1
|
Lathan R. Exploring unconventional targets in myofibroblast transdifferentiation outside classical TGF- β signaling in renal fibrosis. Front Physiol 2024; 15:1296504. [PMID: 38808357 PMCID: PMC11130449 DOI: 10.3389/fphys.2024.1296504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
We propose that the key initiators of renal fibrosis are myofibroblasts which originate from four predominant sources-fibroblasts, pericytes, endothelial cells and macrophages. Increased accumulation of renal interstitial myofibroblasts correlates with an increase in collagen, fibrillar proteins, and fibrosis severity. The canonical TGF-β pathway, signaling via Smad proteins, is the central molecular hub that initiates these cellular transformations. However, directly targeting these classical pathway molecules has proven challenging due their integral roles in metabolic process, and/or non-sustainable effects involving compensatory cross-talk with TGF-β. This review explores recently discovered alternative molecular targets that drive transdifferentiation into myofibroblasts. Discovering targets outside of the classical TGF-β/Smad pathway is crucial for advancing antifibrotic therapies, and strategically targeting the development of myofibroblasts offers a promising approach to control excessive extracellular matrix deposition and impede fibrosis progression.
Collapse
Affiliation(s)
- Rashida Lathan
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Aziz S, Yalan L, Raza MA, Lemin J, Akram HMB, Zhao W. GSK126 an inhibitor of epigenetic regulator EZH2 suppresses cardiac fibrosis by regulating the EZH2-PAX6-CXCL10 pathway. Biochem Cell Biol 2023; 101:87-100. [PMID: 36469862 DOI: 10.1139/bcb-2022-0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myocardial fibrosis is a common pathological companion of various cardiovascular diseases. To date, the role of enhancer of zeste homolog 2 (EZH2) in cancer has been well demonstrated including in renal carcinoma and its inhibitors have entered the stage of phase I/II clinical trials. However, the precise mechanism of EZH2 in cardiac diseases is largely unclear. In the current study, we first found that EZH2 expression was increased in Ang-II-treated cardiac fibroblasts (CFs) and mouse heart homogenates following isoproterenol (ISO) administration for 21 days, respectively. Ang-II induces CFs activation and increased collagen-I, collagen-III, α-SMA, EZH2, and trimethylates lysine 27 on histone 3 (H3K27me3) expressions can be reversed by EZH2 inhibitor (GSK126) and EZH2 siRNA. The ISO-induced cardiac hypertrophy, and fibrosis in vivo which were also related to the upregulation of EZH2 and its downstream target, H3K27me3, could be recovered by GSK126. Furthermore, the upregulation of EZH2 induces the decrease of paired box 6 (PAX6) and C-X-C motif ligand 10 (CXCL10) "which" were also reversed by GSK126 treatment. In summary, the present evidence strongly suggests that GSK126 could be a therapeutic intervention, blunting the development and progression of myocardial fibrosis in an EZH2-PAX6-CXCL10-dependent manner.
Collapse
Affiliation(s)
- Shireen Aziz
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Li Yalan
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Muhammad Ahmer Raza
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiao Lemin
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hafiz Muhamamd Bilal Akram
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| |
Collapse
|
3
|
Vierhout M, Ayoub A, Naiel S, Yazdanshenas P, Revill SD, Reihani A, Dvorkin-Gheva A, Shi W, Ask K. Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence. Wound Repair Regen 2021; 29:548-562. [PMID: 34107123 DOI: 10.1111/wrr.12946] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Since the discovery of the myofibroblast over 50 years ago, much has been learned about its role in wound healing and fibrosis. Its origin, however, remains controversial, with a number of progenitor cells being proposed. Macrophage-myofibroblast transition (MMT) is a recent term coined in 2014 that describes the mechanism through which macrophages, derived from circulating monocytes originating in the bone marrow, transformed into myofibroblasts and contributed to kidney fibrosis. Over the past years, several studies have confirmed the existence of MMT in various systems, suggesting that MMT could potentially occur in all fibrotic conditions and constitute a reasonable therapeutic target to prevent progressive fibrotic disease. In this perspective, we examined recent evidence supporting the notion of MMT in both human disease and experimental models across organ systems. Mechanistic insight from these studies and information from in vitro studies is provided. The findings substantiating plausible MMT showcased the co-expression of macrophage and myofibroblast markers, including CD68 or F4/80 (macrophage) and α-SMA (myofibroblast), in fibroblast-like cells. Furthermore, fate-mapping experiments in murine models exhibiting myeloid-derived myofibroblasts in the tissue further provide direct evidence for MMT. Additionally, we provide some evidence from single cell RNA sequencing experiments confirmed by fluorescent in situ hybridisation studies, showing monocyte/macrophage and myofibroblast markers co-expressed in lung tissue from patients with fibrotic lung disease. In conclusion, MMT is likely a significant contributor to myofibroblast formation in wound healing and fibrotic disease across organ systems. Circulating precursors including monocytes and the molecular mechanisms governing MMT could constitute valid targets and provide insight for the development of novel antifibrotic therapies; however, further understanding of these processes is warranted.
Collapse
Affiliation(s)
- Megan Vierhout
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Anmar Ayoub
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Safaa Naiel
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Parichehr Yazdanshenas
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Spencer D Revill
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Amir Reihani
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kjetil Ask
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Liao K, Cui Z, Zeng Y, Liu J, Wang Y, Wang Z, Tang S, Chen J. Inhibition of enhancer of zeste homolog 2 prevents corneal myofibroblast transformation in vitro. Exp Eye Res 2021; 208:108611. [PMID: 33992624 DOI: 10.1016/j.exer.2021.108611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Corneal fibroblast can be transformed into corneal myofibroblasts by TGF-β1. Enhancer of zeste homolog 2 (EZH2) upregulation has been observed in the occurrence of other fibrotic disorders. We investigated the role of EZH2 in the progression of corneal fibrosis and the antifibrotic effect of EZH2 inhibition in corneal fibroblasts (CFs). METHODS Primary CFs were isolated from corneal limbi and the CFs were treated with TGF-β1 to induce fibrosis. EPZ-6438 and EZH2 siRNA were used to inhibit EZH2 expression. Myofibroblast activation and extracellular matrix (ECM) protein synthesis was detected by quantitative real-time PCR, western blotting, and immunofluorescence staining assay. The functions of myofibroblast were evaluated by cell migration and collagen gel contraction assays. Molecular mechanisms involved in EZH2 inhibition were investigated by RNA sequencing. RESULTS TGF-β1 activated EZH2 expression in CFs. Treatment with EPZ-6438 (5 μM) and EZH2 siRNA considerably suppressed corneal myofibroblast activation and ECM protein synthesis in CFs induced by TGF-β1 when compared to the control group. EPZ-6438 (5 μM) suppressed cell migration and gel contraction in CFs. RNA sequencing results revealed that antifibrotic genes were activated after EZH2 inhibition to suppress corneal myofibroblast activation. CONCLUSION Inhibition of EZH2 suppresses corneal myofibroblast activation and ECM protein synthesis, and could serve as a novel therapeutic target for preventing corneal scarring.
Collapse
Affiliation(s)
- Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yong Zeng
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jian Liu
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yini Wang
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China; Aier Eye Institute, Changsha, Hunan Province, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
DNA Methylation in Pulmonary Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:51-62. [PMID: 32949389 DOI: 10.1007/978-981-15-4494-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DNA methylations, including global methylation pattern and specific gene methylation, are associated with pathogenesis and progress of pulmonary fibrosis. This chapter illustrates alteration of DNA methylation in pulmonary fibrosis as a predictive or prognostic factor. Treatment with the DNA methylation inhibitors will be an emerging anti-fibrosis therapy, although we are still in the pre-clinical stage of using epigenetic markers as potential targets for biomarkers and therapeutic interventions.
Collapse
|