1
|
Sheshadri A, Evans SE. Respiratory Syncytial Virus Vaccination in the Adult Pulmonary Patient. Chest 2024; 166:963-974. [PMID: 38885895 DOI: 10.1016/j.chest.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
TOPIC IMPORTANCE Since its discovery in 1957, respiratory syncytial virus (RSV) has been widely recognized as a common and deadly pathogen. Although early studies focused on the impact of RSV on the health of children, more recent data show that RSV imposes a significant burden on individuals aged ≥ 70 years. RSV also substantially harms the health of individuals with cardiopulmonary diseases. REVIEW FINDINGS Early efforts to develop an RSV vaccine were hampered by toxicity due to antibody-enhanced viral pneumonia and a lack of efficacy in vaccines that targeted the postfusion configuration of the F fusion protein, which is crucial to the pathogenesis of RSV-mediated injury. A newer wave of vaccines has targeted a stabilized prefusion F protein, generating effective neutralizing antibodies and reducing the burden of mild and severe RSV lower respiratory tract injury. This review focuses on the burden of RSV in patients with pulmonary diseases, highlights the tumultuous path from the early days of RSV vaccine development to the modern era, and offers insights into key gaps in knowledge that must be addressed to adequately protect the vulnerable population of patients with severe pulmonary diseases. SUMMARY RSV vaccination with bivalent RSVPreF or RSVPreF3OA, which target the stabilized prefusion F protein, can be broadly recommended to adults aged ≥ 60 years with pulmonary diseases. However, more data are needed to understand how these vaccinations affect key clinical outcomes in individuals with pulmonary disease.
Collapse
Affiliation(s)
- Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Voynow JA, Zheng S. Airway Surface Liquid and Impaired Antiviral Defense in Cystic Fibrosis. Am J Respir Cell Mol Biol 2020; 62:12-13. [PMID: 31348689 PMCID: PMC6938140 DOI: 10.1165/rcmb.2019-0239ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Judith A Voynow
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at Virginia Commonwealth UniversityRichmond, Virginia
| | - Shuo Zheng
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at Virginia Commonwealth UniversityRichmond, Virginia
| |
Collapse
|
3
|
Abstract
Respiratory viral infections including human rhinovirus (RV) infection have been identified as the most important environmental trigger of exacerbations of chronic lung diseases. While well established as the most common viral infections associated with exacerbations of asthma and chronic obstructive pulmonary disease, RVs and other respiratory viruses are also now thought to be important in triggering exacerbations of cystic fibrosis and the interstitial lung diseases. Here, we summarize the epidemiological evidence the supports respiratory viruses including RV as triggers of exacerbations of chronic lung diseases. We propose that certain characteristics of RVs may explain why they are the most common trigger of exacerbations of chronic lung diseases. We further highlight the latest mechanistic evidence supporting how and why common respiratory viral infections may enhance and promote disease triggering exacerbation events, through their interactions with the host immune system, and may be affected by ongoing treatments. We also provide a commentary on how new treatments may better manage the disease burden associated with respiratory viral infections and the exacerbation events that they trigger.
Collapse
|
4
|
Ilmarinen P, Tuomisto LE, Kankaanranta H. Phenotypes, Risk Factors, and Mechanisms of Adult-Onset Asthma. Mediators Inflamm 2015; 2015:514868. [PMID: 26538828 PMCID: PMC4619972 DOI: 10.1155/2015/514868] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 12/11/2022] Open
Abstract
Asthma is a heterogeneous disease with many phenotypes, and age at disease onset is an important factor in separating the phenotypes. Genetic factors, atopy, and early respiratory tract infections are well-recognized factors predisposing to childhood-onset asthma. Adult-onset asthma is more often associated with obesity, smoking, depression, or other life-style or environmental factors, even though genetic factors and respiratory tract infections may also play a role in adult-onset disease. Adult-onset asthma is characterized by absence of atopy and is often severe requiring treatment with high dose of inhaled and/or oral steroids. Variety of risk factors and nonatopic nature of adult-onset disease suggest that variety of mechanisms is involved in the disease pathogenesis and that these mechanisms differ from the pathobiology of childhood-onset asthma with prevailing Th2 airway inflammation. Recognition of the mechanisms and mediators that drive the adult-onset disease helps to develop novel strategies for the treatment. The aim of this review was to summarize the current knowledge on the pathogenesis of adult-onset asthma and to concentrate on the mechanisms and mediators involved in establishing adult-onset asthma in response to specific risk factors. We also discuss the involvement of these mechanisms in the currently recognized phenotypes of adult-onset asthma.
Collapse
Affiliation(s)
- Pinja Ilmarinen
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| | - Leena E. Tuomisto
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| | - Hannu Kankaanranta
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
- Department of Respiratory Medicine, University of Tampere, 33014 Tampere, Finland
| |
Collapse
|
5
|
Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus. PLoS One 2015; 10:e0118286. [PMID: 25706956 PMCID: PMC4338293 DOI: 10.1371/journal.pone.0118286] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/12/2015] [Indexed: 12/19/2022] Open
Abstract
Objectives Human airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model. Methods Air-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively. Main Results ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1). Conclusions ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.
Collapse
|
6
|
Hiemstra PS, McCray PB, Bals R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J 2015; 45:1150-62. [PMID: 25700381 DOI: 10.1183/09031936.00141514] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed.
Collapse
Affiliation(s)
- Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Paul B McCray
- Dept of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert Bals
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
7
|
Patel DA, Patel AC, Nolan WC, Huang G, Romero AG, Charlton N, Agapov E, Zhang Y, Holtzman MJ. High-throughput screening normalized to biological response: application to antiviral drug discovery. ACTA ACUST UNITED AC 2013; 19:119-30. [PMID: 23860224 DOI: 10.1177/1087057113496848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The process of conducting cell-based phenotypic screens can result in data sets from small libraries or portions of large libraries, making accurate hit picking from multiple data sets important for efficient drug discovery. Here, we describe a screen design and data analysis approach that allow for normalization not only between quadrants and plates but also between screens or batches in a robust, quantitative fashion, enabling hit selection from multiple data sets. We independently screened the MicroSource Spectrum and NCI Diversity Set II libraries using a cell-based phenotypic high-throughput screening (HTS) assay that uses an interferon-stimulated response element (ISRE)-driven luciferase-reporter assay to identify interferon (IFN) signal enhancers. Inclusion of a per-plate, per-quadrant IFN dose-response standard curve enabled conversion of ISRE activity to effective IFN concentrations. We identified 45 hits based on a combined z score ≥2.5 from the two libraries, and 25 of 35 available hits were validated in a compound concentration-response assay when tested using fresh compound. The results provide a basis for further analysis of chemical structure in relation to biological function. Together, the results establish an HTS method that can be extended to screening for any class of compounds that influence a quantifiable biological response for which a standard is available.
Collapse
Affiliation(s)
- Dhara A Patel
- 1Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kieninger E, Singer F, Tapparel C, Alves MP, Latzin P, Tan HL, Bossley C, Casaulta C, Bush A, Davies JC, Kaiser L, Regamey N. High rhinovirus burden in lower airways of children with cystic fibrosis. Chest 2013. [PMID: 23188200 DOI: 10.1378/chest.12-0954] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Rhinovirus (RV)-induced pulmonary exacerbations are common in cystic fibrosis (CF) and have been associated with impaired virus clearance by the CF airway epithelium in vitro. Here, we assess in vivo the association of RV prevalence and load with antiviral defense mechanisms, airway inflammation, and lung function parameters in children with CF compared with a control group and children with other chronic respiratory diseases. METHODS RV presence and load were measured by real-time reverse transcription-polymerase chain reaction in BAL samples and were related to antiviral and inflammatory mediators measured in BAL and to clinical parameters. RESULTS BAL samples were obtained from children with CF (n = 195), non-CF bronchiectasis (n = 40), or asthma (n = 29) and from a control group (n = 35) at a median (interquartile range [IQR]) age of 8.2 (4.0-11.7) years. RV was detected in 73 samples (24.4%). RV prevalence was similar among groups. RV load (median [IQR] x 10(3) copies/mL) was higher in children with CF (143.0 [13.1-1530.0]), especially during pulmonary exacerbations, compared with children with asthma (3.0 [1.3-25.8], P = .006) and the control group (0.5 [0.3-0.5], P < .001), but similar to patients with non-CF bronchiectasis (122.1 [2.7-4423.5], P = not significant). In children with CF, RV load was negatively associated with interferon (IFN)- b and IFN- l , IL-1ra levels, and FEV 1 , and positively with levels of the cytokines CXCL8 and CXCL10. CONCLUSIONS RV load in CF BAL is high, especially during exacerbated lung disease. Impaired production of antiviral mediators may lead to the high RV burden in the lower airways of children with CF. Whether high RV load is a cause or a consequence of inflammation needs further investigation in longitudinal studies.
Collapse
Affiliation(s)
- Elisabeth Kieninger
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Florian Singer
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland
| | - Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marco P Alves
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Hui-Leng Tan
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Cara Bossley
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Carmen Casaulta
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland
| | - Andrew Bush
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Jane C Davies
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Regamey
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Stein RT. Severe Respiratory Syncytial Virus Bronchiolitis in Underserved Populations and the Association with Unhealthy Diets during Pregnancy. Am J Respir Crit Care Med 2013; 187:908-9. [DOI: 10.1164/rccm.201303-0420ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Frickmann H, Jungblut S, Hirche TO, Groß U, Kuhns M, Zautner AE. The influence of virus infections on the course of COPD. Eur J Microbiol Immunol (Bp) 2012; 2:176-85. [PMID: 24688763 DOI: 10.1556/eujmi.2.2012.3.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 01/30/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is extensively influenced by viral infections. The mechanisms of how viral agents affect the pathogenesis and prognosis of COPD are numerous. In general, patients with infectious exacerbations are characterized by longer hospitalization periods and greater impairment of several lung function parameters than those with non-infectious exacerbations. Prodromal, clinical, and outcome parameters fail to distinguish virally from non-virally induced illnesses in cases of exacerbations. The importance of infections with respiratory and non-respiratory viral agents for pathogenesis and course of COPD is detailed. Human adenovirus, non-respiratory viruses including human immunodeficiency virus, human metapneumovirus, influenza virus, human rhinovirus, and respiratory syncytial virus are especially stressed.
Collapse
|
11
|
Holtzman MJ. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J Clin Invest 2012; 122:2741-8. [PMID: 22850884 DOI: 10.1172/jci60325] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease.
Collapse
Affiliation(s)
- Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Singanayagam A, Joshi PV, Mallia P, Johnston SL. Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Med 2012; 10:27. [PMID: 22420941 PMCID: PMC3353868 DOI: 10.1186/1741-7015-10-27] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/15/2012] [Indexed: 12/30/2022] Open
Abstract
Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | |
Collapse
|
13
|
Erratum: Hypersusceptibility to Respiratory Viruses as a Shared Mechanism for Asthma, Chronic Obstructive Pulmonary Disease, and Cystic Fibrosis. Am J Respir Cell Mol Biol 2012. [DOI: 10.1165/ajrcmb.46.1.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|