1
|
Elitist random swapped particle swarm optimization embedded with variable k-nearest neighbour classification: a new PSO variant applied to gene identification. Soft comput 2022. [DOI: 10.1007/s00500-022-07515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
2
|
Mauhin W, Brassier A, London J, Subran B, Zeggane A, Besset Q, Jammal C, Montardi C, Mellot C, Strauss C, Borie R, Lidove O. Manifestations pulmonaires des maladies héréditaires du métabolisme. Rev Mal Respir 2022; 39:758-777. [DOI: 10.1016/j.rmr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
|
3
|
Inducible Slc7a7 Knockout Mouse Model Recapitulates Lysinuric Protein Intolerance Disease. Int J Mol Sci 2019; 20:ijms20215294. [PMID: 31653080 PMCID: PMC6862226 DOI: 10.3390/ijms20215294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is a rare autosomal disease caused by defective cationic amino acid (CAA) transport due to mutations in SLC7A7, which encodes for the y+LAT1 transporter. LPI patients suffer from a wide variety of symptoms, which range from failure to thrive, hyperammonemia, and nephropathy to pulmonar alveolar proteinosis (PAP), a potentially life-threatening complication. Hyperammonemia is currently prevented by citrulline supplementation. However, the full impact of this treatment is not completely understood. In contrast, there is no defined therapy for the multiple reported complications of LPI, including PAP, for which bronchoalveolar lavages do not prevent progression of the disease. The lack of a viable LPI model prompted us to generate a tamoxifen-inducible Slc7a7 knockout mouse (Slc7a7-/-). The Slc7a7-/- model resembles the human LPI phenotype, including malabsorption and impaired reabsorption of CAA, hypoargininemia and hyperammonemia. Interestingly, the Slc7a7-/- mice also develops PAP and neurological impairment. We observed that citrulline treatment improves the metabolic derangement and survival. On the basis of our findings, the Slc7a7-/- model emerges as a promising tool to further study the complexity of LPI, including its immune-like complications, and to design evidence-based therapies to halt its progression.
Collapse
|
4
|
Vilches C, Boiadjieva-Knöpfel E, Bodoy S, Camargo S, López de Heredia M, Prat E, Ormazabal A, Artuch R, Zorzano A, Verrey F, Nunes V, Palacín M. Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids. J Am Soc Nephrol 2018; 29:1624-1635. [PMID: 29610403 DOI: 10.1681/asn.2017111205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y+LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivoMethods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo, we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice).Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y+LAT1/CD98hc.Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo, and y+LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans.
Collapse
Affiliation(s)
- Clara Vilches
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Emilia Boiadjieva-Knöpfel
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Susanna Bodoy
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain.,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Simone Camargo
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Miguel López de Heredia
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and
| | - Esther Prat
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain; and
| | - Aida Ormazabal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain.,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) - CB07/08/0017, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - François Verrey
- Department of Physiology.,Zurich Center for Integrative Human Physiology (ZIHP), and.,Swiss National Centre of Competence in Research (NCCR), Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Virginia Nunes
- Molecular Genetics Laboratory, Genes Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain; and
| | - Manuel Palacín
- Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain; .,Molecular Medicine Unit, Amino acid transporters and disease group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - U730, U731, U703, and
| |
Collapse
|
5
|
Mauhin W, Habarou F, Gobin S, Servais A, Brassier A, Grisel C, Roda C, Pinto G, Moshous D, Ghalim F, Krug P, Deltour N, Pontoizeau C, Dubois S, Assoun M, Galmiche L, Bonnefont JP, Ottolenghi C, de Blic J, Arnoux JB, de Lonlay P. Update on Lysinuric Protein Intolerance, a Multi-faceted Disease Retrospective cohort analysis from birth to adulthood. Orphanet J Rare Dis 2017; 12:3. [PMID: 28057010 PMCID: PMC5217205 DOI: 10.1186/s13023-016-0550-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022] Open
Abstract
Background Lysinuric protein intolerance (LPI) is a rare metabolic disease resulting from recessive-inherited mutations in the SLC7A7 gene encoding the cationic amino-acids transporter subunit y+LAT1. The disease is characterised by protein-rich food intolerance with secondary urea cycle disorder, but symptoms are heterogeneous ranging from infiltrative lung disease, kidney failure to auto-immune complications. This retrospective study of all cases treated at Necker Hospital (Paris, France) since 1977 describes LPI in both children and adults in order to improve therapeutic management. Results Sixteen patients diagnosed with LPI (12 males, 4 females, from 9 families) were followed for a mean of 11.4 years (min-max: 0.4-37.0 years). Presenting signs were failure to thrive (n = 9), gastrointestinal disorders (n = 2), cytopenia (n = 6), hyperammonemia (n = 10) with acute encephalopathy (n = 4) or developmental disability (n = 3), and proteinuria (n = 1). During follow-up, 5 patients presented with acute hyperammonemia, and 8 presented with developmental disability. Kidney disease was observed in all patients: tubulopathy (11/11), proteinuria (4/16) and kidney failure (7/16), which was more common in older patients (mean age of onset 17.7 years, standard deviation 5.33 years), with heterogeneous patterns including a lupus nephritis. We noticed a case of myocardial infarction in a 34-year-old adult. Failure to thrive and signs of haemophagocytic-lymphohistiocytosis were almost constant. Recurrent acute pancreatitis occurred in 2 patients. Ten patients developed an early lung disease. Six died at the mean age of 4 years from pulmonary alveolar proteinosis. This pulmonary involvement was significantly associated with death. Age-adjusted plasma lysine concentrations at diagnosis showed a trend toward increased values in patients with a severe disease course and premature death (Wilcoxon p = 0.08; logrank, p = 0.17). Age at diagnosis was a borderline predictor of overall survival (logrank, p = 0.16). Conclusions As expected, early pulmonary involvement with alveolar proteinosis is frequent and severe, being associated with an increased risk of death. Kidney disease frequently occurs in older patients. Cardiovascular and pancreatic involvement has expanded the scope of complications. A borderline association between increased levels of plasma lysine and poorer outome is suggested. Greater efforts at prevention are warranted to optimise the long-term management in these patients.
Collapse
Affiliation(s)
- Wladimir Mauhin
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Florence Habarou
- Metabolic Biochemistry, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Stéphanie Gobin
- Molecular Genetics, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Aude Servais
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France.,Nephrology Unit, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Anaïs Brassier
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Coraline Grisel
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Célina Roda
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Graziella Pinto
- Endocrinoloy Unit, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Despina Moshous
- Paediatric Immunology, Haematology and Rheumatology, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Fahd Ghalim
- Gastroenterology, Kremlin Bicêtre Hospital, AP-HP, University Paris Sud, Paris, France
| | - Pauline Krug
- Nephrology, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Nelly Deltour
- Molecular Genetics, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Clément Pontoizeau
- Metabolic Biochemistry, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Sandrine Dubois
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Murielle Assoun
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Louise Galmiche
- Anatomopathology, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Jean-Paul Bonnefont
- Molecular Genetics, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Chris Ottolenghi
- Metabolic Biochemistry, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Jacques de Blic
- Pneumology, Hospital Necker Enfants Malades, AP-HP, University Paris Descartes, Paris, France
| | - Jean-Baptiste Arnoux
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France. .,Reference Center of Metabolic Disease Unit, Université Paris Descartes, Hôpital Necker-Enfants Malades, Institute Imagine, INSERM-U781, 149 rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
6
|
Inhaled Sargramostim Induces Resolution of Pulmonary Alveolar Proteinosis in Lysinuric Protein Intolerance. JIMD Rep 2016; 34:97-104. [PMID: 27783330 DOI: 10.1007/8904_2016_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a potentially fatal complication of lysinuric protein intolerance (LPI), an inherited disorder of cationic amino acid transport. The patients often present with mild respiratory symptoms, which may rapidly progress to acute respiratory failure responding poorly to conventional treatment with steroids and bronchoalveolar lavations (BALs). The pathogenesis of PAP in LPI is still largely unclear. In previous studies, we have shown disturbances in the function and activity of alveolar macrophages of these patients, suggesting that increasing the activity and the number of macrophages by recombinant human GM-CSF (rhuGM-CSF) might be beneficial in this patient group.Two LPI patients with complicated PAP were treated with experimental inhaled rhuGM-CSF (sargramostim) after poor response to maximal conventional therapy. BAL fluid and cell samples from one patient were studied with light microscopy and transmission electron microscopy.Excellent response to therapy was observed in patient 1 with no compliance problems or side effects. Macrophages with myelin figure-like structures were seen in her BAL sample. Slight improvement of the pulmonary function was evident also in patient 2, but the role of sargramostim could not be properly evaluated due to the complicated clinical situation.In conclusion, inhaled rhuGM-CSF might be of benefit in patients with LPI-associated PAP.
Collapse
|
7
|
Werner A, Amann E, Schnitzius V, Habermeier A, Luckner-Minden C, Leuchtner N, Rupp J, Closs EI, Munder M. Induced arginine transport via cationic amino acid transporter-1 is necessary for human T-cell proliferation. Eur J Immunol 2015; 46:92-103. [PMID: 26449889 DOI: 10.1002/eji.201546047] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 09/03/2015] [Accepted: 10/05/2015] [Indexed: 11/10/2022]
Abstract
Availability of the semiessential amino acid arginine is fundamental for the efficient function of human T lymphocytes. Tumor-associated arginine deprivation, mainly induced by myeloid-derived suppressor cells, is a central mechanism of tumor immune escape from T-cell-mediated antitumor immune responses. We thus assumed that transmembranous transport of arginine must be crucial for T-cell function and studied which transporters are responsible for arginine influx into primary human T lymphocytes. Here, we show that activation via CD3 and CD28 induces arginine transport into primary human T cells. Both naïve and memory CD4(+) T cells as well as CD8(+) T cells specifically upregulated the human cationic amino acid transporter-1 (hCAT-1), with an enhanced and persistent expression under arginine starvation. When hCAT-1 induction was suppressed via siRNA transfection, arginine uptake, and cellular proliferation were impaired. In summary, our results demonstrate that hCAT-1 is a key component of efficient T-cell activation and a novel potential target structure to modulate adaptive immune responses in tumor immunity or inflammation.
Collapse
Affiliation(s)
- Anke Werner
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Eva Amann
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vanessa Schnitzius
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alice Habermeier
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Luckner-Minden
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Leuchtner
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Rupp
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Kurko J, Vähä-Mäkilä M, Tringham M, Tanner L, Paavanen-Huhtala S, Saarinen M, Näntö-Salonen K, Simell O, Niinikoski H, Mykkänen J. Dysfunction in macrophage toll-like receptor signaling caused by an inborn error of cationic amino acid transport. Mol Immunol 2015. [PMID: 26210182 DOI: 10.1016/j.molimm.2015.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Amino acids, especially arginine, are vital for the well-being and activity of immune cells, and disruption of amino acid balance may weaken immunity and predispose to infectious and autoimmune diseases. We present here a model of an inborn aminoaciduria, lysinuric protein intolerance (LPI), in which a single mutation in y(+)LAT1 cationic amino acid transporter gene SLC7A7 leads to a multisystem disease characterized by immunological complications, life-threatening pulmonary alveolar proteinosis and nephropathy. Macrophages are suggested to play a central role in LPI in the development of these severe secondary symptoms. We thus studied the effect of the Finnish y(+)LAT1 mutation on monocyte-derived macrophages where toll-like receptors (TLRs) act as the key molecules in innate immune response against external pathogens. The function of LPI patient and control macrophage TLR signaling was examined by stimulating the TLR2/1, TLR4 and TLR9 pathways with their associated pathogen-associated molecular patterns. Downregulation in expression of TLR9, IRF7, IRF3 and IFNB1 and in secretion of IFN-α was detected, suggesting an impaired response to TLR9 stimulation. In addition, secretion of TNF-α, IL-12 and IL-1RA by TLR2/1 stimulation and IL-12 and IL-1RA by TLR4 stimulation was increased in the LPI patients. LPI macrophages secreted significantly less nitric oxide than control macrophages, whereas plasma concentrations of inflammatory chemokines CXCL8, CXCL9 and CXCL10 were elevated in the LPI patients. In conclusion, our results strengthen the relevance of macrophages in the pathogenesis of LPI and, furthermore, suggest that cationic amino acid transport plays an important role in the regulation of innate immune responses.
Collapse
Affiliation(s)
- Johanna Kurko
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Mari Vähä-Mäkilä
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Maaria Tringham
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Laura Tanner
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Department of Clinical Genetics, Turku University Hospital, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Sari Paavanen-Huhtala
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Maiju Saarinen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland; Department of Public Health, University of Turku, Lemminkäisenkatu 1, 20014 Turku, Finland.
| | - Kirsti Näntö-Salonen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Harri Niinikoski
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Juha Mykkänen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| |
Collapse
|
9
|
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 2014; 5:532. [PMID: 25386178 PMCID: PMC4209874 DOI: 10.3389/fimmu.2014.00532] [Citation(s) in RCA: 784] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline–NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer.
Collapse
Affiliation(s)
- Meera Rath
- Department of Pharmacology, Institute of Medical Sciences, Faculty of Medical Sciences, Siksha 'O' Anusandhan University , Bhubaneshwar , India
| | - Ingrid Müller
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Pascale Kropf
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center, Johannes Gutenberg University , Mainz , Germany ; Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
10
|
Gliadin activates arginase pathway in RAW264.7 cells and in human monocytes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1364-71. [PMID: 24793417 DOI: 10.1016/j.bbadis.2014.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/10/2014] [Accepted: 04/25/2014] [Indexed: 11/21/2022]
Abstract
Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. Recent studies have demonstrated that macrophages play a key role in the pathogenesis of CD through the release of inflammatory mediators such as cytokines and nitric oxide (NO). Since arginine is the obliged substrate of iNOS (inducible nitric oxide synthase), the enzyme that produces large amount of NO, the aim of this work is to investigate arginine metabolic pathways in RAW264.7 murine macrophages after treatment with PT-gliadin (PTG) in the absence and in the presence of IFNγ. Our results demonstrate that, besides strengthening the IFNγ-dependent activation of iNOS, gliadin is also an inducer of arginase, the enzyme that transforms arginine into ornithine and urea. Gliadin treatment increases, indeed, the expression and the activity of arginase, leading to the production of polyamines through the subsequent induction of ornithine decarboxylase. This effect is strengthened by IFNγ. The activation of these pathways takes advantage of the increased availability of arginine due to a decreased system y(+)l-mediated efflux, likely ascribable to a reduced expression of Slc7a6 transporter. A significant induction of arginase expression is also observed in human monocytes from healthy subject upon treatment with gliadin, thus demonstrating that gluten components trigger changes in arginine metabolism in monocyte/macrophage cells.
Collapse
|
11
|
Yang J, Tan Q, Zhu W, Chen C, Liang X, Pan L. Cloning and molecular characterization of cationic amino acid transporter y⁺LAT1 in grass carp (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:93-104. [PMID: 23817987 DOI: 10.1007/s10695-013-9827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
The solute carrier family 7A, member 7 gene encodes the light chain- y⁺L amino acid transporter-1 (y⁺LAT1) of the heterodimeric carrier responsible for cationic amino acid (CAA) transport across the basolateral membranes of epithelial cells in intestine and kidney. Rising attention has been given to y⁺LAT1 involved in CAA metabolic pathways and growth control. The molecular characterization and function analysis of y⁺LAT1 in grass carp (Ctenopharyngodon idellus) is currently unknown. In the present study, full-length cDNA (2,688 bp), which encodes y⁺LAT1 and contains a 5'-untranslated region (319 bp), an open reading frame (1,506 bp) and a 3'-untranslated region (863 bp), has been cloned from grass carp. Amino acid sequence of grass carp y⁺LAT1 contains 11 transmembrane domains and shows 95 %, 80 % and 75 % sequence similarity to zebra fish, amphibian and mammalian y⁺LAT1, respectively. The tissue distribution and expression regulation by fasting of y⁺LAT1 mRNA were analyzed using real-time PCR. Our results showed that y⁺LAT1 mRNA was highly expressed in midgut, foregut and spleen while weakly expressed in hindgut, kidney, gill, brain, heart, liver and muscle. Nutritional status significantly influenced y⁺LAT1 mRNA expression in fish tissues, such as down-regulation of y⁺LAT1 mRNA expression after fasting (14 days).
Collapse
Affiliation(s)
- Jixuan Yang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | |
Collapse
|
12
|
Organic cation transporters in the blood-air barrier: expression and implications for pulmonary drug delivery. Ther Deliv 2012; 3:735-47. [PMID: 22838069 DOI: 10.4155/tde.12.51] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies concerning the impact that hepatic, renal and intestinal transporters have on drug disposition have been frequently reported in the literature. Surprisingly, however, little is known regarding the distribution and function of drug-transporter proteins of the lung epithelium. Many drugs (delivered to the lung) have a net positive charge and, thus, are potential substrates of organic cation transporters; currently marketed compounds (e.g., bronchodilators), as well as novel drug candidates in development, are such substrates. It is the aim of this review to summarize the current state of organic cation-transporter expression analysis in the lung and in in vitro models of bronchial and alveolar barriers. Moreover, activity of selected transporters in lung epithelium in situ and in vitro will be highlighted, and their potential role in pulmonary drug disposition will be addressed. One example included here is the transporter-dependent absorption of beta2-agonists in respiratory epithelial cells.
Collapse
|
13
|
Ogier de Baulny H, Schiff M, Dionisi-Vici C. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder. Mol Genet Metab 2012; 106:12-7. [PMID: 22402328 DOI: 10.1016/j.ymgme.2012.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
Lysinuric protein intolerance (LPI) is an inherited defect of cationic amino acid (lysine, arginine and ornithine) transport at the basolateral membrane of intestinal and renal tubular cells caused by mutations in SLC7A7 encoding the y(+)LAT1 protein. LPI has long been considered a relatively benign urea cycle disease, when appropriately treated with low-protein diet and l-citrulline supplementation. However, the severe clinical course of this disorder suggests that LPI should be regarded as a severe multisystem disease with uncertain outcome. Specifically, immune dysfunction potentially attributable to nitric oxide (NO) overproduction secondary to arginine intracellular trapping (due to defective efflux from the cell) might be a crucial pathophysiological route explaining many of LPI complications. The latter comprise severe lung disease with pulmonary alveolar proteinosis, renal disease, hemophagocytic lymphohistiocytosis with subsequent activation of macrophages, various auto-immune disorders and an incompletely characterized immune deficiency. These results have several therapeutic implications, among which lowering the l-citrulline dosage may be crucial, as excessive citrulline may worsen intracellular arginine accumulation.
Collapse
Affiliation(s)
- Hélène Ogier de Baulny
- APHP, Reference Center for Inherited Metabolic Disease, Hôpital Robert Debré, F-75019 Paris, France
| | | | | |
Collapse
|
14
|
Tringham M, Kurko J, Tanner L, Tuikkala J, Nevalainen OS, Niinikoski H, Näntö-Salonen K, Hietala M, Simell O, Mykkänen J. Exploring the transcriptomic variation caused by the Finnish founder mutation of lysinuric protein intolerance (LPI). Mol Genet Metab 2012; 105:408-15. [PMID: 22221392 DOI: 10.1016/j.ymgme.2011.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 12/19/2022]
Abstract
Lysinuric protein intolerance (LPI) is an autosomal recessive disorder caused by mutations in cationic amino acid transporter gene SLC7A7. Although all Finnish patients share the same homozygous mutation, their clinical manifestations vary greatly. The symptoms range from failure to thrive, protein aversion, anemia and hyperammonaemia, to immunological abnormalities, nephropathy and pulmonary alveolar proteinosis. To unravel the molecular mechanisms behind those symptoms not explained directly by the primary mutation, gene expression profiles of LPI patients were studied using genome-wide microarray technology. As a result, we discovered 926 differentially-expressed genes, including cationic and neutral amino acid transporters. The functional annotation analysis revealed a significant accumulation of such biological processes as inflammatory response, immune system processes and apoptosis. We conclude that changes in the expression of genes other than SLC7A7 may be linked to the various symptoms of LPI, indicating a complex interplay between amino acid transporters and various cellular processes.
Collapse
Affiliation(s)
- Maaria Tringham
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Dall'Asta V. Arginine transport in human monocytic leukemia THP-1 cells during macrophage differentiation. J Leukoc Biol 2011; 90:293-303. [PMID: 21586674 DOI: 10.1189/jlb.0910510] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
L-arginine metabolism in myeloid cells plays a central role in the processes of macrophage activation and in the regulation of immune responses. In this study, we investigated arginine transport activity and the expression of the related transporter genes during the differentiation of monocytes to macrophages. We show here that the induction of THP-1 monocyte differentiation by PMA markedly increases the expression of SLC7A7 mRNA and of y(+)LAT1 protein and consequently, the activity of system y(+)L-mediated arginine transport. Conversely, the activity of system y(+) decreases during macrophage differentiation as a result of a reduction in CAT1 protein expression. The PMA-induced, macrophage-differentiated phenotype and the increased activity of system y(+)L through the induction of SLC7A7 gene are mediated by the specific activation of PKCβ. SLC7A7 gene silencing causes a significant reduction of system y(+)L activity and a subsequent, marked increase of arginine and lysine cell content, thus suggesting that in macrophagic cells, system y(+)L activity is mainly directed outwardly. Differentiating agents other than PMA, i.e., VD3 and ATRA, are equally effective in the stimulation of system y(+)L transport activity through the increased expression of SLC7A7 mRNA and y(+)LAT1 protein. Moreover, we found that also during differentiation of human monocytes from peripheral blood SLC7A7 mRNA and system y(+)L activity are increased. These findings point to SLC7A7 gene as a marker of macrophage differentiation.
Collapse
Affiliation(s)
- Amelia Barilli
- Dipartimento di Medicina Sperimentale, Università di Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Amino acids are essential building blocks of all mammalian cells. In addition to their role in protein synthesis, amino acids play an important role as energy fuels, precursors for a variety of metabolites and as signalling molecules. Disorders associated with the malfunction of amino acid transporters reflect the variety of roles that they fulfil in human physiology. Mutations of brain amino acid transporters affect neuronal excitability. Mutations of renal and intestinal amino acid transporters affect whole-body homoeostasis, resulting in malabsorption and renal problems. Amino acid transporters that are integral parts of metabolic pathways reduce the function of these pathways. Finally, amino acid uptake is essential for cell growth, thereby explaining their role in tumour progression. The present review summarizes the involvement of amino acid transporters in these roles as illustrated by diseases resulting from transporter malfunction.
Collapse
|
17
|
Barilli A, Rotoli BM, Visigalli R, Bussolati O, Gazzola GC, Kadija Z, Rodi G, Mariani F, Ruzza ML, Luisetti M, Dall'Asta V. In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages. Orphanet J Rare Dis 2010; 5:32. [PMID: 21110863 PMCID: PMC2999609 DOI: 10.1186/1750-1172-5-32] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/26/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI), mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP), in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been also performed. METHODS Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL) performed on the same patient. System y+L activity was determined measuring the 1-min uptake of [3H]-arginine under discriminating conditions. Gene expression was evaluated through qRT-PCR. RESULTS We have found that: 1) system y+L activity is markedly lowered in monocytes and alveolar macrophages from the LPI patient, because of the prevailing expression of SLC7A7/y+LAT1 in these cells; 2) on the contrary, fibroblasts isolated from the same patient do not display the transport defect due to compensation by the SLC7A6/y+LAT2 isoform; 3) in both normal and LPI monocytes, GM-CSF induces the expression of SLC7A7, suggesting that the gene is a target of the cytokine; 4) GM-CSF-induced differentiation of LPI monocytes is comparable to that of normal cells, demonstrating that GM-CSF signalling is unaltered; 5) general and respiratory conditions of the patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization. CONCLUSIONS Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the defect in system y+L-mediated arginine transport. The different transport phenotypes are referable to the relative levels of expression of SLC7A7 and SLC7A6. Moreover, the expression of SLC7A7 is regulated by GM-CSF in monocytes, pointing to a role of y+LAT1 in the pathogenesis of LPI associated PAP.
Collapse
Affiliation(s)
- Amelia Barilli
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Giles TN, Fisher DJ, Graham DE. Independent inactivation of arginine decarboxylase genes by nonsense and missense mutations led to pseudogene formation in Chlamydia trachomatis serovar L2 and D strains. BMC Evol Biol 2009; 9:166. [PMID: 19607664 PMCID: PMC2720952 DOI: 10.1186/1471-2148-9-166] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/16/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chlamydia have reduced genomes that reflect their obligately parasitic lifestyle. Despite their different tissue tropisms, chlamydial strains share a large number of common genes and have few recognized pseudogenes, indicating genomic stability. All of the Chlamydiaceae have homologs of the aaxABC gene cluster that encodes a functional arginine:agmatine exchange system in Chlamydia (Chlamydophila)pneumoniae. However, Chlamydia trachomatis serovar L2 strains have a nonsense mutation in their aaxB genes, and C. trachomatis serovar A and B strains have frameshift mutations in their aaxC homologs, suggesting that relaxed selection may have enabled the evolution of aax pseudogenes. Biochemical experiments were performed to determine whether the aaxABC genes from C. trachomatis strains were transcribed, and mutagenesis was used to identify nucleotide substitutions that prevent protein maturation and activity. Molecular evolution techniques were applied to determine the relaxation of selection and the scope of aax gene inactivation in the Chlamydiales. RESULTS The aaxABC genes were co-transcribed in C. trachomatis L2/434, during the mid-late stage of cellular infection. However, a stop codon in the aaxB gene from this strain prevented the heterologous production of an active pyruvoyl-dependent arginine decarboxylase. Replacing that ochre codon with its ancestral tryptophan codon rescued the activity of this self-cleaving enzyme. The aaxB gene from C. trachomatis D/UW-3 was heterologously expressed as a proenzyme that failed to cleave and form the catalytic pyruvoyl cofactor. This inactive protein could be rescued by replacing the arginine-115 codon with an ancestral glycine codon. The aaxC gene from the D/UW-3 strain encoded an active arginine:agmatine antiporter protein, while the L2/434 homolog was unexpectedly inactive. Yet the frequencies of nonsynonymous versus synonymous nucleotide substitutions show no signs of relaxed selection, consistent with the recent inactivation of these genes. CONCLUSION The ancestor of the Chlamydiaceae had a functional arginine:agmatine exchange system that is decaying through independent, parallel processes in the C. trachomatis lineage. Differences in arginine metabolism among Chlamydiaceae species may be partly associated with their tissue tropism, possibly due to the protection conferred by a functional arginine-agmatine exchange system against host nitric oxide production and innate immunity. The independent loss of AaxB activity in all sequenced C. trachomatis strains indicates continual gene inactivation and illustrates the difficulty of recognizing recent bacterial pseudogenes from sequence comparison, transcriptional profiling or the analysis of nucleotide substitution rates.
Collapse
Affiliation(s)
- Teresa N Giles
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
19
|
Arginine transport in human erythroid cells: discrimination of CAT1 and 4F2hc/y+LAT2 roles. Pflugers Arch 2009; 458:1163-73. [DOI: 10.1007/s00424-009-0692-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
|