1
|
Saito A, Koya T, Aoki A, Naramoto S, Ueno H, Nishiyama Y, Shima K, Kimura Y, Hasegawa T, Watanabe S, Ohshima Y, Suzuki K, Ohashi-Doi K, Kikuchi T. Mechanism differences in the start time of sublingual immunotherapy in a mouse allergic airway inflammation model. Sci Rep 2024; 14:26334. [PMID: 39487347 PMCID: PMC11530651 DOI: 10.1038/s41598-024-78062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Sublingual immunotherapy (SLIT) has received considerable attention as a method for allergen immunotherapy (AIT). However, the mechanism of SLIT, especially its timing, has not been thoroughly investigated. We evaluated therapeutic and prophylactic SLIT in an allergic airway inflammation model and evaluated their efficacies. Mice were intranasally exposed to Dermatophagoides farinae (Der f) extract and received SLIT before (prophylactic model) and after (therapeutic model) intranasal exposure of Der f. We investigated airway responsiveness, airway inflammation, allergen-specific antibodies, lung histology and single-cell RNA sequencing (scRNA-seq) and T-cell receptor sequencing were also investigated. SLIT in the therapeutic model was effective; however, the effects of SLIT in the prophylactic model were stronger and immune tolerance was maintained for three months. ScRNA-seq of lung CD4+CD25+ T cells revealed that the expansion of induced T regulatory (iTreg) cells was greater in the prophylactic model than that in the therapeutic model. Additionally, the TCR repertoire of iTregs from the prophylactic model was abundant, sharing many clones with the TCR repertoire of effector T cells. These data suggest that the prophylactic model of AIT is extremely effective and persistent, and may respond to allergen diversity, and provide evidence for the clinical recommendation of preventive AIT.
Collapse
MESH Headings
- Animals
- Sublingual Immunotherapy/methods
- Mice
- Disease Models, Animal
- Allergens/immunology
- Allergens/administration & dosage
- Female
- T-Lymphocytes, Regulatory/immunology
- Lung/immunology
- Lung/pathology
- Dermatophagoides farinae/immunology
- Mice, Inbred BALB C
- Antigens, Dermatophagoides/immunology
- Antigens, Dermatophagoides/administration & dosage
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Respiratory Hypersensitivity/therapy
- Respiratory Hypersensitivity/immunology
- Inflammation/therapy
- Inflammation/immunology
- Asthma/therapy
- Asthma/immunology
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan.
| | - Ami Aoki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Shun Naramoto
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Hiroshi Ueno
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Yuki Nishiyama
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Kenjiro Shima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Yosuke Kimura
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Takashi Hasegawa
- Department of General Medicine, Niigata University Medical and Dental Hospital, Niigata City, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| | - Keisuke Suzuki
- Research Laboratory, Torii Pharmaceutical Co. Ltd., Tokyo, Japan
| | | | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata City , Niigata, 951-8510, Japan
| |
Collapse
|
2
|
Tiotiu Cepuc A, Steiropoulos P, Novakova S, Nedeva D, Novakova P, Chong-Neto H, Fogelbach GG, Kowal K. Airway Remodeling in Asthma: Mechanisms, Diagnosis, Treatment, and Future Directions. Arch Bronconeumol 2024:S0300-2896(24)00367-3. [PMID: 39368875 DOI: 10.1016/j.arbres.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Airway remodeling (AR) with chronic inflammation, are key features in asthma pathogenesis. AR characterized by structural changes in the bronchial wall is associated with a specific asthma phenotype with poor clinical outcomes, impaired lung function and reduced treatment response. Most studies focus on the role of inflammation, while understanding the mechanisms driving AR is crucial for developing disease-modifying therapeutic strategies. This review paper summarizes current knowledge on the mechanisms underlying AR, diagnostic tools, and therapeutic approaches. Mechanisms explored include the role of the resident cells and the inflammatory cascade in AR. Diagnostic methods such as bronchial biopsy, lung function testing, imaging, and possible biomarkers are described. The effectiveness on AR of different treatments of asthma including corticosteroids, leukotriene modifiers, bronchodilators, macrolides, biologics, and bronchial thermoplasty is discussed, as well as other possible therapeutic options. AR poses a significant challenge in asthma management, contributing to disease severity and treatment resistance. Current therapeutic approaches target mostly airway inflammation rather than smooth muscle cell dysfunction and showed limited benefits on AR. Future research should focus more on investigating the mechanisms involved in AR to identify novel therapeutic targets and to develop new effective treatments able to prevent irreversible structural changes and improve long-term asthma outcomes.
Collapse
Affiliation(s)
- Angelica Tiotiu Cepuc
- Department of Pulmonology, University Hospital Saint-Luc, Brussels, Belgium; Pole Pneumology, ENT, and Dermatology - LUNS, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Paschalis Steiropoulos
- Department of Pulmonology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Silviya Novakova
- Department of Allergology, University Hospital "Sv. Georgi" Plovdiv, Bulgaria
| | - Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Plamena Novakova
- Department of Allergy, Medical University Sofia, Sofia, Bulgaria
| | - Herberto Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology and Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Li X, Yang W, Li Y, Kang J, Wang J, Fang M. Revealing the anti-inflammatory ingredients in wine-processed Radix et Rhizoma Rhei using immobilized cysteinyl leukotriene receptor type 1 as the stationary phase. J Pharm Biomed Anal 2024; 242:116036. [PMID: 38395001 DOI: 10.1016/j.jpba.2024.116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Despite the tremendous progress of wine-processed Radix et Rhizoma Rhei (Jiudahuang, JDH) in removing toxic heat from the blood in the upper portion of the body for hundreds of years, the deep understanding of its functional material basis of the anti-inflammatory ingredients remains unclear due to the lack of high specific and efficient methods. Herein, taking Cysteinyl leukotriene receptor type 1(CysLT1R) as the target protein, we established a chromatographic method based on the immobilized CysLT1R using haloalkane dehalogenases (Halo) at the C-terminus of the receptor in one step. After careful characterization by X-ray photoelectronic spectroscopy, immune-fluorometric analysis, and chromatographic investigations, the immobilized receptor was used to screen the anti-inflammatory ingredients in JDH. Aloe-emodin, rhein, emodin, chrysophanol, and physcion were identified as the main anthraquinone exerting anti-inflammatory effects in the drug. The association constants for the five compounds to bind with the receptor were calculated as (0.30 ± 0.06)× 105, (0.35 ± 0.03)× 105, (0.46 ± 0.05)× 105, (1.05 ± 0.14)× 105, and (1.66 ± 0.17)× 105 M-1 by injection amount-dependent method. Meanwhile, hydrogen bonds were identified as the main driving force for the five compounds to bind with CysLT1R by molecular docking. Based on these results, we believe that the immobilized receptor chromatography preserves historic significance in revealing the functional material basis of the complex matrices.
Collapse
Affiliation(s)
- Xuechao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Kang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Minfeng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Ren M, Li L, Jia J, Wei B. Association between PLA2G4A and P2RX7 genes and eosinophilic phenotype and environment with pediatric asthma. Gene X 2023; 857:147182. [PMID: 36623677 DOI: 10.1016/j.gene.2023.147182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mengyang Ren
- Jinzhou Medical University, Jinzhou, Liaoning 110016, PR China; General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, PR China
| | - Lingxue Li
- General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, PR China
| | - Jingjing Jia
- Jinzhou Medical University, Jinzhou, Liaoning 110016, PR China; General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, PR China
| | - Bing Wei
- General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
5
|
Sobczak M, Pawliczak R. Does Vitamin D Work Synergistically with Anti-Asthmatic Drugs in Airway Remodeling? Int J Mol Sci 2022; 23:12798. [PMID: 36361588 PMCID: PMC9656909 DOI: 10.3390/ijms232112798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/25/2023] Open
Abstract
Vitamin D is commonly known for its properties of airway remodeling inhibition. Due to this, we decided to analyze the action of calcitriol with anti-asthmatic drugs in airway remodeling. The HFL1 cell line was treated with calcitriol, beclomethasone 17-propionate, montelukast sodium, LTD4 and TGF-β in different combinations. Real-time PCR was used to analyzed the expression of ACTA2, CDH-1, Vimentin, ADAM33, MMP-9 and CysLTR1 on the mRNA level, whereas Western blot was used to analyze gene expression on the protein level. One-way analysis variants, the Kruskal-Wallis test, Student's t-test or Welch's t-test were used for statistical analysis. Concerning the results, pre-treatment with calcitriol increased the inhibitory effect of beclomethasone 17-propionate and montelukast sodium on the expression of ACTA2 (p = 0.0072), Vimentin (p = 0.0002) and CysLTR1 (p = 0.0204), and 1,25(OH)2D3 had an influence on the effects of beclomethasone 17-propionate and montelukast sodium and of CDH1 expression (p = 0.0076). On the protein level, pre-treatment with calcitriol with beclomethasone 17-propionate and montelukast sodium treatment decreased ACTA2 expression in comparison to the LT (LTD4 and TGF-β) control group (p = 0.0191). Hence, our study not only confirms that vitamin D may inhibit airway remodeling, but also shows that vitamin D has a synergistic effect with anti-asthmatic drugs.
Collapse
Affiliation(s)
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
6
|
Decaesteker T, Jonckheere AC, Vanhoffelen E, Schauvaerts J, Verhalle T, Cremer J, Dilissen E, Rodewald HR, Dupont L, Bullens DMA, Vanoirbeek JAJ. Chlorine exposure and intensive exercise induces airway hyperreactivity in a 3-week murine exercise model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157046. [PMID: 35779717 DOI: 10.1016/j.scitotenv.2022.157046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Exercise-induced bronchoconstriction (EIB) is defined as acute narrowing of the airways during or immediately after exercise. EIB has a high prevalence in elite swimmers probably due to the high ventilation rate and exposure to the chlorine by-products. It is still puzzling which pathophysiological mechanisms drive EIB. OBJECTIVE In this study, we evaluated airway hyperreactivity, permeability, integrity and inflammation in a murine swimmers EIB model with and without chlorine exposure. METHODS Mice performed a 3-week swimming protocol in a swimming pool with counter current. Three hours after the last swimming session, airway hyperreactivity to methacholine was assessed. Cytokine levels and cellular differential analysis was performed in BAL fluid. Airway permeability and tight junction expression was measured in serum and lung tissue. T-, B-, dendritic and innate lymphoid cells were determined in lung tissue via flow cytometry. RESULTS A significant higher airway resistance (Rn; P < 0.0001) was observed in mice swimming in chlorinated water (mean Rn = 1.26 cmH2O.s/ml) compared to mice swimming in tap water (mean Rn = 0.76 cmH2O.s/ml) and both inhalation groups in the absence of cellular inflammation. No significant differences were found in lung immune cell populations or in lung tight junction mRNA expression. Experiments in SCID, Rag2-/-γc-/- or Cpa3cre/+ mice showed a limited involvement of the innate, adaptive immune system or the mast cells. CONCLUSION Our 3-week swimming murine model mimics intensive swimming in chlorinated water with the presence of airway hyperreactivity in mice swimming in chlorinated water in the absence of airway inflammation and airway epithelial damage.
Collapse
Affiliation(s)
- Tatjana Decaesteker
- KU Leuven, Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, Herestraat 49 box 706, 3000 Leuven, Belgium
| | - Anne-Charlotte Jonckheere
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Eliane Vanhoffelen
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, Herestraat 49 box 505, 3000 Leuven, Belgium
| | - Jens Schauvaerts
- KU Leuven, Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, Herestraat 49 box 706, 3000 Leuven, Belgium
| | - Tulasi Verhalle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Ellen Dilissen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Hans-Reimer Rodewald
- German Cancer Research Center, Division of Cellular Immunology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lieven Dupont
- KU Leuven, Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, Herestraat 49 box 706, 3000 Leuven, Belgium; UZ Leuven, Clinical division of Respiratory Medicine, Herestraat 49, 3000 Leuven, Belgium
| | - Dominique M A Bullens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology research group, Herestraat 49 box 811, 3000 Leuven, Belgium; UZ Leuven, Clinical division of Paediatrics, Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- KU Leuven, Department of Public Health and Primary Care, Centre for Environment and Health, Herestraat 49 box 952, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Halayko AJ, Pascoe CD, Gereige JD, Peters MC, Cohen RT, Woodruff PG. Update in Adult Asthma 2020. Am J Respir Crit Care Med 2021; 204:395-402. [PMID: 34181860 DOI: 10.1164/rccm.202103-0552up] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrew J Halayko
- University of Manitoba, 8664, SECTION OF RESPIRATORY DISEASES, Winnipeg, Manitoba, Canada.,University of Manitoba, 8664, Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- University of Manitoba, 8664, Physiology and Pathophysiology, Winnipeg, Manitoba, Canada.,University of Manitoba Children's Hospital Research Institute of Manitoba, 423136, Winnipeg, Manitoba, Canada
| | - Jessica D Gereige
- Boston University School of Medicine, 12259, Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston, Massachusetts, United States
| | - Michael C Peters
- University of California San Francisco, 8785, Pulmonary and Critical Care, San Francisco, California, United States
| | - Robyn T Cohen
- Boston University School of Medicine, 12259, Pediatrics, Boston, Massachusetts, United States
| | - Prescott G Woodruff
- UCSF, 8785, Division of Pulmonary and Critical Care Medicine, Department of Medicine and CVRI, San Francisco, California, United States;
| |
Collapse
|
8
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
9
|
Rodriguez Bauza DE, Silveyra P. Asthma, atopy, and exercise: Sex differences in exercise-induced bronchoconstriction. Exp Biol Med (Maywood) 2021; 246:1400-1409. [PMID: 33794694 DOI: 10.1177/15353702211003858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Asthma is a chronic inflammatory lung disease affecting approximately 7.7% of the US population. Sex differences in the prevalence, incidence, and severity of asthma have been widely described throughout the lifespan, showing higher rates in boys than girls before puberty, but a reversed pattern in adults. Asthma is often associated with atopy, i.e. the tendency to develop allergic diseases, and can be worsened by environmental stimuli and/or exercise. While not exclusive to patients with asthma, exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. Currently, there is limited research on sex differences in EIB and its relationship with atopy and asthma in men and women. In this minireview, we summarize the available literature on this topic. Overall, the collective knowledge supports the notion that physiological changes triggered during exercise affect males and females differently, suggesting an interaction among sex, exercise, sex hormones, and atopic status in the course of EIB pathophysiology. Understanding these differences is important to provide personalized management plans to men and women who exercise regularly and suffer from underlying asthma and/or atopy.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- Biobehavioral Laboratory, The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC 27599, USA.,Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Ueno H, Koya T. Reply to: The Intricate Web of Phospholipase A 2s and Specific Features of Airway Hyperresponsiveness in Asthma. Am J Respir Cell Mol Biol 2020; 63:545-546. [PMID: 32484747 DOI: 10.1165/rcmb.2020-0186le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hiroshi Ueno
- Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Koya
- Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
11
|
Murphy RC, Altemeier WA, Lai Y, Hallstrand TS. The Intricate Web of Phospholipase A 2s and Specific Features of Airway Hyperresponsiveness in Asthma. Am J Respir Cell Mol Biol 2020; 63:543-545. [PMID: 32484733 DOI: 10.1165/rcmb.2020-0131le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Ying Lai
- University of Washington, Seattle, Washington
| | | |
Collapse
|
12
|
Bossé Y, Côté A. Asthma: An Untoward Consequence of Endurance Sports? Am J Respir Cell Mol Biol 2020; 63:7-8. [PMID: 32223717 PMCID: PMC7328247 DOI: 10.1165/rcmb.2020-0092ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuebec, Quebec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de QuébecUniversité LavalQuebec, Quebec, Canada
| |
Collapse
|