypoxia-induced expression of ET-1 mRNA and dephosphorylation of eNOS at Ser(1179) in HPAECs. In the preventive in vivo model, a daily dose of 5 mg/kg YC-1 significantly prevented the elevation of RVSP, development of RVH, and pulmonary vascular remodeling, which were caused by hypoxic exposure. In the therapeutic model, YC-1 at daily doses of 5 and 10 mg/kg alleviated RVH and pulmonary vascular remodeling but did not prevent the elevation of RVSP. CONCLUSIONS Our results indicate that YC-1 prevents the development of hypoxia-induced PAH in a preventive model and alleviates RVH and pulmonary vascular remodeling in a therapeutic model. Therefore, these data imply that YC-1 has therapeutic potential for use in a single or combination therapy for PAH.
Collapse
Affiliation(s)
- Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, Ishizaki T. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 2011; 300:L753-61. [PMID: 21335523 DOI: 10.1152/ajplung.00286.2010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.
Collapse
Affiliation(s)
- Shiro Mizuno
- Third Department of Internal Medicine, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Heo J. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signal 2011; 14:689-724. [PMID: 20649471 DOI: 10.1089/ars.2009.2984] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
14
|
Chicoine LG, Chicione LG, Stenger MR, Cui H, Calvert A, Evans RJ, English BK, Liu Y, Nelin LD. Nitric oxide suppression of cellular proliferation depends on cationic amino acid transporter activity in cytokine-stimulated pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L596-604. [PMID: 21239536 DOI: 10.1152/ajplung.00029.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inducible nitric oxide (NO) synthase (iNOS) is a stress response protein upregulated in inflammatory conditions, and NO may suppress cellular proliferation. We hypothesized that preventing L-arginine (L-arg) uptake in endothelial cells would prevent lipopolysaccharide/tumor necrosis factor-α (LPS/TNF)-induced, NO-mediated suppression of cellular proliferation. Bovine pulmonary arterial endothelial cells (bPAEC) were treated with LPS/TNF or vehicle (control), and either 10 mM L-leucine [L-leu; a competitive inhibitor of L-arg uptake by the cationic amino acid transporter (CAT)] or its vehicle. In parallel experiments, iNOS or arginase II were overexpressed in bPAEC using an adenoviral vector (AdiNOS or AdArgII, respectively). LPS/TNF treatment increased the expression of iNOS, arginase II, CAT-1, and CAT-2 mRNA in bPAEC, resulting in greater NO and urea production than in control bPAEC, which was prevented by L-leu. LPS/TNF treatment resulted in fewer viable cells than in controls, and LPS/TNF-stimulated bPAEC treated with L-leu had more viable cells than LPS/TNF treatment alone. LPS/TNF treatment resulted in cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase expression, which was attenuated by L-leu. AdiNOS reduced viable cell number, and treatment of AdiNOS transfected bPAEC with L-leu preserved cell number. AdArgII increased viable cell number, and treatment of AdArgII transfected bPAEC with L-leu prevented the increase in cell number. These data demonstrate that iNOS expression in pulmonary endothelial cells leads to decreased cellular proliferation, which can be attenuated by preventing cellular L-arg uptake. We speculate that CAT activity may represent a novel therapeutic target in inflammatory lung diseases characterized by NO overproduction.
Collapse
Affiliation(s)
- Louis G Chicoine
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Heo J, Hong I. Ras-Targeting Action of Thiopurines in the Presence of Reactive Nitrogen Species. Biochemistry 2010; 49:3965-76. [DOI: 10.1021/bi902090q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019
| | - Inpyo Hong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019
| |
Collapse
|
16
|
Mizuno S, Bogaard HJ, Voelkel NF, Umeda Y, Kadowaki M, Ameshima S, Miyamori I, Ishizaki T. Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways. Respir Res 2009; 10:17. [PMID: 19267931 PMCID: PMC2663549 DOI: 10.1186/1465-9921-10-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 03/06/2009] [Indexed: 11/16/2022] Open
Abstract
Background Hypoxia induces the proliferation of lung fibroblasts in vivo and in vitro. However, the subcellular interactions between hypoxia and expression of tumor suppressor p53 and cyclin-dependent kinase inhibitors p21 and p27 remain unclear. Methods Normal human lung fibroblasts (NHLF) were cultured in a hypoxic chamber or exposed to desferroxamine (DFX). DNA synthesis was measured using bromodeoxyuridine incorporation, and expression of p53, p21 and p27 was measured using real-time RT-PCR and Western blot analysis. Results DNA synthesis was increased by moderate hypoxia (2% oxygen) but was decreased by severe hypoxia (0.1% oxygen) and DFX. Moderate hypoxia decreased p21 synthesis without affecting p53 synthesis, whereas severe hypoxia and DFX increased synthesis of both p21 and p53. p27 protein expression was decreased by severe hypoxia and DFX. Gene silencing of p21 and p27 promoted DNA synthesis at ambient oxygen concentrations. p21 and p53 gene silencing lessened the decrease in DNA synthesis due to severe hypoxia or DFX exposure. p21 gene silencing prevented increased DNA synthesis in moderate hypoxia. p27 protein expression was significantly increased by p53 gene silencing, and was decreased by wild-type p53 gene transfection. Conclusion These results indicate that in NHLF, severe hypoxia leads to cell cycle arrest via the p53-p21 pathway, but that moderate hypoxia enhances cell proliferation via the p21 pathway in a p53-independent manner. In addition, our results suggest that p27 may be involved in compensating for p53 in cultured NHLF proliferation.
Collapse
Affiliation(s)
- Shiro Mizuno
- Third Department of Internal Medicine, University of Fukui, Yoshida-gun, Fukui, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kadowaki M, Mizuno S, Demura Y, Ameshima S, Miyamori I, Ishizaki T. Effect of hypoxia and Beraprost sodium on human pulmonary arterial smooth muscle cell proliferation: the role of p27kip1. Respir Res 2007; 8:77. [PMID: 17974037 PMCID: PMC2164950 DOI: 10.1186/1465-9921-8-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 11/01/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hypoxia induces the proliferation of pulmonary arterial smooth muscle cell (PASMC) in vivo and in vitro, and prostacyclin analogues are thought to inhibit the growth of PASMC. Previous studies suggest that p27kip1, a kind of cyclin-dependent kinase inhibitor, play an important role in the smooth muscle cell proliferation. However, the mechanism of hypoxia and the subcellular interactions between p27kip1 and prostacyclin analogues in human pulmonary arterial smooth muscle cell (HPASMC) are not fully understood. METHODS We investigated the role of p27kip1 in the ability of Beraprost sodium (BPS; a stable prostacyclin analogue) to inhibit the proliferation of HPASMC during hypoxia. To clarify the biological effects of hypoxic air exposure and BPS on HPASMC, the cells were cultured in a hypoxic chamber under various oxygen concentrations (0.1-21%). Thereafter, DNA synthesis was measured as bromodeoxyuridine (BrdU) incorporation, the cell cycle was analyzed by flow cytometry with propidium iodide staining. The p27kip1 mRNA and protein expression and it's stability was measured by real-time RT-PCR and Western blotting. Further, we assessed the role of p27kip1 in HPASMC proliferation using p27kip1 gene knockdown using small interfering RNA (siRNA) transfection. RESULTS Although severe hypoxia (0.1% oxygen) suppressed the proliferation of serum-stimulated HPASMC, moderate hypoxia (2% oxygen) enhanced proliferation in accordance with enhanced p27kip1 protein degradation, whereas BPS suppressed HPASMC proliferation under both hypoxic and normoxic conditions by suppressing p27kip1 degradation with intracellular cAMP-elevation. The 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP), a cAMP analogue, had similar action as BPS in the regulation of p27kip1. Moderate hypoxia did not affect the stability of p27kip1 protein expression, but PDGF, known as major hypoxia-induced growth factors, significantly decreased p27kip1 protein stability. We also demonstrated that BPS and 8-Br-cAMP suppressed HPASMC proliferation under both hypoxic and normoxic conditions by blocking p27kip1 mRNA degradation. Furthermore, p27kip1 gene silencing partially attenuated the effects of BPS and partially restored hypoxia-induced proliferation. CONCLUSION Our study suggests that moderate hypoxia induces HPASMC proliferation, which is partially dependent of p27kip1 down-regulation probably via the induction of growth factors such as PDGF, and BPS inhibits both the cell proliferation and p27kip1 mRNA degradation through cAMP pathway.
Collapse
Affiliation(s)
- Maiko Kadowaki
- Third Department of Internal Medicine, University of Fukui, 23-3 Eiheiji-cho, Matsuoka, Yoshida-gun, Fukui, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang GX, Nagai Y, Nakagawa T, Miyanaka H, Fujisawa Y, Nishiyama A, Izuishi K, Ohmori K, Kimura S. Involvement of endogenous nitric oxide in angiotensin II-induced activation of vascular mitogen-activated protein kinases. Am J Physiol Heart Circ Physiol 2007; 293:H2403-8. [PMID: 17616751 DOI: 10.1152/ajpheart.00288.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II (ANG II) is a powerful activator of mitogen-activated protein (MAP) kinase cascades in cardiovascular tissues through a redox-sensitive mechanism. Nitric oxide (NO) is considered to antagonize the vasoconstrictive and proarteriosclerotic actions of ANG II. However, the role of endogenous NO in ANG II-induced redox-sensitive signal transduction is not yet clear. In this study using catheterized, conscious rats, we found that acute intravenous administration of NG-nitro-l-arginine methyl ester (l-NAME; 5 mg/kg) enhanced phosphorylation of aortic MAP kinases extracellular signal regulated kinase (ERK) 1/2 and p38, which were suppressed only partially by a superoxide dismutase mimetic (Tempol), whereas ANG II-induced MAP kinase phosphorylation was markedly suppressed by Tempol. FK409, a NO donor, had little effect on vascular MAP kinase phosphorylation. On the other hand, acute exposure to a vasoconstrictor dose of ANG II (200 ng·kg−1·min−1 iv) failed to enhance phosphorylation of aortic MAP kinases in the chronically l-NAME-treated rats, whereas the vasoconstrictor effect of ANG II was not affected by l-NAME treatment. Furthermore, three different inhibitors of NO synthase suppressed, in a dose-dependent manner, ANG II-induced MAP kinase phosphorylation in rat vascular smooth muscle cells, which was closely linked to superoxide generation in cells. These results indicate the involvement of endogenous NO synthase in ANG II-induced signaling pathways, leading to activation of MAP kinase, and that NO may have dual effects on the vascular MAP kinase activation associated with redox sensitivity.
Collapse
Affiliation(s)
- Guo-Xing Zhang
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schleicher M, Brundin F, Gross S, Müller-Esterl W, Oess S. Cell cycle-regulated inactivation of endothelial NO synthase through NOSIP-dependent targeting to the cytoskeleton. Mol Cell Biol 2005; 25:8251-8. [PMID: 16135813 PMCID: PMC1234313 DOI: 10.1128/mcb.25.18.8251-8258.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) plays a key role in vascular function, cell proliferation, and apoptosis. Proper subcellular localization of endothelial NO synthase (eNOS) is crucial for its activity; however, the role of eNOS trafficking for NO biosynthesis remains to be defined. Overexpression of NOS-interacting protein (NOSIP) induces translocation of eNOS from the plasma membrane to intracellular compartments, thereby impairing NO production. Here we report that endogenous NOSIP reduces the enzymatic capacity of eNOS, specifically in the G(2) phase of the cell cycle by targeting eNOS to the actin cytoskeleton. This regulation is critically dependent on the nucleocytoplasmic shuttling of NOSIP and its cytoplasmic accumulation in the G(2) phase. The predominant nuclear localization of NOSIP depends on a bipartite nuclear localization sequence (NLS) mediating interaction with importin alpha. Mutational destruction of the NLS abolishes nuclear import and interaction with importin alpha. Nuclear export is insensitive to leptomycin B and hence different from the CRM1-dependent default mechanism. Inhibition of NOSIP expression by RNA interference completely abolishes G(2)-specific cytoskeletal association and inhibition of eNOS. These findings describe a novel cell cycle-dependent modulation of endogenous NO levels that are critical to the cell cycle-related actions of NO such as apoptosis or cell proliferation.
Collapse
Affiliation(s)
- Michael Schleicher
- Institute for Biochemistry II, University of Frankfurt Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|