1
|
Guo Y, Shan W, Xiang J. Predictive modeling of ICU-AW inflammatory factors based on machine learning. BMC Neurol 2024; 24:483. [PMID: 39702112 DOI: 10.1186/s12883-024-03981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND ICU-acquired weakness (ICU-AW) is a common complication among ICU patients. We used machine learning techniques to construct an ICU-AW inflammatory factor prediction model to predict the risk of disease development and reduce the incidence of ICU-AW. METHODS The least absolute shrinkage and selection operator (LASSO) technique was used to screen key variables related to ICU-AW. Eleven indicators, such as the presence of sepsis, glucocorticoids (GC), neuromuscular blocking agents (NBAs), length of ICU stay, Acute Physiology and Chronic Health Evaluation (APACHE II) II score, and the levels of albumin (ALB), lactate (LAC), glucose (GLU), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10), were used as variables to establish the prediction model. We divided the data into a dataset that included inflammatory factors and a dataset that excluded inflammatory factors. Specifically, 70% of the participants in both datasets were used as the training set, and 30% of the participants were used as the test set. Three machine learning methods, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB), were used in the 70% participant training set to construct six different models, which were validated and evaluated in the remaining 30% of the participants as the test set. The optimal model was visualized for prediction using nomograms. RESULTS The logistic regression model including the inflammatory factors demonstrated excellent performance on the test set, with an area under the curve (AUC) of 82.1% and the best calibration curve fit, outperforming the other five models. The optimal model is represented visually in the nomograms. CONCLUSION This study used easily accessible clinical characteristics and laboratory data that can aid in early clinical recognition of ICU-AW. The inflammatory factors IL-1β, IL-6, and IL-10 have high value for predicting ICU-AW. TRIAL REGISTRATION The trial was registered at the Chinese Clinical Trial Registry with the registration number ChiCTR2300077968.
Collapse
Affiliation(s)
- Yuanyaun Guo
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Wenpeng Shan
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Xiang
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
2
|
Sakamoto K, Kurokawa J. [Pathophysiology of skeletal muscle during sepsis]. Nihon Yakurigaku Zasshi 2024; 159:112-117. [PMID: 38432919 DOI: 10.1254/fpj.23040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While sepsis mortality is reducing in developed countries due to advances in intensive care medicine, morbidity is increasing due to aging and obesity. ICU-acquired weakness (ICU-AW) is a respiratory and limb muscle weakness experienced by many sepsis survivors and is present in 50-75% of sepsis patients. ICU-AW can persist for several years, making reintegration of sepsis survivors difficult and leading to a secondary decrease in long-term survival. Exposure of septic patients to multiple muscle-damaging factors during ICU admission, including hyperglycemia, immobility, mechanical ventilation, administration of muscle relaxants, and administration of steroidal anti-inflammatory drugs, may compound the hyper cytokine, hyper nitric oxide, and hyper oxidative conditions, leading to the development of ICU-AW. However, the pathogenesis of ICU-AW remains unclear, and the pathophysiology of ICU-AW awaits further elucidation to develop therapeutic strategies. Recent ICU-AW studies have also revealed that skeletal muscle itself is a key organ in the inflammatory response and metabolic abnormalities in sepsis. In this article, we review the pathophysiology of skeletal muscle in sepsis and international trends in the development of therapeutic agents based on our research results.
Collapse
Affiliation(s)
- Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
3
|
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int J Mol Sci 2023; 24:5516. [PMID: 36982590 PMCID: PMC10052131 DOI: 10.3390/ijms24065516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
Collapse
Affiliation(s)
- Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
4
|
Yang Z, Wang X, Chang G, Cao Q, Wang F, Peng Z, Fan Y. Development and validation of an intensive care unit acquired weakness prediction model: A cohort study. Front Med (Lausanne) 2023; 10:1122936. [PMID: 36910489 PMCID: PMC9993479 DOI: 10.3389/fmed.2023.1122936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Background At present, intensive care unit acquired weakness (ICU-AW) has become an important health care issue. The aim of this study was to develop and validate an ICU-AW prediction model for adult patients in intensive care unit (ICU) to provide a practical tool for early clinical diagnosis. Methods An observational cohort study was conducted including 400 adult patients admitted from September 2021 to June 2022 at an ICU with four ward at a medical university affiliated hospital in China. The Medical Research Council (MRC) scale was used to assess bedside muscle strength in ICU patients as a diagnostic basis for ICUAW. Patients were divided into the ICU-AW group and the no ICU-AW group and the clinical data of the two groups were statistically analyzed. A risk prediction model was then developed using binary logistic regression. Sensitivity, specificity, and the area under the curve (AUC) were used to evaluate the predictive ability of the model. The Hosmer-Lemeshow test was used to assess the model fit. The bootstrap method was used for internal verification of the model. In addition, the data of 120 patients in the validation group were selected for external validation of the model. Results The prediction model contained five risk factors: gender (OR: 4.31, 95% CI: 1.682-11.042), shock (OR: 3.473, 95% CI: 1.191-10.122), mechanical ventilation time (OR: 1.592, 95% CI: 1.317-1.925), length of ICU stay (OR: 1.085, 95% CI: 1.018-1.156) and age (OR: 1.075, 95% CI: 1.036-1.115). The AUC of this model was 0.904 (95% CI: 0.847-0.961), with sensitivity of 87.5%, specificity of 85.8%, and Youden index of 0.733. The AUC of the model after resampling is 0.889. The model verification results showed that the sensitivity, specificity and accuracy were 71.4, 92.9, and 92.9%, respectively. Conclusion An accurate, and readily implementable, risk prediction model for ICU-AW has been developed. This model uses readily obtained variables to predict patient ICU-AW risk. This model provides a tool for early clinical screening for ICU-AW.
Collapse
Affiliation(s)
- Zi Yang
- Clinical Nursing Teaching Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Nursing, Harbin Medical University, Harbin, China
| | - Xiaohui Wang
- Department of Nursing, Shenzhen Qianhai Taikang Hospital, Shenzhen, China
| | - Guangming Chang
- Office of Medical Ethics Committee, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuli Cao
- Surgical Laboratory, Department of Medical Education, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Faying Wang
- Clinical Nursing Teaching Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Nursing, Harbin Medical University, Harbin, China
| | - Zeyu Peng
- Clinical Nursing Teaching Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Nursing, Harbin Medical University, Harbin, China
| | - Yuying Fan
- Clinical Nursing Teaching Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Nursing, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Redox Balance Differentially Affects Biomechanics in Permeabilized Single Muscle Fibres-Active and Passive Force Assessments with the Myorobot. Cells 2022; 11:cells11233715. [PMID: 36496975 PMCID: PMC9740451 DOI: 10.3390/cells11233715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
An oxidizing redox state imposes unique effects on the contractile properties of muscle. Permeabilized fibres show reduced active force generation in the presence of H2O2. However, our knowledge about the muscle fibre's elasticity or flexibility is limited due to shortcomings in assessing the passive stress-strain properties, mostly due to technically limited experimental setups. The MyoRobot is an automated biomechatronics platform that is well-capable of not only investigating calcium responsiveness of active contraction but also features precise stretch actuation to examine the passive stress-strain behaviour. Both were carried out in a consecutive recording sequence on the same fibre for 10 single fibres in total. We denote a significantly diminished maximum calcium-saturated force for fibres exposed to ≥500 µM H2O2, with no marked alteration of the pCa50 value. In contrast to active contraction (e.g., maximum isometric force activation), passive restoration stress (force per area) significantly increases for fibres exposed to an oxidizing environment, as they showed a non-linear stress-strain relationship. Our data support the idea that a highly oxidizing environment promotes non-linear fibre stiffening and confirms that our MyoRobot platform is a suitable tool for investigating redox-related changes in muscle biomechanics.
Collapse
|
6
|
Cheung K, Rathbone A, Melanson M, Trier J, Ritsma BR, Allen MD. Pathophysiology and management of critical illness polyneuropathy and myopathy. J Appl Physiol (1985) 2021; 130:1479-1489. [PMID: 33734888 PMCID: PMC8143786 DOI: 10.1152/japplphysiol.00019.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Critical illness-associated weakness (CIAW) is an umbrella term used to describe a group of neuromuscular disorders caused by severe illness. It can be subdivided into three major classifications based on the component of the neuromuscular system (i.e. peripheral nerves or skeletal muscle or both) that are affected. This includes critical illness polyneuropathy (CIP), critical illness myopathy (CIM), and an overlap syndrome, critical illness polyneuromyopathy (CIPNM). It is a common complication observed in people with critical illness requiring intensive care unit (ICU) admission. Given CIAW is found in individuals experiencing grave illness, it can be challenging to study from a practical standpoint. However, over the past 2 decades, many insights into the pathophysiology of this condition have been made. Results from studies in both humans and animal models have found that a profound systemic inflammatory response and factors related to bioenergetic failure as well as microvascular, metabolic, and electrophysiological alterations underlie the development of CIAW. Current management strategies focus on early mobilization, achieving euglycemia, and nutritional optimization. Other interventions lack sufficient evidence, mainly due to a dearth of large trials. The goal of this Physiology in Medicine article is to highlight important aspects of the pathophysiology of these enigmatic conditions. It is hoped that improved understanding of the mechanisms underlying these disorders will lead to further study and new investigations for novel pharmacologic, nutritional, and exercise-based interventions to optimize patient outcomes.
Collapse
Affiliation(s)
- Kevin Cheung
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alasdair Rathbone
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Michel Melanson
- Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jessica Trier
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Benjamin R Ritsma
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
- School of Kinesiology, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Goossens C, Weckx R, Derde S, Van Helleputte L, Schneidereit D, Haug M, Reischl B, Friedrich O, Van Den Bosch L, Van den Berghe G, Langouche L. Impact of prolonged sepsis on neural and muscular components of muscle contractions in a mouse model. J Cachexia Sarcopenia Muscle 2021; 12:443-455. [PMID: 33465304 PMCID: PMC8061378 DOI: 10.1002/jcsm.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged critically ill patients frequently develop debilitating muscle weakness that can affect both peripheral nerves and skeletal muscle. In-depth knowledge on the temporal contribution of neural and muscular components to muscle weakness is currently incomplete. METHODS We used a fluid-resuscitated, antibiotic-treated, parenterally fed murine model of prolonged (5 days) sepsis-induced muscle weakness (caecal ligation and puncture; n = 148). Electromyography (EMG) measurements were performed in two nerve-muscle complexes, combined with histological analysis of neuromuscular junction denervation, axonal degeneration, and demyelination. In situ muscle force measurements distinguished neural from muscular contribution to reduced muscle force generation. In myofibres, imaging and biomechanics were combined to evaluate myofibrillar contractile calcium sensitivity, sarcomere organization, and fibre structural properties. Myosin and actin protein content and titin gene expression were measured on the whole muscle. RESULTS Five days of sepsis resulted in increased EMG latency (P = 0.006) and decreased EMG amplitude (P < 0.0001) in the dorsal caudal tail nerve-tail complex, whereas only EMG amplitude was affected in the sciatic nerve-gastrocnemius muscle complex (P < 0.0001). Myelin sheath abnormalities (P = 0.2), axonal degeneration (number of axons; P = 0.4), and neuromuscular junction denervation (P = 0.09) were largely absent in response to sepsis, but signs of axonal swelling [higher axon area (P < 0.0001) and g-ratio (P = 0.03)] were observed. A reduction in maximal muscle force was present after indirect nerve stimulation (P = 0.007) and after direct muscle stimulation (P = 0.03). The degree of force reduction was similar with both stimulations (P = 0.2), identifying skeletal muscle, but not peripheral nerves, as the main contributor to muscle weakness. Myofibrillar calcium sensitivity of the contractile apparatus was unaffected by sepsis (P ≥ 0.6), whereas septic myofibres displayed disorganized sarcomeres (P < 0.0001) and altered myofibre axial elasticity (P < 0.0001). Septic myofibres suffered from increased rupturing in a passive stretching protocol (25% more than control myofibres; P = 0.04), which was associated with impaired myofibre active force generation (P = 0.04), linking altered myofibre integrity to function. Sepsis also caused a reduction in muscle titin gene expression (P = 0.04) and myosin and actin protein content (P = 0.05), but not the myosin-to-actin ratio (P = 0.7). CONCLUSIONS Prolonged sepsis-induced muscle weakness may predominantly be related to a disruption in myofibrillar cytoarchitectural structure, rather than to neural abnormalities.
Collapse
Affiliation(s)
- Chloë Goossens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ruben Weckx
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lawrence Van Helleputte
- Experimental Neurology and Leuven Brain Institute, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Haug
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ludo Van Den Bosch
- Experimental Neurology and Leuven Brain Institute, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci 2020; 21:ijms21217840. [PMID: 33105809 PMCID: PMC7660068 DOI: 10.3390/ijms21217840] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.
Collapse
|
9
|
Batt J, Herridge MS, Dos Santos CC. From skeletal muscle weakness to functional outcomes following critical illness: a translational biology perspective. Thorax 2019; 74:1091-1098. [PMID: 31431489 DOI: 10.1136/thoraxjnl-2016-208312] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022]
Abstract
Intensive care unit acquired weakness (ICUAW) is now a well-known entity complicating critical illness. It increases mortality and in the critical illness survivor it is associated with physical disability, substantially increased health resource utilisation and healthcare costs. Skeletal muscle wasting is a key driver of ICUAW and physical functional outcomes in both the short and long term. To date, there is no intervention that can universally and consistently prevent muscle loss during critical illness, or enhance its recovery following intensive care unit discharge, to improve physical function. Clinical trials of early mobilisation or exercise training, or enhanced nutritional support have generated inconsistent results and we have no effective pharmacological interventions. This review will delineate our current understanding of the mechanisms underpinning the development and persistence of skeletal muscle loss and dysfunction in the critically ill individual, highlighting recent discoveries and clinical observations, and utilisation of this knowledge in the development of novel therapeutics.
Collapse
Affiliation(s)
- Jane Batt
- Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada .,Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Margaret S Herridge
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Claudia C Dos Santos
- Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
MyoRobot 2.0: An advanced biomechatronics platform for automated, environmentally controlled skeletal muscle single fiber biomechanics assessment employing inbuilt real-time optical imaging. Biosens Bioelectron 2019; 138:111284. [DOI: 10.1016/j.bios.2019.04.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022]
|
11
|
Diaphragm Weakness in the Critically Ill: Basic Mechanisms Reveal Therapeutic Opportunities. Chest 2018; 154:1395-1403. [PMID: 30144420 DOI: 10.1016/j.chest.2018.08.1028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The diaphragm is the primary muscle of inspiration. Its capacity to respond to the load imposed by pulmonary disease is a major determining factor both in the onset of ventilatory failure and in the ability to successfully separate patients from ventilator support. It has recently been established that a very large proportion of critically ill patients exhibit major weakness of the diaphragm, which is associated with poor clinical outcomes. The two greatest risk factors for the development of diaphragm weakness in critical illness are the use of mechanical ventilation and the presence of sepsis. Loss of force production by the diaphragm under these conditions is caused by a combination of defective contractility and reduced diaphragm muscle mass. Importantly, many of the same molecular mechanisms are implicated in the diaphragm dysfunction associated with both mechanical ventilation and sepsis. This review outlines the primary cellular mechanisms identified thus far at the nexus of diaphragm dysfunction associated with mechanical ventilation and/or sepsis, and explores the potential for treatment or prevention of diaphragm weakness in critically ill patients through therapeutic manipulation of these final common pathway targets.
Collapse
|
12
|
Mattingly AJ, Laitano O, Clanton TL. Epinephrine stimulates CXCL1 IL-1 α, IL-6 secretion in isolated mouse limb muscle. Physiol Rep 2018; 5. [PMID: 29192066 PMCID: PMC5727277 DOI: 10.14814/phy2.13519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Catecholamines stimulate interleukin‐6 (IL‐6) secretion in skeletal muscles. However, whether other cytokines are secreted is currently unknown. Skeletal muscle ex vivo preparations commonly used to study cytokine secretion have dealt with limitations including auto‐oxidation of catecholamines. The use of metal chelators could be an alternative to avoid auto‐oxidation and allow catecholamines to be used at physiological doses. We exposed isolated soleus muscles to 1 or 100 ng/mL epinephrine (EPI) and collected bath samples at 1 and 2 h for multiplex cytokine analysis. Keratinocyte chemoattractant (CXCL1), IL‐6, and IL‐1α were significantly elevated by 100 ng/mL exposure, but not by 1 ng/mL (median [CXCL1] (2 h) = 83 pg/mL; [IL‐6] = 19 pg/mL; IL‐1α = 7.5 pg/mL). CXCL1 and IL‐6 were highly correlated in each sample (P = 0.0001). A second experiment combined the metal chelator, deferoxamine mesylate (DFO), to prevent EPI autoxidation, with 2 ng/mL EPI and 10.5 ng/mL norepinephrine (NOREPI) to mimic peak exercise. Unexpectedly, DFO alone stimulated both IL‐6 and CXCL1 secretion, but together with EPI and NOREPI had no additional effects. Stimulation of cytokine secretory responses from skeletal muscle cells in response to DFO thus precludes its use as a chelating agent in ex vivo models. In conclusion, 100 ng/mL EPI stimulates a robust secretory CXCL1 response, which together with IL‐6 and IL‐1α, may constitute an adrenal‐muscle endocrine response system.
Collapse
Affiliation(s)
- Alex J Mattingly
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| | - Orlando Laitano
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| | - Thomas L Clanton
- Department of Applied Physiology & Kinesiology, University of Florida, College of Health and Human Performance, Gainesville, Florida
| |
Collapse
|
13
|
Song A, Zhu L, Gorantla G, Berdysz O, Amici SA, Guerau-de-Arellano M, Madalena KM, Lerch JK, Liu X, Quan N. Salient type 1 interleukin 1 receptor expression in peripheral non-immune cells. Sci Rep 2018; 8:723. [PMID: 29335509 PMCID: PMC5768710 DOI: 10.1038/s41598-018-19248-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Interleukin 1 is a pleiotropic cytokine that mediates diverse functions through its receptor, type I interleukin 1 receptor (IL-1R1). Most previous studies have focused on the expression and function of IL-1R1 in immune cells. Here we performed a comprehensive mapping of IL-1R1 distribution in multiple peripheral tissues using our IL-1R1 reporter (IL-1R1GR/GR) mice. This method yielded the highest sensitivity of in situ detection of IL-1R1 mRNA and protein. Besides validating previously reported IL-1R1 expression in the endocrine tissues including pituitary and pancreas, our results refuted previously reported exclusive IL-1R1 expression in neurons of the spinal cord dorsal horn and dorsal root ganglia (DRG). Instead, IL-1R1 expression was detected in endothelial cells within DRG, spinal cord, pancreas, colon, muscles and many immune organs. In addition, gp38+ fibroblastic reticular cells (FRCs), rather than tissue macrophages or other immune cells, were found to express high levels of IL-1R1 in colon and many immune organs. A functional test of spleen FRCs showed that they responded rapidly to systemic IL-1β stimulation in vivo. Taken together, this study provides a rigorous re-examination of IL-1R1 expression in peripheral tissues and reveals tissue FRCs as a previously unappreciated novel high IL-1R1-expressing cell type in peripheral IL-1 signaling.
Collapse
Affiliation(s)
- Anping Song
- Department of Oncolgy, Tongji Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430030, P. R. China
| | - Ling Zhu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephanie A Amici
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Mireia Guerau-de-Arellano
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathryn M Madalena
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, 43210, USA
| | - Jessica K Lerch
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute for Behavioral Medicine Research, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute for Behavioral Medicine Research, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Friedrich O, Diermeier S, Larsson L. Weak by the machines: muscle motor protein dysfunction - a side effect of intensive care unit treatment. Acta Physiol (Oxf) 2018; 222. [PMID: 28387014 DOI: 10.1111/apha.12885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
Intensive care interventions involve periods of mechanical ventilation, sedation and complete mechanical silencing of patients. Critical illness myopathy (CIM) is an ICU-acquired myopathy that is associated with limb muscle weakness, muscle atrophy, electrical silencing of muscle and motor proteinopathy. The hallmark of CIM is a preferential muscle myosin loss due to increased catabolic and reduced anabolic activity. The ubiquitin proteasome pathway plays an important role, apart from recently identified novel mechanisms affecting non-lysosomal protein degradation or autophagy. CIM is not reproduced by pure disuse atrophy, denervation atrophy, steroid-induced atrophy or septic myopathy, although combinations of high-dose steroids and denervation can mimic CIM. New animal models of critical illness and ICU treatment (i.e. mechanical ventilation and complete immobilization) provide novel insights regarding the time course of protein synthesis and degradation alterations, and the role of protective chaperone activities in the process of myosin loss. Altered mechano-signalling seems involved in triggering a major part of myosin loss in experimental CIM models, and passive loading of muscle potently ameliorates the CIM phenotype. We provide a systematic overview of similarities and distinct differences in the signalling pathways involved in triggering muscle atrophy in CIM and isolated trigger factors. As preferential myosin loss is mostly determined from biochemistry analyses providing no spatial resolution of myosin loss processes within myofibres, we also provide first results monitoring myosin signal intensities during experimental ICU intervention using multi-photon Second Harmonic Generation microscopy. Our results confirm that myosin loss is an evenly distributed process within myofibres rather than being confined to hot spots.
Collapse
Affiliation(s)
- O. Friedrich
- Institute of Medical Biotechnology; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Advanced Optical Technologie (SAOT); Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - S. Diermeier
- Institute of Medical Biotechnology; Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Advanced Optical Technologie (SAOT); Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - L. Larsson
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
- Section of Clinical Neurophysiology; Department of Clinical Neuroscience; Karolinska Institutet; Stockholm Sweden
- Department of Biobehavioral Health; The Pennsylvania State University; University Park PA USA
| |
Collapse
|
15
|
The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca 2+ biosensors and active/passive biomechanics in muscle and biomaterials. Biosens Bioelectron 2017; 102:589-599. [PMID: 29245144 DOI: 10.1016/j.bios.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/11/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
Abstract
We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca2+ ion responses (force resolution 1µN, 0-10mN for the given sensor; [Ca2+] range ~ 100nM-25µM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1µm encoder resolution; stepper motors, 4µm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research. Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers.
Collapse
|
16
|
Batt J, Mathur S, Katzberg HD. Mechanism of ICU-acquired weakness: muscle contractility in critical illness. Intensive Care Med 2017; 43:584-586. [PMID: 28255615 DOI: 10.1007/s00134-017-4730-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Jane Batt
- Department of Medicine, Keenan Centre for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| | - Sunita Mathur
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Hans D Katzberg
- Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Oláh T, Bodnár D, Tóth A, Vincze J, Fodor J, Reischl B, Kovács A, Ruzsnavszky O, Dienes B, Szentesi P, Friedrich O, Csernoch L. Cannabinoid signalling inhibits sarcoplasmic Ca 2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle. J Physiol 2016; 594:7381-7398. [PMID: 27641745 DOI: 10.1113/jp272449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. ABSTRACT Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP3 )-mediated Ca2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP3 -mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization-evoked transients in a pertussis-toxin sensitive manner, indicating a Gi/o protein-dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R-knockout animals, depolarization-evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild-type mice. Our results show that CB1R-mediated signalling exerts both a constitutive and an agonist-mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs.
Collapse
Affiliation(s)
- Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Bodnár
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrienn Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Olga Ruzsnavszky
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
张 建, 吴 进, 李 士, 龚 园. [Lowered sarcoendoplasmic reticulum calcium uptake and diaphragmatic SERCA1 expression contribute to diaphragmatic contractile and relaxation dysfunction in septic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:438-443. [PMID: 28446393 PMCID: PMC6744105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 10/15/2023]
Abstract
OBJECTIVE The explore the mechanism responsible for diaphragmatic contractile and relaxation dysfunction in a rat model of sepsis. METHODS Thirty-six adult male Sprague-Dawley rats were randomized equally into a sham-operated group and two model groups of sepsis induced by cecal ligation and puncture (CLP) for examination at 6 and 12 h following CLP (CLP-6 h and CLP-12 h groups). The parameters of diaphragm contractile and relaxation were measured, and the calcium uptake and release rates of the diaphragmatic sarcoendoplasmic reticulum (SR) and the protein expressions of SERCA1, SERCA2 and RyR in the diaphragmatic muscles were determined. RESULTS The half-relaxation time of the diaphragm was extended in both the CLP-6 h and CLP-12 h groups with significantly reduced maximum tension declinerate and the peek uptake rate of SERCA (P<0.01). Diaphragmatic maximum twitch force development rate, the maximal twitch, tetanus tensions and the peek release rate of SR decreased only at 12h after CLP (P<0.01). The expression levels of SERCA1 protein decreased significantly in the diaphragmatic muscles at 12h following CLP (P<0.01) while SERCA2 expression level and SERCA activity showed no significant changes. CONCLUSION In the acute stage of sepsis, both the contractile and relaxation functions of the diaphragm are impaired. Diaphragmatic relaxation dysfunction may result from reduced calcium uptake in the SR and a decreased level of SERCA1 in the diaphragmatic muscles.
Collapse
Affiliation(s)
- 建友 张
- 南京医科大学,江苏 南京 210029Nanjing Medical University, Nanjing 210029, China
| | - 进 吴
- 上海交通大学附属第一人民医院麻醉科,上海 200080Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - 士通 李
- 南京医科大学,江苏 南京 210029Nanjing Medical University, Nanjing 210029, China
| | - 园 龚
- 上海交通大学附属第一人民医院麻醉科,上海 200080Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
19
|
张 建, 吴 进, 李 士, 龚 园. [Lowered sarcoendoplasmic reticulum calcium uptake and diaphragmatic SERCA1 expression contribute to diaphragmatic contractile and relaxation dysfunction in septic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:438-443. [PMID: 28446393 PMCID: PMC6744105 DOI: 10.3969/j.issn.1673-4254.2017.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The explore the mechanism responsible for diaphragmatic contractile and relaxation dysfunction in a rat model of sepsis. METHODS Thirty-six adult male Sprague-Dawley rats were randomized equally into a sham-operated group and two model groups of sepsis induced by cecal ligation and puncture (CLP) for examination at 6 and 12 h following CLP (CLP-6 h and CLP-12 h groups). The parameters of diaphragm contractile and relaxation were measured, and the calcium uptake and release rates of the diaphragmatic sarcoendoplasmic reticulum (SR) and the protein expressions of SERCA1, SERCA2 and RyR in the diaphragmatic muscles were determined. RESULTS The half-relaxation time of the diaphragm was extended in both the CLP-6 h and CLP-12 h groups with significantly reduced maximum tension declinerate and the peek uptake rate of SERCA (P<0.01). Diaphragmatic maximum twitch force development rate, the maximal twitch, tetanus tensions and the peek release rate of SR decreased only at 12h after CLP (P<0.01). The expression levels of SERCA1 protein decreased significantly in the diaphragmatic muscles at 12h following CLP (P<0.01) while SERCA2 expression level and SERCA activity showed no significant changes. CONCLUSION In the acute stage of sepsis, both the contractile and relaxation functions of the diaphragm are impaired. Diaphragmatic relaxation dysfunction may result from reduced calcium uptake in the SR and a decreased level of SERCA1 in the diaphragmatic muscles.
Collapse
Affiliation(s)
- 建友 张
- 南京医科大学,江苏 南京 210029Nanjing Medical University, Nanjing 210029, China
| | - 进 吴
- 上海交通大学附属第一人民医院麻醉科,上海 200080Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - 士通 李
- 南京医科大学,江苏 南京 210029Nanjing Medical University, Nanjing 210029, China
| | - 园 龚
- 上海交通大学附属第一人民医院麻醉科,上海 200080Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
20
|
Zulli A, Smith RM, Kubatka P, Novak J, Uehara Y, Loftus H, Qaradakhi T, Pohanka M, Kobyliak N, Zagatina A, Klimas J, Hayes A, La Rocca G, Soucek M, Kruzliak P. Caffeine and cardiovascular diseases: critical review of current research. Eur J Nutr 2016; 55:1331-43. [PMID: 26932503 DOI: 10.1007/s00394-016-1179-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 02/06/2016] [Indexed: 12/21/2022]
Abstract
Caffeine is a most widely consumed physiological stimulant worldwide, which is consumed via natural sources, such as coffee and tea, and now marketed sources such as energy drinks and other dietary supplements. This wide use has led to concerns regarding the safety of caffeine and its proposed beneficial role in alertness, performance and energy expenditure and side effects in the cardiovascular system. The question remains "Which dose is safe?", as the population does not appear to adhere to the strict guidelines listed on caffeine consumption. Studies in humans and animal models yield controversial results, which can be explained by population, type and dose of caffeine and low statistical power. This review will focus on comprehensive and critical review of the current literature and provide an avenue for further study.
Collapse
Affiliation(s)
- Anthony Zulli
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Renee M Smith
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Novak
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Department of Physiology, Masaryk University, Brno, Czech Republic
| | - Yoshio Uehara
- Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women's University, Tokyo, Japan
| | - Hayley Loftus
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Tawar Qaradakhi
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | | | | | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odborarov 10, 832 32, Bratislava, Slovak Republic
| | - Alan Hayes
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Giampiero La Rocca
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Miroslav Soucek
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr 1/1946, Brno, 612 42, Czech Republic.
| |
Collapse
|
21
|
Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev 2015; 95:1025-109. [PMID: 26133937 PMCID: PMC4491544 DOI: 10.1152/physrev.00028.2014] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Critical illness polyneuropathies (CIP) and myopathies (CIM) are common complications of critical illness. Several weakness syndromes are summarized under the term intensive care unit-acquired weakness (ICUAW). We propose a classification of different ICUAW forms (CIM, CIP, sepsis-induced, steroid-denervation myopathy) and pathophysiological mechanisms from clinical and animal model data. Triggers include sepsis, mechanical ventilation, muscle unloading, steroid treatment, or denervation. Some ICUAW forms require stringent diagnostic features; CIM is marked by membrane hypoexcitability, severe atrophy, preferential myosin loss, ultrastructural alterations, and inadequate autophagy activation while myopathies in pure sepsis do not reproduce marked myosin loss. Reduced membrane excitability results from depolarization and ion channel dysfunction. Mitochondrial dysfunction contributes to energy-dependent processes. Ubiquitin proteasome and calpain activation trigger muscle proteolysis and atrophy while protein synthesis is impaired. Myosin loss is more pronounced than actin loss in CIM. Protein quality control is altered by inadequate autophagy. Ca(2+) dysregulation is present through altered Ca(2+) homeostasis. We highlight clinical hallmarks, trigger factors, and potential mechanisms from human studies and animal models that allow separation of risk factors that may trigger distinct mechanisms contributing to weakness. During critical illness, altered inflammatory (cytokines) and metabolic pathways deteriorate muscle function. ICUAW prevention/treatment is limited, e.g., tight glycemic control, delaying nutrition, and early mobilization. Future challenges include identification of primary/secondary events during the time course of critical illness, the interplay between membrane excitability, bioenergetic failure and differential proteolysis, and finding new therapeutic targets by help of tailored animal models.
Collapse
Affiliation(s)
- O Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - M B Reid
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - G Van den Berghe
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - I Vanhorebeek
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - G Hermans
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - M M Rich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - L Larsson
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Survivors of a critical illness may experience poor physical function and quality of life as a result of reduced skeletal muscle mass and strength during their acute illness. Patients diagnosed with sepsis are particularly at risk, and mechanical ventilation may result in diaphragm dysfunction. Interest in the interaction of these conditions is both growing and important to understand for individualized patient care. RECENT FINDINGS This review describes developments in the presentation of both diaphragm and limb myopathy in critical illness, as measured from muscle biopsy and at the bedside with various imaging and strength-testing modalities. The influence of unloading of the diaphragm with mechanical ventilation and peripheral muscles with immobilization in septic patients has been recently questioned. Systemic inflammation appears to primarily accelerate and accentuate dysfunction, which may be remedied by early mobilization and augmented with developing muscle and/or nerve stimulation techniques. SUMMARY Many acute muscle changes in septic patients are likely to stem from pre-existing impairments, which should provide context for clinical evaluations of strength. During illness, sarcolemmal injury promotes a cascade of intra-cellular abnormalities. As unique characteristics of ICU-acquired weakness and differential effects on muscle groups are understood, early diagnosis and management should be facilitated.
Collapse
Affiliation(s)
- Claire E Baldwin
- aInternational Centre for Allied Health Evidence and School of Health Sciences, University of South Australia, Adelaide bPhysiotherapy Department, Flinders Medical Centre, Bedford Park cDepartment of Critical Care Medicine, School of Medicine, Faculty of Health Sciences, Flinders University, Bedford Park dIntensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | |
Collapse
|
23
|
Karisnan K, Bakker AJ, Song Y, Noble PB, Pillow JJ, Pinniger GJ. Interleukin-1 receptor antagonist protects against lipopolysaccharide induced diaphragm weakness in preterm lambs. PLoS One 2015; 10:e0124390. [PMID: 25860718 PMCID: PMC4393095 DOI: 10.1371/journal.pone.0124390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
Chorioamnionitis (inflammation of the fetal membranes) is strongly associated with preterm birth and in utero exposure to inflammation significantly impairs contractile function in the preterm lamb diaphragm. The fetal inflammatory response to intra-amniotic (IA) lipopolysaccharide (LPS) is orchestrated via interleukin 1 (IL-1). We aimed to determine if LPS induced contractile dysfunction in the preterm diaphragm is mediated via the IL-1 pathway. Pregnant ewes received IA injections of recombinant human IL-1 receptor antagonist (rhIL-1ra) (Anakinra; 100 mg) or saline (Sal) 3 h prior to second IA injections of LPS (4 mg) or Sal at 119d gestational age (GA). Preterm lambs were killed after delivery at 121d GA (term = 150 d). Muscle fibres dissected from the right hemi-diaphragm were mounted in an in vitro muscle test system for assessment of contractile function. The left hemi-diaphragm was snap frozen for molecular and biochemical analyses. Maximum specific force in lambs exposed to IA LPS (Sal/LPS group) was 25% lower than in control lambs (Sal/Sal group; p=0.025). LPS-induced diaphragm weakness was associated with higher plasma IL-6 protein, diaphragm IL-1β mRNA and oxidised glutathione levels. Pre-treatment with rhIL-1ra (rhIL-1ra/LPS) ameliorated the LPS-induced diaphragm weakness and blocked systemic and local inflammatory responses, but did not prevent the rise in oxidised glutathione. These findings indicate that LPS induced diaphragm dysfunction is mediated via IL-1 and occurs independently of oxidative stress. Therefore, the IL-1 pathway represents a potential therapeutic target in the management of impaired diaphragm function in preterm infants.
Collapse
Affiliation(s)
- Kanakeswary Karisnan
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
| | - Anthony J. Bakker
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
| | - Yong Song
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, WA, Australia
| | - Peter B. Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, WA, Australia
| | - J. Jane Pillow
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, WA, Australia
| | - Gavin J. Pinniger
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|
24
|
Hopp SC, D'Angelo HM, Royer SE, Kaercher RM, Crockett AM, Adzovic L, Wenk GL. Calcium dysregulation via L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction during chronic neuroinflammation. J Neuroinflammation 2015; 12:56. [PMID: 25888781 PMCID: PMC4377218 DOI: 10.1186/s12974-015-0262-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/09/2015] [Indexed: 11/23/2022] Open
Abstract
Background Chronic neuroinflammation and calcium (Ca+2) dysregulation are both components of Alzheimer’s disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca+2 homeostasis via L-type voltage-dependent Ca+2 channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca+2 dysregulation. Methods The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. Results LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca+2 uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo. Conclusions Taken together, these data indicate that Ca+2 dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca+2 channels are dysregulated during chronic neuroinflammation. Ca+2-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca+2 dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.
Collapse
Affiliation(s)
- Sarah C Hopp
- Departments of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Heather M D'Angelo
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Sarah E Royer
- Departments of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Roxanne M Kaercher
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Alexis M Crockett
- Departments of Neuroscience, Ohio State University, Columbus, OH, 43210, USA. .,Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Linda Adzovic
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Gary L Wenk
- Departments of Neuroscience, Ohio State University, Columbus, OH, 43210, USA. .,Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Hopp SC, Royer SE, D’Angelo HM, Kaercher RM, Fisher DA, Wenk GL. Differential neuroprotective and anti-inflammatory effects of L-type voltage dependent calcium channel and ryanodine receptor antagonists in the substantia nigra and locus coeruleus. J Neuroimmune Pharmacol 2015; 10:35-44. [PMID: 25318607 PMCID: PMC4336597 DOI: 10.1007/s11481-014-9568-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Neuroinflammation and degeneration of catecholaminergic brainstem nuclei occur early in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Neuroinflammation increases levels of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal calcium (Ca(+2)) homoeostasis via L-type voltage dependent calcium channels (L-VDCCs) and ryanodine receptors (RyRs). Alterations in Ca(+2) channel activity in the SN and LC can lead to disruption of normal pacemaking activity in these areas, contributing to behavioral deficits. Here, we utilized an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose (0.25 μg/h) of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. Rats were treated with either the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. LPS-infused rats had significant motor deficits in the accelerating rotarod task as well as abnormal behavioral agitation in the forced swim task and open field. Corresponding with these behavioral deficits, LPS-infused rats also had significant increases in microglia activation and loss of tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra pars compacta (SNpc) and locus coeruleus (LC). Treatment with nimodipine or dantrolene normalized LPS-induced abnormalities in the rotarod and forced swim, restored the number of TH-immunoreactive cells in the LC, and significantly reduced microglia activation in the SNpc. Only nimodipine significantly reduced microglia activation in the LC, and neither drug increased TH immunoreactivity in the SNpc. These findings demonstrate that the Ca(+2) dysregulation in the LC and SN brainstem nuclei is differentially altered by chronic neuroinflammation. Overall, targeting Ca + 2 dysregulation may be an important target for ameliorating neurodegeneration in the SNpc and LC.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | - Sarah E. Royer
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | - Gary L. Wenk
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
- Department of Psychology, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
26
|
Hopp SC, D'Angelo HM, Royer SE, Kaercher RM, Adzovic L, Wenk GL. Differential rescue of spatial memory deficits in aged rats by L-type voltage-dependent calcium channel and ryanodine receptor antagonism. Neuroscience 2014; 280:10-8. [PMID: 25224829 DOI: 10.1016/j.neuroscience.2014.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 10/25/2022]
Abstract
Age-associated memory impairments may result as a consequence of neuroinflammatory induction of intracellular calcium (Ca(+2)) dysregulation. Altered L-type voltage-dependent calcium channel (L-VDCC) and ryanodine receptor (RyR) activity may underlie age-associated learning and memory impairments. Various neuroinflammatory markers are associated with increased activity of both L-VDCCs and RyRs, and increased neuroinflammation is associated with normal aging. In vitro, pharmacological blockade of L-VDCCs and RyRs has been shown to be anti-inflammatory. Here, we examined whether pharmacological blockade of L-VDCCs or RyRs with the drugs nimodipine and dantrolene, respectively, could improve spatial memory and reduce age-associated increases in microglia activation. Dantrolene and nimodipine differentially attenuated age-associated spatial memory deficits but were not anti-inflammatory in vivo. Furthermore, RyR gene expression was inversely correlated with spatial memory, highlighting the central role of Ca(+2) dysregulation in age-associated memory deficits.
Collapse
Affiliation(s)
- S C Hopp
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - H M D'Angelo
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - S E Royer
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - R M Kaercher
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - L Adzovic
- Department of Psychology, Ohio State University, Columbus, OH 43210, USA
| | - G L Wenk
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|