Ramesh M, Sankar C, Umamatheswari S, Balamurugan J, Jayavel R, Gowran M. Hydrothermal synthesis of ZnZrO
2/chitosan (ZnZrO
2/CS) nanocomposite for highly sensitive detection of glucose and hydrogen peroxide.
Int J Biol Macromol 2023;
226:618-627. [PMID:
36481338 DOI:
10.1016/j.ijbiomac.2022.11.318]
[Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In this work, pure ZnZrO2 and chitosan supported (ZnZrO2/CS) nanocomposite have been synthesized at low coast by hydrothermal method. FT-IR, Micro Raman, PXRD, HR-SEM-EDAX, HR-TEM, AFM, BET and XPS were used to analyze the structural and morphological properties of the fabricated nanocomposites. The fabricated ZnZrO2 and ZnZrO2/CS nanocomposites were measured for their electrocatalytic activity towards glucose and hydrogen peroxide determinations. The ZnZrO2/CS sensor exhibited wide detection range (5 μM to 5.85 mM), high sensitivity (6.78 μA mM-1 cm-2), LOD (2.31 μM), and long-term stability for glucose detection in alkaline solution. Also, as a multifunctional electrochemical sensor, ZnZrO2/CS sensor exhibits excellent sensing ability towards hydrogen peroxide, with a wide dynamic range (20 μM to 6.85 mM), a high sensitivity (2.22 μA mM-1 cm-2), and a LOD (2.08 μM) (S/N = 3). The electrochemical measurement shows that the ZnZrO2/CS sensor has excellent catalytic activity and a much LOD than ZnZrO2. The modified electrode showed excellent anti interference nature. Furthermore, this ZnZrO2/CS electrode was used to detection of glucose and H2O2 in human blood serum and HeLa cells respectively.
Collapse