1
|
Berg P, Svendsen SL, Ayasse N, Sorensen MV, Leipziger J. Secretin: a hormone for HCO 3- homeostasis. Pflugers Arch 2024; 476:545-554. [PMID: 38221598 DOI: 10.1007/s00424-024-02906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Secretin is a key hormone of the intestinal phase of digestion which activates pancreatic, bile duct and Brunner gland HCO3- secretion. Recently, the secretin receptor (SCTR) was also found in the basolateral membrane of the beta-intercalated cell (B-IC) of the collecting duct. Experimental addition of secretin triggers a pronounced activation of urinary HCO3- excretion, which is fully dependent on key functional proteins of the B-IC, namely apical pendrin and CFTR and the basolateral SCTR. Recent studies demonstrated that the SCTR knock-out mouse is unable to respond to an acute base load. Here, SCTR KO mice could not rapidly increase urine base excretion, developed prolonged metabolic alkalosis and exhibited marked compensatory hypoventilation. Here, we review the physiological effects of secretin with distinct focus on how secretin activates renal HCO3- excretion. We describe its new function as a hormone for HCO3- homeostasis.
Collapse
Affiliation(s)
- Peder Berg
- Department of Biomedicine, Physiology, Health, Aarhus University, Høegh-Guldbergsgade 10, Bld. 1115, 8000, Aarhus C, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Health, Aarhus University, Høegh-Guldbergsgade 10, Bld. 1115, 8000, Aarhus C, Denmark
| | - Niklas Ayasse
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Mads Vaarby Sorensen
- Department of Biomedicine, Physiology, Health, Aarhus University, Høegh-Guldbergsgade 10, Bld. 1115, 8000, Aarhus C, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Health, Aarhus University, Høegh-Guldbergsgade 10, Bld. 1115, 8000, Aarhus C, Denmark.
| |
Collapse
|
2
|
Bhandari S, Sostin O, Shah A, Chronakos J, Kahn D, Mendez J, Hegde A. Octreotide as a novel agent for the management of bronchorrhea in mechanically ventilated patients: A case series and review of literature. Respir Med Case Rep 2023; 45:101891. [PMID: 37448885 PMCID: PMC10336782 DOI: 10.1016/j.rmcr.2023.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Excessive bronchial secretions pose a challenge in mechanically-ventilated patients and may prolong the time to extubation, increasing the risk for pneumonia. Octreotide, a somatostatin analog, has been used to decrease bronchial secretions especially for the symptomatic management of patients with lung cancer. We describe three patients in the form of a case series and discuss effect of octretotide on bronchial secretions and management of bronchorrhea in the intensive care unit. Similar to reports of its utilization in palliative care in patients with lung cancer, we observed a clinically significant decrease in the rate of bronchial secretions.
Collapse
Affiliation(s)
| | | | | | - John Chronakos
- Department of Pulmonary and Critical Care Medicine, Nuvance Health, Danbury, CT, USA
| | - Douglas Kahn
- Department of Pulmonary and Critical Care Medicine, Nuvance Health, Danbury, CT, USA
| | - Jose Mendez
- Department of Pulmonary and Critical Care Medicine, Nuvance Health, Danbury, CT, USA
| | - Abhijith Hegde
- Department of Pulmonary and Critical Care Medicine, Nuvance Health, Danbury, CT, USA
| |
Collapse
|
3
|
Laurila S, Rebelos E, Honka MJ, Nuutila P. Pleiotropic Effects of Secretin: A Potential Drug Candidate in the Treatment of Obesity? Front Endocrinol (Lausanne) 2021; 12:737686. [PMID: 34671320 PMCID: PMC8522834 DOI: 10.3389/fendo.2021.737686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
Secretin is the first hormone that has been discovered, inaugurating the era and the field of endocrinology. Despite the initial focus, the interest in its actions faded away over the decades. However, there is mounting evidence regarding the pleiotropic beneficial effects of secretin on whole-body homeostasis. In this review, we discuss the evidence from preclinical and clinical studies based on which secretin may have a role in the treatment of obesity.
Collapse
Affiliation(s)
- Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
- Department of Cardiology, Satakunta Central Hospital, Pori, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- *Correspondence: Pirjo Nuutila,
| |
Collapse
|
4
|
Loss of secretin results in systemic and pulmonary hypertension with cardiopulmonary pathologies in mice. Sci Rep 2019; 9:14211. [PMID: 31578376 PMCID: PMC6775067 DOI: 10.1038/s41598-019-50634-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
More than 1 billion people globally are suffering from hypertension, which is a long-term incurable medical condition that can further lead to dangerous complications and death if left untreated. In earlier studies, the brain-gut peptide secretin (SCT) was found to be able to control blood pressure by its cardiovascular and pulmonary effects. For example, serum SCT in patients with congestive heart failure was one-third of the normal level. These observations strongly suggest that SCT has a causal role in blood pressure control, and in this report, we used constitutive SCT knockout (SCT−/−) mice and control C57BL/6N mice to investigate differences in the morphology, function, underlying mechanisms and response to SCT treatment. We found that SCT−/− mice suffer from systemic and pulmonary hypertension with increased fibrosis in the lungs and heart. Small airway remodelling and pulmonary inflammation were also found in SCT−/− mice. Serum NO and VEGF levels were reduced and plasma aldosterone levels were increased in SCT−/− mice. Elevated cardiac aldosterone and decreased VEGF in the lungs were observed in the SCT−/− mice. More interestingly, SCT replacement in SCT−/− mice could prevent the development of heart and lung pathologies compared to the untreated group. Taken together, we comprehensively demonstrated the critical role of SCT in the cardiovascular and pulmonary systems and provide new insight into the potential role of SCT in the pathological development of cardiopulmonary and cardiovascular diseases.
Collapse
|
5
|
Abstract
OBJECTIVE The aim of this study was to compare the hemodynamic parameters from the anesthesia records of children who underwent upper gastrointestinal endoscopy (esophagogastroduodenoscopy [EGD]) with and without secretin pancreatic function tests (sPFTs). METHODS The hemodynamic parameters were retrieved from an electronic anesthesia database. The secretin group consisted of 186 children, and the age- and sex-matched control group included 136 patients who did not have sPFTs. RESULTS There was no difference in the demographic parameters (age and sex) between the 2 groups. The secretin group had a lower height and body mass index. The sPFT resulted in an average 3-minute extension of the endoscopic procedure. The heart rate increased during the EGD in both groups and was higher (averaged 7 beats per minute) in the secretin group than the EGD-only group. There were mild elevations on the systolic and diastolic blood pressures. None of these changes were clinically significant. There were no complications reported during the anesthesia and procedures in the 2 groups. CONCLUSIONS Secretin PFT is a safe procedure. It only slightly prolongs the total procedure and anesthesia time. There were no clinically significant changes in the vital parameters in the secretin group, and there were no adverse effects recorded.
Collapse
|
6
|
Kang S, Kim B, Kang HS, Jeong G, Bae H, Lee H, Lee S, Kim SJ. SCTR regulates cell cycle-related genes toward anti-proliferation in normal breast cells while having pro-proliferation activity in breast cancer cells. Int J Oncol 2015; 47:1923-31. [PMID: 26397240 DOI: 10.3892/ijo.2015.3164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/26/2015] [Indexed: 11/05/2022] Open
Abstract
Secretin receptor (SCTR), the G-protein coupled receptor (GPCR) for secretin, has been observed to be upregulated in a few tumor types while downregulated in others, promoting or suppressing the proliferation of tumor cells, respectively. However, little is known about the molecular regulatory mechanism of dysregulation in cancer. In the present study, an analysis of the biological pathways affected by methylation in breast cancer using the methylome databases revealed that GPCRs played a major part in the affected pathway. SCTR, one of the dysregulated GPCRs, showed hypermethylation (p<0.01) and downregulation (p<0.05) in breast cancer tissues. Pathway analysis after the downregulation of SCTR by siRNA in MCF-10A cells identified the G2/M stage checkpoint as the top-scored pathway. Cell cycle-related genes were all upregulated or downregulated suppressing cell proliferation. However, the overexpression of SCTR in MCF-7 cells led to a 35% increase of the cell proliferation index and 2.1-fold increase of cellular migration. Our findings indicate that SCTR suppresses the proliferation of normal breast cells, while the gene stimulates the proliferation and migration of cancer cells being downregulated by promoter methylation.
Collapse
Affiliation(s)
- Seongeun Kang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Byungtak Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Gookjoo Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
7
|
Afroze S, Meng F, Jensen K, McDaniel K, Rahal K, Onori P, Gaudio E, Alpini G, Glaser SS. The physiological roles of secretin and its receptor. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:29. [PMID: 25332973 DOI: 10.3978/j.issn.2305-5839.2012.12.01] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Secretin is secreted by S cells in the small intestine and affects the function of a number of organ systems. Secretin receptors (SR) are expressed in the basolateral domain of several cell types. In addition to regulating the secretion of a number of epithelia (e.g., in the pancreas and biliary epithelium in the liver), secretin exerts trophic effects in several cell types. In this article, we will provide a comprehensive review on the multiple roles of secretin and SR signaling in the regulation of epithelial functions in various organ systems with particular emphasis in the liver. We will discuss the role of secretin and its receptor in health and biliary disease pathogenesis. Finally, we propose future areas of research for the further evaluation of the secretin/secretin receptor axis in liver pathophysiology.
Collapse
Affiliation(s)
- Syeda Afroze
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Fanyin Meng
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kendal Jensen
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kelly McDaniel
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kinan Rahal
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Paolo Onori
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Eugenio Gaudio
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Gianfranco Alpini
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Shannon S Glaser
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| |
Collapse
|
8
|
Lee M, Waser B, Reubi JC, Pellegata NS. Secretin receptor promotes the proliferation of endocrine tumor cells via the PI3K/AKT pathway. Mol Endocrinol 2012; 26:1394-405. [PMID: 22692904 DOI: 10.1210/me.2012-1055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.
Collapse
Affiliation(s)
- Misu Lee
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
9
|
Abstract
OBJECTIVE Several gastrointestinal peptides are now recognized to have target functions beyond the intestinal wall, including effects on adipocytes. Secretin (SEC), one of the first identified, has not been evaluated in this context. METHODS Using cultured 3T3-L1 preadipocytes, adipocytes and primary rat adipocytes we evaluated the effect of SEC on cell proliferation, mitochondrial activity, differentiation, triglyceride (TG) synthesis, lipolysis as well expression of the SEC receptor (SCTR) in rodent and human adipose tissues. RESULTS In preadipocytes, SEC significantly increased mitochondrial activity (115%; P<0.01), thymidine incorporation (149.7%; P<0.05) and C/EBPβ expression (123.4%; P<0.05). During standard differentiation, SCTR mRNA increased up to a maximum of ninefold (P<0.001). In human adipose tissue, SCTR correlated with body mass index and plasma insulin, and SCTR mRNA expression was also detected in rat adipose tissues. SEC supplementation during differentiation enhanced TG accumulation (+138%; P<0.01). In mature adipocytes, SEC increased fatty acid (FA) uptake (186%; P<0.01), adiponectin and monocyte chemotactic protein-1 secretion (+142% and +149%, respectively; P<0.05) and mRNA expression of PPARγ (+206%; P<0.01), FABP4 (+164%; P<0.001), DGAT-1 (+144%; P<0.01), adiponectin (+138%; P<0.001) and CD36 (+149%; P<0.05). In primary rat adipocytes, SEC also increased FA uptake (137%; P<0.05). Pretreatment with a SEC antagonist impaired SEC-induced FA uptake and cAMP accumulation. SEC treatment simultaneously stimulated lipolysis measured as glycerol release in 3T3-L1 adipocytes and rat adipose tissue. CONCLUSION The present results suggest that SEC is a potent modulator of adipocyte functions, demonstrating overall a role in enhanced substrate cycling.
Collapse
|
10
|
Abstract
Body fluid homeostasis is critical for the survival of living organisms and hence is tightly controlled. From initial studies on the effects of secretin (SCT) on renal water reabsorption in the 1940s and recent investigations of its role in cardiovascular and neuroendocrine functions, it has now become increasingly clear that this peptide is an integral component of the homeostatic processes that maintain body fluid balance. This review, containing some of our recent findings of centrally expressed SCT on water intake, focuses on the actions of SCT in influencing the physiological, neuroendocrine, and cardiovascular processes that subserve body fluid homeostasis.
Collapse
|
11
|
Abstract
Metabolic pathologies such as Type 2 Diabetes have become a major health problem for worldwide populations. Unfortunately, efforts to cure and especially to prevent these significant global problems have so far been met with disappointment. Recently, the involvement of the gut-derived hormonal dysregulation in the development of obesity-related disturbances has been intensively studied. For instance, studies of gut-derived peptides such as peptide YY 3-36, glucagon-like peptide-1, oxyntomodulin and, more recently, ghrelin have significantly improved our understanding of mechanisms underlying weight and metabolic regulation. Even though early reports of the existence of secretin, the first peptide hormone to be described, date back as far as 1825, so much and yet so little is still known about its physiological role in mammals, including humans. However, recent years have provided a better understanding of how the release of secretin is regulated by enteral secretagogues. On the other hand, most basic questions about its role in the post-prandial regulation of metabolic functions in normal and pathophysiological conditions remain to be elucidated. The present work intends to review the physiology of secretin along with its central and peripheral outcomes on metabolic functions.
Collapse
Affiliation(s)
- D H St-Pierre
- Division of Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, Ospedale Molinette, University of Turin, Turin, Italy
| | | |
Collapse
|
12
|
Körner MU, Hayes GM, Carrigan PE, Rehmann R, Miller LJ, Reubi JC. Wild-type and splice-variant secretin receptors in lung cancer: overexpression in carcinoid tumors and peritumoral lung tissue. Mod Pathol 2008; 21:387-95. [PMID: 18223557 DOI: 10.1038/modpathol.3801005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.
Collapse
Affiliation(s)
- Meike U Körner
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology of the University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Lam IPY, Siu FKY, Chu JYS, Chow BKC. Multiple actions of secretin in the human body. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:159-90. [PMID: 18275888 DOI: 10.1016/s0074-7696(07)65004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of secretin initiated the field of endocrinology. Over the past century, multiple gastrointestinal functions of secretin have been extensively studied, and it was discovered that the principal function of this peptide in the gastrointestinal system is to facilitate digestion and to provide protection. In view of the late identification of secretin and the secretin receptor in various tissues, including the central nervous system, the pleiotropic functions of secretin have more recently been an area of intense focus. Secretin is a classical hormone, and recent studies clearly showed secretin's involvement in neural and neuroendocrine pathways, although the neuroactivity and neural regulation of its release are yet to be elucidated. This chapter reviews our current understanding of the pleiotropic actions of secretin with a special focus on the hormonal and neural interdependent pathways that mediate these actions.
Collapse
Affiliation(s)
- Ian P Y Lam
- Department of Zoology, University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
14
|
Hudson E, Lester JF, Attanoos RL, Linnane SJ, Byrne A. Successful treatment of bronchorrhea with octreotide in a patient with adenocarcinoma of the lung. J Pain Symptom Manage 2006; 32:200-2. [PMID: 16939841 DOI: 10.1016/j.jpainsymman.2006.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 04/22/2006] [Accepted: 05/02/2006] [Indexed: 11/18/2022]
|
15
|
Siu FKY, Lam IPY, Chu JYS, Chow BKC. Signaling mechanisms of secretin receptor. ACTA ACUST UNITED AC 2006; 137:95-104. [PMID: 16930743 DOI: 10.1016/j.regpep.2006.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/14/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Secretin, a 27-amino acid gastrointestinal peptide, was initially discovered based on its activities in stimulating pancreatic juice. In the past 20 years, secretin was demonstrated to exhibit pleiotropic functions in many different tissues and more importantly, its role as a neuropeptide was substantiated. To carry out its activities in the central nervous system and in peripheral organs, secretin interacts specifically with one known receptor. Secretin receptor, a member of guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) in the secretin/VIP/glucagon subfamily, possesses the characteristics of GPCR with seven conserved transmembrane domains, a relatively large amino-terminal extracellular domain and an intracellular carboxyl terminus. The structural features and signal transduction pathways of the secretin receptor in various tissues are reviewed in this article.
Collapse
Affiliation(s)
- Francis K Y Siu
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|