1
|
Muthumula CMR, Khare S, Jog R, Wickramaratne B, Lee A, Chakder S, Burgess DJ, Gokulan K. Evaluation of gender differences in the pharmacokinetics of oral zileuton nanocrystalline formulation using a rat model. Int J Pharm X 2024; 7:100254. [PMID: 38774112 PMCID: PMC11107231 DOI: 10.1016/j.ijpx.2024.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Zileuton is a leukotriene inhibitor used to treat asthma. As a BCS class II drug it exhibits challenges with solubility which likely impact its absorption. As patient gender significantly impacts the pharmacokinetics of many drugs, this study aimed to investigate potential gender-based pharmacokinetic differences after oral zileuton administration in rats. Male and female Sprague Dawley rats received single oral gavage doses of pure zileuton as an active pharmaceutical ingredient (30 mg/kg body weight (bw)), physical mixture (PM; at 30 mg/kg bw of the formulation contains zileuton, kollidon VA64 fine, dowfax2A1 and trehalose), and nanocrystalline formulation of zileuton (NfZ; at 30 mg/kg bw of the formulation). Plasma, tissue, and urine concentrations were quantified using high performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis showed higher zileuton levels in the plasma of female versus male rats across all evaluated forms of zileuton (API, PM, and NfZ). Female rats demonstrated higher peak plasma concentrations (Cmax) and increased area under the plasma concentration-time curve (AUC) relative to males, regardless of formulation. These findings reveal substantial gender disparities in the pharmacokinetics of zileuton in the rat model. This study emphasizes the critical need to evaluate gender differences during preclinical drug development to enable gender-based precision dosing strategies for equivalent efficacy/safety outcomes in male and female patients. Additional studies are warranted to investigate underlying mechanisms of such pharmacokinetic gender divergences.
Collapse
Affiliation(s)
- Chandra Mohan Reddy Muthumula
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| | - Rajan Jog
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Bhagya Wickramaratne
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| | - Angela Lee
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| | - Sushanta Chakder
- Center for Drug Evaluation and Research, US Food and Drug Administration, White Oak Campus, Silver Spring, MD 20993, United States of America
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| |
Collapse
|
2
|
Zeng X, Chen Q, Zhang X, Li H, Liu Q, Li C, Ma M, Zhang J, Zhang W, Zhang J, Huang L. Association between prenatal exposure to perfluoroalkyl substances and asthma-related diseases in preschool children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29639-29648. [PMID: 31399834 DOI: 10.1007/s11356-019-05864-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Thus far, the few studies on the associations between perfluoroalkyl substances (PFASs) and asthma in children have yielded inconsistent results. In this study, we aimed to evaluate whether and to what extent prenatal PFASs exposure is associated with childhood asthmatic diseases. Eight PFASs were measured in cord blood drawn from 358 children in the Shanghai Allergy Birth Cohort, and a 5-year follow-up plan was completed. Asthma was diagnosed and reported by pediatric respiratory physicians via repeated symptoms (wheezing and coughing) and laboratory examination (Immunoglobulin E level test and skin prick test). A total of 26.6% and 17.4% subjects were diagnosed with wheezing and asthma, respectively. Multivariable logistic regression and piecewise linear regression were applied, and no association was found between PFASs and asthma or wheezing. However, cord serum PFOA, PFOS, and PFDA were positively correlated with serum total IgE in 5-year-old children as the level of the former beyond the turning point (4.37 ng/mL, 2.95 ng/mL, and 0.42 ng/mL, respectively), but negatively with IgE before it reach turnning point.
Collapse
Affiliation(s)
- Xinxin Zeng
- Department of Pediatrics Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xi Zhang
- Clinical Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huajun Li
- Department of Pediatrics Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Quanhua Liu
- Department of Pediatrics Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chunxiao Li
- Department of Dermatological, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Ming Ma
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Zhang
- Department of Pediatrics Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Lisu Huang
- Department of Pediatrics Infectious Diseases, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Fang L, Wang X, Sun Q, Papakonstantinou E, S'ng C, Tamm M, Stolz D, Roth M. IgE Downregulates PTEN through MicroRNA-21-5p and Stimulates Airway Smooth Muscle Cell Remodeling. Int J Mol Sci 2019; 20:ijms20040875. [PMID: 30781615 PMCID: PMC6412688 DOI: 10.3390/ijms20040875] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
The patho-mechanism leading to airway wall remodeling in allergic asthma is not well understood and remodeling is resistant to therapies. This study assessed the effect of immunoglobulin E (IgE) in the absence of allergens on human primary airway smooth muscle cell (ASMC) remodeling in vitro. ASMCs were obtained from five allergic asthma patients and five controls. Proliferation was determined by direct cell counts, mitochondrial activity by expression of cytochrome c, protein expression by immunoblotting and immuno-fluorescence, cell migration by microscopy imaging, and collagen deposition by cell based ELISA and RNA expression by real time PCR. Non-immune IgE activated two signaling pathways: (i) signal transducer and activator of transcription 3 (STAT3)→miR-21-5p→downregulating phosphatase and tensin homolog (PTEN) expression, and (ii) phosphatidylinositol 3-kinases (PI3K)→protein kinase B (Akt)→mammalian target of rapamycin (mTOR)→ribosomal protein S6 kinase beta-1 (p70s6k)→peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1-α)→peroxisome proliferator-activated receptor-γ (PPAR-γ)→cyclooxygenase-2 (COX-2)→mitochondrial activity, proliferation, migration, and extracellular matrix deposition. Reduced PTEN expression correlated with enhanced PI3K signaling, which upregulated ASMC remodeling. The inhibition of microRNA-21-5p increased PTEN and reduced mTOR signaling and remodeling. Mimics of microRNA-21-5p had opposing effects. IgE induced ASMC remodeling was significantly reduced by inhibition of mTOR or STAT3. In conclusion, non-immune IgE alone is sufficient for stimulated ASMC remodeling by upregulating microRNA-21-5p. Our findings suggest that the suppression of micoRNA-21-5p may present a therapeutic target to reduce airway wall remodeling.
Collapse
Affiliation(s)
- Lei Fang
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Xinggang Wang
- Gynecological Endocrinology, Department of Biomedicine, University & University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Qingzhu Sun
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Eleni Papakonstantinou
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | - Michael Tamm
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Daiana Stolz
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Michael Roth
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| |
Collapse
|