1
|
Conte G, Costabile G, Baldassi D, Rondelli V, Bassi R, Colombo D, Linardos G, Fiscarelli EV, Sorrentino R, Miro A, Quaglia F, Brocca P, d’Angelo I, Merkel OM, Ungaro F. Hybrid Lipid/Polymer Nanoparticles to Tackle the Cystic Fibrosis Mucus Barrier in siRNA Delivery to the Lungs: Does PEGylation Make the Difference? ACS APPLIED MATERIALS & INTERFACES 2022; 14:7565-7578. [PMID: 35107987 PMCID: PMC8855343 DOI: 10.1021/acsami.1c14975] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 06/01/2023]
Abstract
Inhaled siRNA therapy has a unique potential for treatment of severe lung diseases, such as cystic fibrosis (CF). Nevertheless, a drug delivery system tackling lung barriers is mandatory to enhance gene silencing efficacy in the airway epithelium. We recently demonstrated that lipid-polymer hybrid nanoparticles (hNPs), comprising a poly(lactic-co-glycolic) acid (PLGA) core and a lipid shell of dipalmitoyl phosphatidylcholine (DPPC), may assist the transport of the nucleic acid cargo through mucus-covered human airway epithelium. To study in depth the potential of hNPs for siRNA delivery to the lungs and to investigate the hypothesized benefit of PEGylation, here, an siRNA pool against the nuclear factor-κB (siNFκB) was encapsulated inside hNPs, endowed with a non-PEGylated (DPPC) or a PEGylated (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) or DSPE-PEG) lipid shell. Resulting hNPs were tested for their stability profiles and transport properties in artificial CF mucus, mucus collected from CF cells, and sputum samples from a heterogeneous and representative set of CF patients. Initial information on hNP properties governing their interaction with airway mucus was acquired by small-angle X-ray scattering (SAXS) studies in artificial and cellular CF mucus. The diffusion profiles of hNPs through CF sputa suggested a crucial role of lung colonization of the corresponding donor patient, affecting the mucin type and content of the sample. Noteworthy, PEGylation did not boost mucus penetration in complex and sticky samples, such as CF sputa from patients with polymicrobial colonization. In parallel, in vitro cell uptake studies performed on mucus-lined Calu-3 cells grown at the air-liquid interface (ALI) confirmed the improved ability of non-PEGylated hNPs to overcome mucus and cellular lung barriers. Furthermore, effective in vitro NFκB gene silencing was achieved in LPS-stimulated 16HBE14o- cells. Overall, the results highlight the potential of non-PEGylated hNPs as carriers for pulmonary delivery of siRNA for local treatment of CF lung disease. Furthermore, this study provides a detailed understanding of how distinct models may provide different information on nanoparticle interaction with the mucus barrier.
Collapse
Affiliation(s)
- Gemma Conte
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, Caserta 81100, Italy
| | - Gabriella Costabile
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Domizia Baldassi
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität, München, Munich 81377, Germany
| | - Valeria Rondelli
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Rosaria Bassi
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Diego Colombo
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | | | | | - Raffaella Sorrentino
- Department
of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli 80131, Italy
| | - Agnese Miro
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Fabiana Quaglia
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| | - Paola Brocca
- Department
of Medical Biotechnologies and Translational Medicine, University of Milano, Segrate (MI) 20090, Italy
| | - Ivana d’Angelo
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, Caserta 81100, Italy
| | - Olivia M. Merkel
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität, München, Munich 81377, Germany
| | - Francesca Ungaro
- Department
of Pharmacy, University of Napoli Federico
II, Napoli 80131, Italy
| |
Collapse
|
2
|
Recent trends of NFκB decoy oligodeoxynucleotide-based nanotherapeutics in lung diseases. J Control Release 2021; 337:629-644. [PMID: 34375688 DOI: 10.1016/j.jconrel.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Nuclear factor κB (NFκB) is a unique protein complex that plays a major role in lung inflammation and respiratory dysfunction. The NFκB signaling pathway, therefore becomes an avenue for the development of potential pharmacological interventions, especially in situations where chronic inflammation is often constitutively active and plays a key role in the pathogenesis and progression of the disease. NFκB decoy oligodeoxynucleotides (ODNs) are double-stranded and carry NFκB binding sequences. They prevent the formation of NFκB-mediated inflammatory cytokines and thus have been employed in the treatment of a variety of chronic inflammatory diseases. However, the systemic administration of naked decoy ODNs restricts their therapeutic effectiveness because of their poor pharmacokinetic profile, instability, degradation by cellular enzymes and their low cellular uptake. Both structural modification and nanotechnology have shown promising results in enhancing the pharmacokinetic profiles of potent therapeutic substances and have also shown great potential in the treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. In this review, we examine the contribution of NFκB activation in respiratory diseases and recent advancements in the therapeutic use of decoy ODNs. In addition, we also highlight the limitations and challenges in use of decoy ODNs as therapeutic molecules, cellular uptake of decoy ODNs, and the current need for novel delivery systems to provide efficient delivery of decoy ODNs. Furthermore, this review provides a common platform for discussion on the existence of decoy ODNs, as well as outlining perspectives on the latest generation of delivery systems that encapsulate decoy ODNs and target NFκB in respiratory diseases.
Collapse
|
3
|
Comegna M, Conte G, Falanga AP, Marzano M, Cernera G, Di Lullo AM, Amato F, Borbone N, D'Errico S, Ungaro F, d'Angelo I, Oliviero G, Castaldo G. Assisting PNA transport through cystic fibrosis human airway epithelia with biodegradable hybrid lipid-polymer nanoparticles. Sci Rep 2021; 11:6393. [PMID: 33737583 PMCID: PMC7973768 DOI: 10.1038/s41598-021-85549-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by an airway obstruction caused by a thick mucus due to a malfunctioning Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The sticky mucus restricts drugs in reaching target cells limiting the efficiency of treatments. The development of new approaches to enhance drug delivery to the lungs represents CF treatment's main challenge. In this work, we report the production and characterization of hybrid core–shell nanoparticles (hNPs) comprising a PLGA core and a dipalmitoylphosphatidylcholine (DPPC) shell engineered for inhalation. We loaded hNPs with a 7-mer peptide nucleic acid (PNA) previously considered for its ability to modulate the post-transcriptional regulation of the CFTR gene. We also investigated the in vitro release kinetics of hNPs and their efficacy in PNA delivery across the human epithelial airway barrier using an ex vivo model based on human primary nasal epithelial cells (HNEC) from CF patients. Confocal analyses and hNPs transport assay demonstrated the ability of hNPs to overcome the mucus barrier and release their PNA cargo within the cytoplasm, where it can exert its biological function.
Collapse
Affiliation(s)
- Marika Comegna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Gemma Conte
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | | | - Maria Marzano
- Institute of Crystallography, National Research Council, 70126, Bari, Italy
| | - Gustavo Cernera
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Antonella Miriam Di Lullo
- ENT Section, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131, Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Ivana d'Angelo
- Di.S.T.A.Bi.F., University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., 80145, Naples, Italy
| |
Collapse
|
4
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Velino C, Carella F, Adamiano A, Sanguinetti M, Vitali A, Catalucci D, Bugli F, Iafisco M. Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Front Bioeng Biotechnol 2019; 7:406. [PMID: 31921811 PMCID: PMC6927921 DOI: 10.3389/fbioe.2019.00406] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting today nearly 70,000 patients worldwide and characterized by a hypersecretion of thick mucus difficult to clear arising from the defective CFTR protein. The over-production of the mucus secreted in the lungs, along with its altered composition and consistency, results in airway obstruction that makes the lungs susceptible to recurrent and persistent bacterial infections and endobronchial chronic inflammation, which are considered the primary cause of bronchiectasis, respiratory failure, and consequent death of patients. Despite the difficulty of treating the continuous infections caused by pathogens in CF patients, various strategies focused on the symptomatic therapy have been developed during the last few decades, showing significant positive impact on prognosis. Moreover, nowadays, the discovery of CFTR modulators as well as the development of gene therapy have provided new opportunity to treat CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the treatments. Nanomedicine represents an extraordinary opportunity for the improvement of current therapies and for the development of innovative treatment options for CF previously considered hard or impossible to treat. Due to the peculiar environment in which the therapies have to operate characterized by several biological barriers (pulmonary tract, mucus, epithelia, bacterial biofilm) the use of nanotechnologies to improve and enhance drug delivery or gene therapies is an extremely promising way to be pursued. The aim of this review is to revise the currently used treatments and to outline the most recent progresses about the use of nanotechnology for the management of CF.
Collapse
Affiliation(s)
- Cecilia Velino
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Francesca Carella
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Vitali
- Institute for the Chemistry of Molecular Recognition (ICRM), National Research Council (CNR), c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB) - UOS Milan, National Research Council (CNR), Milan, Italy
| | - Francesca Bugli
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| |
Collapse
|
6
|
Agarwal R, Johnson CT, Imhoff BR, Donlan RM, McCarty NA, García AJ. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections. Nat Biomed Eng 2018; 2:841-849. [PMID: 30854250 PMCID: PMC6408147 DOI: 10.1038/s41551-018-0263-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rachit Agarwal
- Woodruff School of Mechanical Engineering , Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Christopher T Johnson
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Barry R Imhoff
- Department of Pediatrics , Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rodney M Donlan
- Biofilm Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nael A McCarty
- Department of Pediatrics , Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering , Georgia Institute of Technology, Atlanta, GA, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
7
|
Farahmand L, Darvishi B, Majidzadeh-A K. Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor κB transcription factor decoy oligodeoxynucleotides. Drug Deliv 2017; 24:1249-1261. [PMID: 28870118 PMCID: PMC8240980 DOI: 10.1080/10717544.2017.1370511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a prototypical pro-inflammatory transcription factor, constitutive activation of NF-κB signaling pathway has been reported in several chronic inflammatory disorders including inflammatory bowel disease, cystic fibrosis, rheumatoid arthritis and cancer. Application of decoy oligodeoxynucleotides (ODNs) against NF-κB, as an effective molecular therapy approach, has brought about several promising outcomes in treatment of chronic inflammatory disorders. However, systematic administration of these genetic constructs is mostly hampered due to their instability, rapid degradation by nucleases and poor cellular uptake. Both chemical modification and application of delivery systems have shown to effectively overcome some of these limitations. Among different administered delivery systems, nanomaterials have gained much attention for delivering NF-κB decoy ODNs owing to their high loading capacity, targeted delivery and ease of synthesis. In this review, we highlight some of the most recently developed nanomaterial-based delivery systems for overcoming limitations associated with clinical application of these genetic constructs.
Collapse
Affiliation(s)
- Leila Farahmand
- a Recombinant Proteins Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Behrad Darvishi
- a Recombinant Proteins Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Keivan Majidzadeh-A
- b Genetics Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran.,c Tasnim Biotechnology Research Center, Faculty of Medicine , AJA University of Medical Sciences , Tehran , Iran
| |
Collapse
|
8
|
d'Angelo I, Perfetto B, Costabile G, Ambrosini V, Caputo P, Miro A, d'Emmanuele di Villa Bianca R, Sorrentino R, Donnarumma G, Quaglia F, Ungaro F. Large Porous Particles for Sustained Release of a Decoy Oligonucelotide and Poly(ethylenimine): Potential for Combined Therapy of Chronic Pseudomonas aeruginosa Lung Infections. Biomacromolecules 2016; 17:1561-71. [PMID: 27002689 DOI: 10.1021/acs.biomac.5b01646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently demonstrated that the specific inhibition of nuclear factor-κB by a decoy oligonucleotide (dec-ODN) delivered through inhalable large porous particles (LPP) made of poly(lactic-co-glycolic acid) (PLGA) may be highly beneficial for long-term treatment of lung inflammation. Nevertheless, besides chronic inflammation, multifunctional systems aimed to control also infection are required in chronic lung diseases, such as cystic fibrosis (CF). In this work, we tested the hypothesis that engineering PLGA-based LPP with branched poly(ethylenimine) (PEI) may improve LPP properties for pulmonary delivery of dec-ODN, with particular regard to the treatment of Pseudomonas aeruginosa lung infections. After getting insight into the role of PEI on the technological properties of PLGA-based LPP for delivery of dec-ODN, the putative synergistic effect of PEI free or PEI released from LPP on in vitro antimicrobial activity of tobramycin (Tb) and aztreonam (AZT) against P. aeruginosa was elucidated. Meanwhile, cytotoxicity studies on A549 cells were carried out. Results clearly demonstrate that the dry powders have promising aerosolization properties and afford a prolonged in vitro release of both dec-ODN and PEI. The encapsulation of PEI into LPP results in a 2-fold reduction of the minimum inhibitory concentration of AZT, while reducing the cytotoxic effect of PEI. Of note, the developed ODN/PLGA/PEI LPP persisted at lung at least for 14 days after intratracheal administration in rats where they can provide sustained and combined release of dec-ODN and PEI. dec-ODN will likely act as an anti-inflammatory drug, while PEI may enhance the therapeutic activity of inhaled antibiotics, which are commonly employed for the treatment of concomitant lung infections.
Collapse
Affiliation(s)
- Ivana d'Angelo
- Di.S.T.A.Bi.F., Second University of Naples , Via Vivaldi 43, 81100 Caserta, Italy
| | - Brunella Perfetto
- Department of Experimental Medicine- Section of Microbiology, Second University of Naples , Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Gabriella Costabile
- Drug Delivery Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| | - Veronica Ambrosini
- Department of Experimental Medicine- Section of Microbiology, Second University of Naples , Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Pina Caputo
- Department of Experimental Medicine- Section of Microbiology, Second University of Naples , Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Agnese Miro
- Drug Delivery Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| | | | - Raffaella Sorrentino
- Pharmacology Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine- Section of Microbiology, Second University of Naples , Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Ungaro
- Drug Delivery Laboratories, Department of Pharmacy, University of Naples Federico II , Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
9
|
Jia D, Zhang YQ, Wu JF. Decoy oligonucleotide technology in fibrosis: Application and delivery strategy. Shijie Huaren Xiaohua Zazhi 2015; 23:4931-4938. [DOI: 10.11569/wcjd.v23.i31.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a pathological condition caused by a variety of etiologies, which is characterized by an increase in the fibrous connective tissue and a reduction in the parenchymal cells of several organs and can result in structural damage and functional impairment of organs. With the development of molecular biology and cellular biology technology in recent years, gene therapy methods for fibrosis are drawing attention, including antisense oligonucleotides, RNA interference, Decoy oligonucleotide (ODN) technology and so on. Among them, Decoy ODN technology can block the target gene expression by capturing specific transcription factors, having the potential to interfere with the expression of the fibrosis related genes. This paper will review the application of Decoy ODN technology in fibrosis as well as the delivery strategy in vivo.
Collapse
|
10
|
|
11
|
Costabile G, d'Angelo I, Rampioni G, Bondì R, Pompili B, Ascenzioni F, Mitidieri E, d'Emmanuele di Villa Bianca R, Sorrentino R, Miro A, Quaglia F, Imperi F, Leoni L, Ungaro F. Toward Repositioning Niclosamide for Antivirulence Therapy of Pseudomonas aeruginosa Lung Infections: Development of Inhalable Formulations through Nanosuspension Technology. Mol Pharm 2015; 12:2604-17. [PMID: 25974285 DOI: 10.1021/acs.molpharmaceut.5b00098] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inhaled antivirulence drugs are currently considered a promising therapeutic option to treat Pseudomonas aeruginosa lung infections in cystic fibrosis (CF). We have recently shown that the anthelmintic drug niclosamide (NCL) has strong quorum sensing (QS) inhibiting activity against P. aeruginosa and could be repurposed as an antivirulence drug. In this work, we developed dry powders containing NCL nanoparticles that can be reconstituted in saline solution to produce inhalable nanosuspensions. NCL nanoparticles were produced by high-pressure homogenization (HPH) using polysorbate 20 or polysorbate 80 as stabilizers. After 20 cycles of HPH, all formulations showed similar properties in the form of needle-shape nanocrystals with a hydrodynamic diameter of approximately 450 nm and a zeta potential of -20 mV. Nanosuspensions stabilized with polysorbate 80 at 10% w/w to NCL (T80_10) showed an optimal solubility profile in simulated interstitial lung fluid. T80_10 was successfully dried into mannitol-based dry powder by spray drying. Dry powder (T80_10 DP) was reconstituted in saline solution and showed optimal in vitro aerosol performance. Both T80_10 and T80_10 DP were able to inhibit P. aeruginosa QS at NCL concentrations of 2.5-10 μM. NCL, and these formulations did not significantly affect the viability of CF bronchial epithelial cells in vitro at microbiologically active concentrations (i.e., ≤10 μM). In vivo acute toxicity studies in rats confirmed no observable toxicity of the NCL T80_10 DP formulation upon intratracheal administration at a concentration 100-fold higher than the anti-QS activity concentration. These preliminary results suggest that NCL repurposed in the form of inhalable nanosuspensions has great potential for the local treatment of P. aeruginosa lung infections as in the case of CF patients.
Collapse
Affiliation(s)
- Gabriella Costabile
- †Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Ivana d'Angelo
- ‡Di.S.T.A.Bi.F., Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giordano Rampioni
- §Department of Sciences, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy
| | - Roslen Bondì
- §Department of Sciences, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy
| | - Barbara Pompili
- ⊥Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Fiorentina Ascenzioni
- ⊥Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Emma Mitidieri
- †Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | | | - Raffaella Sorrentino
- †Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Agnese Miro
- †Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Fabiana Quaglia
- †Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesco Imperi
- ⊥Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Livia Leoni
- §Department of Sciences, University Roma Tre, Viale Marconi, 446, 00146 Rome, Italy
| | - Francesca Ungaro
- †Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
12
|
Vinpocetine reduces carrageenan-induced inflammatory hyperalgesia in mice by inhibiting oxidative stress, cytokine production and NF-κB activation in the paw and spinal cord. PLoS One 2015; 10:e0118942. [PMID: 25822523 PMCID: PMC4379066 DOI: 10.1371/journal.pone.0118942] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1β and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels.
Collapse
|
13
|
Makwana R, Venkatasamy R, Spina D, Page C. The Effect of Phytocannabinoids on Airway Hyper-Responsiveness, Airway Inflammation, and Cough. J Pharmacol Exp Ther 2015; 353:169-80. [DOI: 10.1124/jpet.114.221283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Zhu X, Li Q, Li S, Chen B, Zou H. HIF-1α decoy oligodeoxynucleotides inhibit HIF-1α signaling and breast cancer proliferation. Int J Oncol 2014; 46:215-22. [PMID: 25334080 DOI: 10.3892/ijo.2014.2715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/02/2014] [Indexed: 11/05/2022] Open
Abstract
Although HIF-1α is considered an attractive target for the development of cancer therapies, like other transcriptional factors, it has been regarded as 'undruggable'. The decoy approach is a new class of antigene strategy that can be used to modulate the function of endogenous transcriptional factors. Here, we designed a decoy oligodeoxynucleotide (ODN) and tested its effect on the function of HIF-1α. We found the HIF-1α decoy ODN could efficiently enter into cells. Furthermore, these decoy ODNs can significantly block the expression of VEGFA, a known targeted gene of HIF-1α suggesting that the HIF-1α decoy ODNs can inhibit the function of HIF-1α. More importantly, the HIF-1α decoy ODN induced apoptosis and cell cycle arrest in MDA-MB-231 breast cancer cells. In summary, HIF-1α decoy ODNs can inhibit the function of HIF-1α and induce cancer cell apoptosis. Therefore, HIF-1α decoy ODNs should be further modified to improve their biological activity in vivo.
Collapse
Affiliation(s)
- Xuhong Zhu
- Outpatient Department, Gansu Provincial Hospital, Lanzhou 730000, P.R. China
| | - Qin Li
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command, Guangzhou 510010, P.R. China
| | - Shuang Li
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command, Guangzhou 510010, P.R. China
| | - Bote Chen
- Department of Urology, General Hospital of Guangzhou Military Command, Guangzhou 510010, P.R. China
| | - Haidong Zou
- Department of Obstetrics and Gynecology, General Hospital of Guangzhou Military Command, Guangzhou 510010, P.R. China
| |
Collapse
|
15
|
d'Angelo I, Conte C, La Rotonda MI, Miro A, Quaglia F, Ungaro F. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv Drug Deliv Rev 2014; 75:92-111. [PMID: 24842473 DOI: 10.1016/j.addr.2014.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians associated with early death. Although the faulty gene is expressed in epithelia throughout the body, lung disease is still responsible for most of the morbidity and mortality of CF patients. As a local delivery route, pulmonary administration represents an ideal way to treat respiratory infections, excessive inflammation and other manifestations typical of CF lung disease. Nonetheless, important determinants of the clinical outcomes of inhaled drugs are the concentration/permanence at the lungs as well as the ability of the drug to overcome local extracellular and cellular barriers. This review focuses on emerging delivery strategies used for local treatment of CF pulmonary disease. After a brief description of the disease and formulation rules dictated by CF lung barriers, it describes current and future trends in inhaled drugs for CF. The most promising advanced formulations are discussed, highlighting the advantages along with the major challenges for researchers working in this field.
Collapse
Affiliation(s)
- Ivana d'Angelo
- Di.S.T.A.B.i.F., Second University of Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Conte
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Immacolata La Rotonda
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Agnese Miro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Francesca Ungaro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
16
|
A role for mitogen kinase kinase 3 in pulmonary inflammation validated from a proteomic approach. Pulm Pharmacol Ther 2014; 27:156-63. [PMID: 24480516 DOI: 10.1016/j.pupt.2014.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
Abstract
Proteomics is a powerful tool to ascertain which proteins are differentially expressed in the context of disease. We have used this approach on inflammatory cells obtained from patients with asthma to ascertain whether novel drugs targets could be illuminated and to investigate the role of any such target in a range of in vitro and in vivo models of inflammation. A proteomic study was undertaken using peripheral blood mononuclear cells from mild asthmatic subjects compared with healthy subjects. The analysis revealed an increased expression of the intracellular kinase, mitogen activated protein kinase (MKK3), and the function of this protein was investigated further in preclinical models of inflammation using MKK3 knockout mice. We describe a 3.65 fold increase in the expression of MKK3 in CD8(+) T lymphocytes obtained from subjects with asthma compared with healthy subjects using a proteomic approach which we have confirmed in CD8(+), but not in CD4(+) T lymphocytes or human bronchial epithelial cells from asthmatic patients using a Western blot technique. In wild type mice, bacterial lipopolysaccharide (LPS) caused a significant increase in MKK3 expression and significantly reduced airway neutrophilia in MKK3(-/-) mice (median, 25, 75% percentile; wild/LPS; 5.3 (0.7-9.9) × 10(5) cells/mL vs MKK3(-/-)/LPS; 0 (0-1.9) × 10(5) cells/mL, P < 0.05). In contrast, eosinophilia in sensitized wild type mice challenged with allergen (0.5 (0.16-0.65) × 10(5) cells/mL) was significantly increased in MKK3(-/-) mice (2.2 (0.9-3.5) × 10(5) cells/mL, P < 0.05). Our results suggest that asthma is associated with MKK3 over-expression in CD8(+) cells. We have also demonstrated that MKK3 may be critical for airway neutrophilia, but not eosinophilia, suggesting that this may be a target worthy of further consideration in the context of diseases associated with neutrophil activation such as severe asthma and COPD.
Collapse
|