1
|
Podolanczuk AJ, Wong AW, Saito S, Lasky JA, Ryerson CJ, Eickelberg O. Update in Interstitial Lung Disease 2020. Am J Respir Crit Care Med 2021; 203:1343-1352. [PMID: 33835899 DOI: 10.1164/rccm.202103-0559up] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Shigeki Saito
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Joseph A Lasky
- Section of Pulmonary Disease, Critical Care and Environmental Medicine, Department of Medicine, Tulane University, New Orleans, Louisiana; and
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Zhang JX, Huang PJ, Wang DP, Yang WY, Lu J, Zhu Y, Meng XX, Wu X, Lin QH, Lv H, Xie H, Wang RL. m 6A modification regulates lung fibroblast-to-myofibroblast transition through modulating KCNH6 mRNA translation. Mol Ther 2021; 29:3436-3448. [PMID: 34111558 DOI: 10.1016/j.ymthe.2021.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal lung disease characterized by progressive and non-reversible abnormal matrix deposition in lung parenchyma. Myofibroblasts origin mainly from resident fibroblasts via fibroblast-to-myofibroblast transition (FMT) are the dominant collagen-producing cells in pulmonary fibrosis. N6-methyladenosine (m6A) modification has been implicated in various biological process. However, the role of m6A modification in pulmonary fibrosis remains elusive. In this study, we reveal that m6A modification is up-regulated in bleomycin induced pulmonary fibrosis mice model, FMT-derived myofibroblasts and idiopathic pulmonary fibrosis patient lung samples. Lowering m6A level through silencing METTL3 inhibits FMT process in vitro and vivo. Mechanistically, KCNH6 is involved in m6A-regulated FMT process. m6A modification regulates the expression of KCNH6 by modulating its translation in a YTHDF1 dependent manner. Together, our study highlights the critical role of m6A modification in pulmonary fibrosis. Manipulation of m6A modification through targeting METTL3 may become a promising strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Pei-Jie Huang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Da-Peng Wang
- Department of Intensive Medicine,Wuxi People's Hospital Affiliated to Nanjing Medical University,Wuxi,Jiangsu, 214021,China
| | - Wen-Yu Yang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Xiao-Xiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Xin Wu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Qiu-Hai Lin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Hui Lv
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China.
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 650 Xinsongjiang Rd, Shanghai, 201620, China.
| |
Collapse
|
3
|
Kuehlmann B, Bonham CA, Zucal I, Prantl L, Gurtner GC. Mechanotransduction in Wound Healing and Fibrosis. J Clin Med 2020; 9:jcm9051423. [PMID: 32403382 PMCID: PMC7290354 DOI: 10.3390/jcm9051423] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Skin injury is a common occurrence and mechanical forces are known to significantly impact the biological processes of skin regeneration and wound healing. Immediately following the disruption of the skin, the process of wound healing begins, bringing together numerous cell types to collaborate in several sequential phases. These cells produce a multitude of molecules and initiate multiple signaling pathways that are associated with skin disorders and abnormal wound healing, including hypertrophic scars, keloids, and chronic wounds. Studies have shown that mechanical forces can alter the microenvironment of a healing wound, causing changes in cellular function, motility, and signaling. A better understanding of the mechanobiology of cells in the skin is essential in the development of efficacious therapeutics to reduce skin disorders, normalize abnormal wound healing, and minimize scar formation.
Collapse
Affiliation(s)
- Britta Kuehlmann
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
| | - Isabel Zucal
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Lukas Prantl
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
- Correspondence: ; Tel.: +1-650-736-2776
| |
Collapse
|