1
|
Li X, Shi L, Song Z, Sun Y, Wu X, Dong Z, Yan Y. Study on the molecular mechanism of gold nanorods interacting with fibrinogen and transferrin to form protein corona. Int J Biol Macromol 2024; 278:134812. [PMID: 39163954 DOI: 10.1016/j.ijbiomac.2024.134812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The molecular mechanism of the formation of protein corona by the interaction of gold nanorods (AuNRs) with fibrinogen and transferrin was studied by spectroscopic methods and molecular docking. Studies have shown that AuNRs can be used as quencher to quench the fluorescence of fibrinogen/transferrin. The quenching mechanism mainly comes from static quenching. Fibrinogen has two different binding sites on the longitudinal and the transverse plane of AuNRs respectively, while transferrin has only one binding site on the surface of AuNRs. The adsorption process conforms to Freundlich adsorption isotherm and the pseudo-second-order reaction. The chemisorption is the rate-limiting step. Fibrinogen/transferrin may be a component of the "hard corona" because they bind AuNRs with high binding affinity. The formation of protein corona leads to a decrease in the hydrophobicity of the microenvironment around transferrin tryptophan (Trp) residues and an increase in the hydrophobicity of the microenvironment around fibrinogen/transferrin tyrosine (Tyr) residues, affecting the tertiary and secondary structure of fibrinogen/transferrin. Molecular docking can clearly see the specific amino acid residues of fibrinogen and transferrin adsorbed on AuNRs, and verify the experimental results.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Xinxiang Engineering Technology Research Center of Functional Medical Nanomaterials, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Li Shi
- Department of Medical Chemistry, Xinxiang Engineering Technology Research Center of Functional Medical Nanomaterials, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yujie Sun
- Grade 2022, Anesthesiology, Junji College, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xinzhe Wu
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ze Dong
- Grade 2019, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yunhui Yan
- Department of Medical Chemistry, Xinxiang Engineering Technology Research Center of Functional Medical Nanomaterials, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
2
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
3
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
4
|
Chaala M, Sebba FZ, Fuster MG, Moulefera I, Montalbán MG, Carissimi G, Víllora G. Accelerated Simple Preparation of Curcumin-Loaded Silk Fibroin/Hyaluronic Acid Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030504. [PMID: 36771806 PMCID: PMC9919302 DOI: 10.3390/polym15030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The development of new biomaterials from natural fibres in the field of biomedicine have attracted great interest in recent years. One of the most studied fibres has been silk fibroin produced by the Bombyx mori worm, due to its excellent mechanical properties and its biodegradability and bioavailability. Among the different biomaterials that can be prepared from silk fibroin, hydrogels have attracted considerable attention due to their potential use in different fields, such as scaffolding, cell therapy and biomedical application. Hydrogels are essentially a three-dimensional network of flexible polymer chains that absorb considerable amounts of water and can be loaded with drugs and/or cells inside to be used in a wide variety of applications. Here we present a simple sonication process for the preparation of curcumin-hyaluronic acid-silk fibroin hydrogels. Different grades of hydrogels were prepared by controlling the relative amounts of their components. The hydrogels were physically and morphologically characterised by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) and their biological activity was tested in terms of cell viability in a fibroblast cell line.
Collapse
Affiliation(s)
- Mohamed Chaala
- Laboratoire de Chimie Physique Macromoléculaire, Département de Chimie, Université Oran1 Ahmed Ben Bella, B.P 1524, El-Menaouer, Oran 31000, Algeria
| | - Fatima Zohra Sebba
- Laboratoire de Chimie Physique Macromoléculaire, Département de Chimie, Université Oran1 Ahmed Ben Bella, B.P 1524, El-Menaouer, Oran 31000, Algeria
| | - Marta G. Fuster
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
| | - Imane Moulefera
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
- Correspondence: ; Tel.: +34-868-88-7394
| | - Mercedes G. Montalbán
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
| | - Guzmán Carissimi
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
| | - Gloria Víllora
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
| |
Collapse
|
5
|
Gupta DS, Kaur G, Bhushan S, Sak K, Garg VK, Aggarwal D, Joshi H, Kumar P, Yerer MB, Tuli HS. Phyto nanomedicine for cancer therapy. NANOTECHNOLOGY IN HERBAL MEDICINE 2023:313-347. [DOI: 10.1016/b978-0-323-99527-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
6
|
Dey A, Gare S, Swain S, Bhattacharya P, Dhyani V, Giri L, Neogi S. 3D
imaging and quantification of
PLL
coated fluorescent
ZnO NP
distribution and
ROS
accumulation using
LSCM. AIChE J 2022. [DOI: 10.1002/aic.17801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aishee Dey
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| | - Suman Gare
- Department of Chemical Engineering Indian Institute of Technology Hyderabad India
| | - Sarpras Swain
- Department of Chemical Engineering Indian Institute of Technology Hyderabad India
| | - Proma Bhattacharya
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| | - Vaibhav Dhyani
- Department of Chemical Engineering Indian Institute of Technology Hyderabad India
| | - Lopamudra Giri
- Department of Chemical Engineering Indian Institute of Technology Hyderabad India
| | - Sudarsan Neogi
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
7
|
rasouli Z, ghavami R. Fading of nanocurcumin-based configured biosensor array for differentiation of carrier proteins in biological fluids. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Amekyeh H, Alkhader E, Sabra R, Billa N. Prospects of Curcumin Nanoformulations in Cancer Management. Molecules 2022; 27:361. [PMID: 35056675 PMCID: PMC8777756 DOI: 10.3390/molecules27020361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho PMB 31, Ghana;
| | - Enas Alkhader
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan;
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Aqeel R, Srivastava N, Kushwaha P. Micelles in Cancer Therapy: An Update on Preclinical and Clinical Status. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:283-294. [PMID: 34303336 DOI: 10.2174/1872210515666210720125717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In the recent years, Micelles represent a promising carrier for the treatment and diagnosis of cancer. Architecturally, micelles are self-assembled nanosized colloidal aggregates prepared from amphiphilic surfactant with a hydrophobic core and hydrophilic shell. Such a composition makes them a potential carrier for delivery of hydrophobic anticancer drugs with in their core. METHODS Micelles have received increasing interest as an enhanced permeability and retention (EPR) targeted drug delivery systems for cancer treatment. Micelles can be modified to contribute various attractive properties, for instance, active targeting, stimuli-responsiveness. They have also proven their ability in drug targeting to tumor tissue, enhanced drug accumulation, drug stabilization, tissue penetration, prolong circulation, in vivo biocompatibility, biodegradability and reduced side effects. Micelles have displayed a vital role in multidrug delivery for cancer therapy. RESULTS AND DISCUSSION The aim of the present review is to provide an overview on the status of micellar nanoformulations for anticancer agents, including their pre-clinical and clinical researches. Emphasis is placed on presenting the newer strategies to enhance the therapeutic efficacy of anticancer drug at the target site. The type of co-polymers used and methods for the preparation of micelles are also highlighted in the paper.
Collapse
Affiliation(s)
- Rabia Aqeel
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Nidhi Srivastava
- Herbal Medicinal Product Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, UP-226015, India
| | | |
Collapse
|
10
|
Sharma M, Kumari M, Rani S, Yadav AK, Solanki PR, Mozumdar S. Influence of pH, β-Cyclodextrin, and Metal Ions on the Solubility and Stability of the Medicinally Competent Isoxazole Derivative of Curcumin: A Photophysical Study. ACS APPLIED BIO MATERIALS 2021; 4:8407-8423. [PMID: 35005944 DOI: 10.1021/acsabm.1c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The β-diketo-modified isoxazole derivative of curcumin (IOC) is well renowned for its anticancer, antioxidant, antimalarial, antiproliferative, and many other biological activities. With the aim of obtaining fundamental knowledge on the photophysics of IOC, the present work was directed toward delineating those at different pH environments and studying the degradation profiles of IOC at five different pH values. Because one of the primary drawbacks of curcumin is its rapid degradation at physiological conditions, the studies showed that the problem could be resolved, as the IOC molecule was extremely stable even in a highly alkaline medium. Further, in order to encounter the problems associated with the low solubility of IOC in aqueous media, β-CD (β-cyclodextrin) was used and calculations of the thermodynamic parameters revealed that the process of development of the host-guest inclusion complex was highly spontaneous in nature. The synthesis of the IOC:β-CD inclusion complex has also been accomplished in the solid state, and the solid formed has been characterized using various physicochemical techniques. Finally, while variations in the pH as well as addition of foreign metal ions in +1 and +2 oxidation states showed minimal effect on the photophysics of the IOC:β-CD inclusion complex, antiproliferative studies performed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays revealed their nontoxic nature on fibroblast L929 normal cell lines and extremely toxic activity on human lung cancer A549 cell lines.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Mamta Kumari
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Swati Rani
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Subho Mozumdar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
11
|
Stefaniuk D, Misztal T, Pięt M, Zając A, Kopycińska M, Matuszewska A, Ruminowicz-Stefaniuk M, Matuszewski Ł, Marcińczyk N, Belcarz A, Żuchowski J, Skrabalak I, Grąz M, Ciołek B, Paduch R, Jaszek M. Thromboelastometric Analysis of Anticancer Cerrena unicolor Subfractions Reveal Their Potential as Fibrin Glue Drug Carrier Enhancers. Biomolecules 2021; 11:biom11091263. [PMID: 34572476 PMCID: PMC8470457 DOI: 10.3390/biom11091263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, the influence of two subfractions (with previously proven anti-cancer properties) isolated from wood rot fungus Cerrena unicolor on the formation of a fibrin clot was investigated in the context of potential use as fibrin glue and sealant enhancers and potential wound healing agents. With the use of ROTEM thromboelastometry, we demonstrated that, in the presence of fibrinogen and thrombin, the S6 fraction accelerated the formation of a fibrin clot, had a positive effect on its elasticity modulus, and enhanced the degree of fibrin cross-linking. The S5 fraction alone showed no influence on the fibrin coagulation process; however, in the presence of fibrin, it exhibited a decrease in anti-proliferative properties against the HT-29 line, while it increased the proliferation of cells in general at a concentration of 100 µg/mL. Both fractions retained their proapoptotic properties to a lesser degree. In combination with the S6 fraction in the ratio of 1:1 and 1:3, the fractions contributed to increased inhibition of the activity of matrix metalloproteinases (MMPs). This may suggest anti-metastatic activity of the combined fractions. In conclusion, the potential of the fractions isolated from the C. unicolor secretome to be used as a means of improving the wound healing process was presented. The potential for delivering agents with cytostatic properties introduced far from the site of action or exerting a pro-proliferative effect at the wound site with the aid of a fibrin sealant was demonstrated.
Collapse
Affiliation(s)
- Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
- Correspondence: (D.S.); (T.M.)
| | - Tomasz Misztal
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Białystok, Poland
- Correspondence: (D.S.); (T.M.)
| | - Mateusz Pięt
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (M.P.); (M.K.); (R.P.)
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| | - Magdalena Kopycińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (M.P.); (M.K.); (R.P.)
| | - Anna Matuszewska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Marta Ruminowicz-Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Łukasz Matuszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Natalia Marcińczyk
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Jerzy Żuchowski
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation—State Research Institute, 24-100 Puławy, Poland;
| | - Ilona Skrabalak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Beata Ciołek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (M.P.); (M.K.); (R.P.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| |
Collapse
|
12
|
Barros RM, de Oliveira MS, Costa KMN, Sato MR, Santos KLM, de L Damasceno BPG, Cuberes T, Oshiro-Junior JA. Physicochemical Characterization of Bioactive Compounds in Nanocarriers. Curr Pharm Des 2021; 26:4163-4173. [PMID: 32156229 DOI: 10.2174/1381612826666200310144533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
The encapsulation of bioactive compounds is an emerging technique for finding new medicines since it provides protection against ambient degradation factors before reaching the target site. Nanotechnology provides new methods for encapsulating bioactive compounds and for drug carrier development. Nanocarriers satisfactorily impact the absorption, distribution, metabolism, and excretion rate when compared to conventional carriers. The nanocarrier material needs to be compatible and bind to the drug and be bio-resorbable. In this context, the physicochemical characterization of encapsulated bioactive compounds is fundamental to guarantee the quality, reproducibility, and safety of the final pharmaceutical product. In this review, we present the physicochemical techniques most used today by researchers to characterize bioactive compounds in nanocarriers and the main information provided by each technique, such as morphology, size, degree of crystallinity, long-term stability, the efficacy of drug encapsulation, and the amount released as a function of time.
Collapse
Affiliation(s)
- Rafaella M Barros
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Maísa S de Oliveira
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Kammila M N Costa
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Mariana R Sato
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista (UNESP), Araraquara-Jau, Km 1, Araraquara, Sao Paulo, Brazil
| | - Karen L M Santos
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Bolívar P G de L Damasceno
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| | - Teresa Cuberes
- Laboratorio de Nanotecnologia, Universidad de Castilla-La Mancha (UCLM), Plaza Manuel Meca 1, 13400 Almaden, Spain
| | - Joáo A Oshiro-Junior
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Estadual da Paraiba, Av. das Baraunas, 351, Campina Grande, PB, 58109-753, Brazil
| |
Collapse
|
13
|
Zainuddin N, Ahmad I, Zulfakar MH, Kargarzadeh H, Ramli S. Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin. Carbohydr Polym 2020; 254:117401. [PMID: 33357890 DOI: 10.1016/j.carbpol.2020.117401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Low bioavailability and poor water solubility have limited the utilization of curcumin in conventional dosing methods. As an alternative, microemulsions as drug carrier can improve curcumin delivery. A cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC)-based microemulsion was developed and its potential use as a topical delivery method for curcumin was investigated. The effect of microemulsion's particle size and its microstructure as well as the presence of the CTAB-NCC nanoparticle on the topical delivery of curcumin was studied. In vitro permeation studies showed higher penetration rate of curcumin from the oil-in-water type-microemulsions. The skin permeation profile of curcumin followed Higuchi release kinetics. Furthermore, use of the (CTAB-NCC)-based microemulsion enhanced curcumin accumulation in the skin and these system showed non cytotoxicity effect on L929 cell line. These results showed the potential of (CTAB-NCC)-based microemulsions as controlled-release topical systems for the delivery of curcumin and potentially other lipophilic drugs.
Collapse
Affiliation(s)
- Norhidayu Zainuddin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ishak Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia
| | - Mohd Hanif Zulfakar
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódz, Poland
| | - Suria Ramli
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
14
|
Vlassi E, Papagiannopoulos A. Nanoformulation of fibrinogen by thermal stabilization of its electrostatic complexes with hyaluronic acid. Int J Biol Macromol 2020; 158:251-257. [PMID: 32360964 DOI: 10.1016/j.ijbiomac.2020.04.244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
The formulation of well-defined and stable fibrinogen-based nanoparticles (NPs) without the use of any chemical reaction or any toxic organic solvent is reported. Electrostatic interaction between hyaluronic acid (HA) and fibrinogen (Fbg) leads to well-defined complexes at acidic pH which however readily dissolve at neutral pH. On the other hand, when thermal treatment is applied on the pre-formed complexes NPs keep their integrity. Circular dichroism indicates that the protein's native secondary conformation in the final NPs is not affected by the formulation. The tendency of the complexes to aggregate at elevated ionic strengths is greatly suppressed after the application of the temperature treatment protocol. This characteristic is even more pronounced at neutral pH and it is connected to the enhanced surface charge of the NPs. The encapsulation of the hydrophobic compound curcumin causes only weak secondary aggregation. This work shows that the ability of Fbg to self-assemble upon thermal treatment can be effectively used to stabilize Fbg nanoformulations inside complexes with polysaccharides.
Collapse
Affiliation(s)
- Eleni Vlassi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
15
|
|
16
|
Mathew M, Vinod K, Jayaram PS, Jayasree RS, Joseph K. Improved Bioavailability of Curcumin in Gliadin-Protected Gold Quantum Cluster for Targeted Delivery. ACS OMEGA 2019; 4:14169-14178. [PMID: 31508538 PMCID: PMC6732771 DOI: 10.1021/acsomega.9b00917] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/05/2019] [Indexed: 05/13/2023]
Abstract
This study deals with the synthesis of a gliadin-stabilized gold quantum cluster (AuQC) for the encapsulation of curcumin (CUR) and its targeted delivery to the cancer cell. CUR is an anticancer drug containing a hydrophobic polyphenol derived from the rhizome of Curcuma longa. The utilization of CUR in cancer treatment is limited because of suboptimal pharmacokinetics and poor bioavailability at the tumor site. In order to improve the bioavailability of CUR, we have encapsulated it into AuQCs stabilized by a proline-rich protein gliadin because proline-rich protein has the ability to bind a hydrophobic drug CUR. The encapsulation of CUR into the hydrophobic cavity of the protein was confirmed by various spectroscopic techniques. Compared to CUR alone, the encapsulated CUR was stable against degradation and showed higher pH stability up to pH 8.5. The encapsulation efficiency of CUR in AuQCs was calculated as 98%, which was much higher than the other reported methods. In vitro drug release experiment exhibited a controlled and pH-dependent CUR release over a period of 60 h. The encapsulated CUR-QCs exhibited less toxicity in the normal cell line (L929) and high toxicity in breast cancer (MDA-MB239). Thus, it can be used as a potential material for anticancer therapy and bioimaging.
Collapse
Affiliation(s)
- Meegle
S. Mathew
- Department
of Chemistry, Indian Institute of Space
Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695547, India
| | - Kavya Vinod
- Department
of Chemistry, Pondicherry University, Pondicherry, Tamilnadu 605014, India
| | - Prasad S. Jayaram
- Division
of Biophotonics and Imaging, Sree Chitra
Tirunal Institute for Medical Sciences and Technology (SCTIMST), Bio-Medical Technology Wing, Trivandrum 695012, India
| | - Ramapurath S. Jayasree
- Division
of Biophotonics and Imaging, Sree Chitra
Tirunal Institute for Medical Sciences and Technology (SCTIMST), Bio-Medical Technology Wing, Trivandrum 695012, India
| | - Kuruvilla Joseph
- Department
of Chemistry, Indian Institute of Space
Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695547, India
- E-mail: . Phone: +914712568632
| |
Collapse
|
17
|
Yang W, Shi J, Zhou Y, Liu T, Li J, Hong F, Zhang K, Liu N. Co-expression Network Analysis Identified Key Proteins in Association With Hepatic Metastatic Colorectal Cancer. Proteomics Clin Appl 2019; 13:e1900017. [PMID: 31397080 DOI: 10.1002/prca.201900017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/16/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Intense efforts have been made in colorectal cancer (CRC) treatment in recent decades. However, the mechanism of development and metastasis of CRC has not been fully cleared. This study is designed to identify key proteins involved in stage III and hepatic metastatic CRC. EXPERIMENT DESIGN Protein expression profiles of paired tumor and benign tissue samples from stage III and hepatic metastatic CRC patients are characterized by using a label-free proteomics approach. Key proteins relevant to hepatic metastatic CRC are revealed by weighted gene correlation network analysis (WGCNA) and other bioinformatics tools. RESULTS WGCNA reveals three hub modules: CRC without specific stage (turquoise), stage III CRC (blue), and hepatic metastatic CRC (green). Nine key proteins (heat shock protein family D member 1 (HSPD1), eukaryotic translation elongation factor 1 gamma, heterogeneous nuclear ribonucleoprotein A2/B1, fibrinogen beta chain (FGB), Talin 1, adaptor related protein complex 2 subunit alpha 2, serrate RNA effector molecule homolog, apolipoprotein C3, phosphoglucomutase 5) are identified. Moreover, upregulation of HSPD1 is validated in CRC tissue by the immunohistochemistry. Upregulation of fibrinogen is validated in metastatic CRC by plasma fibrinogen assay. CONCLUSION AND CLINICAL RELEVANCE This study provides the proteomic analysis of stage III and hepatic metastatic CRC to identify key proteins of CRC. FGB plays a key role to serve as diagnostic and therapeutic biomarkers for hepatic metastatic CRC.
Collapse
Affiliation(s)
- Wang Yang
- Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.,College of Clinical Medicine, Jilin University, Changchun, 130012, China
| | - Jian Shi
- Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yan Zhou
- Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong University, Jinan, 250033, China
| | - Tongjun Liu
- Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jiannan Li
- Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067, P. R. China
| | - Kai Zhang
- Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Changchun, 130041, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| |
Collapse
|
18
|
Cockle Shell-Derived Calcium Carbonate (Aragonite) Nanoparticles: A Dynamite to Nanomedicine. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cockle shell is an external covering of small, salt water edible clams (Anadara granosa) that dwells in coastal area. This abundant biomaterial is hard, cheap and readily available with high content of calcium carbonate in aragonite polymorphic form. At present, cockle shell-derived calcium carbonate nanoparticles (CSCaCO3NPs) with dual applications has remarkably drawn significant attention of researchers in nanotechnology as a nanocarrier for delivery of different categories of drugs and as bone scaffold due to its beneficial potentials such as biocompatibility, osteoconductivity, pH sensitivity, slow biodegradation, hydrophilic nature and a wide safety margin. In addition, CSCaCO3NP possesses structural porosity, a large surface area and functional group endings for electrostatic ion bonds with high loading capacity. Thus, it maintains great potential in the drug delivery system and a large number of biomedical utilisations. The pioneering researchers adopted a non-hazardous top-down method for the synthesis of CSCaCO3NP with subsequent improvements that led to the better spherical diameter size obtained recently which is suitable for drug delivery. The method is therefore a simple, low cost and environmentally friendly, which involves little procedural steps without stringent temperature management and expensive hazardous chemicals or any carbonation methods. This paper presents a review on a few different types of nanoparticles with emphasis on the versatile most recent advancements and achievements on the synthesis and developments of CSCaCO3NP aragonite with its applications as a nanocarrier for drug delivery in nanomedicine.
Collapse
|
19
|
Ramesh N, Mandal AKA. Encapsulation of epigallocatechin-3-gallate into albumin nanoparticles improves pharmacokinetic and bioavailability in rat model. 3 Biotech 2019; 9:238. [PMID: 31143560 PMCID: PMC6538741 DOI: 10.1007/s13205-019-1772-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
In the present study, we fabricated epigallocatechin-3-gallate (EGCG) loaded albumin nanoparticles (Alb-NP-EGCG) to enhance bioavailability and improve pharmacokinetic parameters of EGCG. The physicochemical properties of the Alb-NP-EGCG were studied using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction and in vitro release studies. Characterization of Alb-NP-EGCG indicated the formation of spherical nanoparticles with no drug and excipient interaction. Alb-NP-EGCG showed a high drug loading capacity of 92%. Further, in vitro study showed a sustained release of EGCG from Alb-NP-EGCG over a period of 48 h. Mathematical modeling and release kinetics indicated that the Alb-NP-EGCG followed zero order kinetic and EGCG was released via fickian diffusion method. In vivo bioavailability and distribution of Alb-NP-EGCG showed an enhanced plasma concentration of EGCG with 1.5 fold increase along with prolonged T 1/2 of 15.6 h in the system when compared with the free EGCG. All this study demonstrated the fabrication of EGCG loaded albumin nanoparticles which favored the slow and sustained release of EGCG with improved pharmacokinetics and bioavailability thereby prolonging the action of EGCG. Additional acute and sub-acute toxicity test of the Alb-NP-EGCG demonstrated the safety of the Alb-NP-EGCG. Therefore, the Alb-NP-EGCG could be a promising drug delivery system for EGCG.
Collapse
Affiliation(s)
- Nithya Ramesh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632014 India
| | - Abul Kalam Azad Mandal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632014 India
| |
Collapse
|
20
|
Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018; 23:molecules23112787. [PMID: 30373235 PMCID: PMC6278361 DOI: 10.3390/molecules23112787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has extensively demonstrated the anticancer potential of nutraceuticals, including plant polyphenols. Polymeric nanocarrier systems have played an important role in improving the physicochemical and pharmacological properties of polyphenols, thus ameliorating their therapeutic effectiveness. This article summarizes the benefits and shortcomings of various polymeric systems developed for the delivery of polyphenols in cancer therapy and reveals some ideas for future work.
Collapse
Affiliation(s)
- Umeorah Ernest
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai-Yan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming-Jun Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 1416663547, Iran.
| | | | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 5165665931, Iran.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| |
Collapse
|
21
|
Rejinold NS, Yoo J, Jon S, Kim YC. Curcumin as a Novel Nanocarrier System for Doxorubicin Delivery to MDR Cancer Cells: In Vitro and In Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28458-28470. [PMID: 30064206 DOI: 10.1021/acsami.8b10426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Curcumin (CRC) has been widely used as a therapeutic agent for various drug delivery applications. In this work, we focused on the applicability of CRC as a nanodrug delivery agent for doxorubicin hydrochloride (DOX) (commercially known as Adriamycin) coated with poly(ethylene glycol) (PEG) as an effective therapeutic strategy against multidrug-resistant cancer cells. The developed PEG-coated CRC/DOX nanoparticles (NPs) (PEG-CRC/DOX NPs) were well localized within the resistant cancer cells inducing apoptosis confirmed by flow cytometry and DNA fragmentation assays. The PEG-CRC/DOX NPs suppressed the major efflux proteins in DOX-resistant cancer cells. The in vivo biodistribution studies on HCT-8/DOX-resistant tumor xenograft showed improved bioavailability of the PEG-CRC/DOX NPs, and thereby suppressed tumor growth significantly compared to the other samples. This study clearly shows that curcumin nanoparticles could deliver DOX efficiently into the multidrug-resistant cancer cells to have potential therapeutic benefits.
Collapse
|
22
|
El-Far M, Salah N, Essam A, Abd El-Azim AO, El-Sherbiny IM. Silymarin nanoformulation as potential anticancer agent in experimental Ehrlich ascites carcinoma-bearing animals. Nanomedicine (Lond) 2018; 13:1865-1858. [DOI: 10.2217/nnm-2017-0394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aim: This study aimed to evaluate, for the first time the potential use of a safe biocompatible nanoformulation of silymarin (SM) as antitumor agent and to provide its mechanism of action compared with native SM. Materials & methods: SM was loaded into pluronic nanomicelles and Ehrlich ascites carcinoma-tumor-bearing mice were used as experimental model. Biochemical parameters including SOD, CAT and GSH, lipid peroxidation biomarkers (MDA), histopathological, ultrastructural and immunohistochemical studies were applied on the Ehrlich ascites carcinoma cells. Furthermore, the cell cycle as well as caspase-3 were examined. Results & conclusion: Nanoformulated SM (SMnp) destroyed tumors via increasing SOD, CAT and GSH concomitant with decreasing MDA. Moreover, SMnp-induced apoptosis through decreasing Ki-67 and Bcl2 expression, along with the activation of caspase-3, leads to inhibition of proliferation and the arrest of ceel cycle progression at the G1/S phase. Electron microscopy studies presented the superiority of SMnp over native SM in causing mitochondrial and nuclear degeneration in cancer cells.
Collapse
Affiliation(s)
- Mohamed El-Far
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Neven Salah
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Alaa Essam
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Amira O Abd El-Azim
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ibrahim M El-Sherbiny
- Center of Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt
| |
Collapse
|
23
|
Ahmed F, Kumari S, Kondapi AK. Evaluation of Antiproliferative Activity, Safety and Biodistribution of Oxaliplatin and 5-Fluorouracil Loaded Lactoferrin Nanoparticles for the Management of Colon Adenocarcinoma: an In Vitro and an In Vivo Study. Pharm Res 2018; 35:178. [DOI: 10.1007/s11095-018-2457-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
24
|
Singh A, Lavkush, Kureel AK, Dutta P, Kumar S, Rai AK. Curcumin loaded chitin-glucan quercetin conjugate: Synthesis, characterization, antioxidant, in vitro release study, and anticancer activity. Int J Biol Macromol 2018; 110:234-244. [DOI: 10.1016/j.ijbiomac.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
|
25
|
Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion. Int J Biol Macromol 2018; 110:598-607. [DOI: 10.1016/j.ijbiomac.2017.10.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
|
26
|
Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery. Int J Biol Macromol 2018; 110:318-327. [DOI: 10.1016/j.ijbiomac.2018.01.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/06/2018] [Accepted: 01/13/2018] [Indexed: 01/04/2023]
|
27
|
Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A. Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol 2017; 233:4497-4511. [PMID: 29052850 DOI: 10.1002/jcp.26249] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Atherothrombotic cardiovascular disease is a major cause of mortality throughout the world. Platelet activation and aggregation play a central role in hemostasis and thrombosis. Herbal medicines have been traditionally used in the management of cardiovascular disease and can help in modifying its progression, particularly in hemostasis and the coagulation process, as well as altering platelet function tests and some coagulation parameters. Curcumin is a polyphenol derived from the Curcuma longa plant and has been used extensively in complementary and alternative medicine, as it is nontoxic and safe with various therapeutic properties. Modern scientific research has demonstrated its anti-inflammatory, antioxidant, anti-carcinogenic, antithrombotic, and cardiovascular protective effects. The present study reviewed previous studies in the literature, which support the positive activity of curcumin in hemostasis, anticoagulation, and fibrinolysis. We also presented molecular mechanisms associated with the antiplatelet and anticoagulant activities of curcumin and potential implications for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Division, Booali Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cardiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Khameneh Bagheri
- Cardiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Ahmadi F, Ghasemi-Kasman M, Ghasemi S, Gholamitabar Tabari M, Pourbagher R, Kazemi S, Alinejad-Mir A. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan-alginate-STPP nanoparticles. Int J Nanomedicine 2017; 12:8545-8556. [PMID: 29238191 PMCID: PMC5716671 DOI: 10.2147/ijn.s146516] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan–alginate–sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR). FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was <50 nm. In vitro cytotoxicity assay suggested that curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of apoptosis in human cervical epithelioid carcinoma cancer cells, which might be regarded as an effective alternative strategy for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Student Research Committee, Babol University of Medical Sciences
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | | | | - Sohrab Kazemi
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Alinejad-Mir
- Department of Chemical Engineering, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
29
|
Tirkey B, Bhushan B, Uday Kumar S, Gopinath P. Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:507-515. [DOI: 10.1016/j.msec.2016.12.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/04/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
|
30
|
Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv 2017; 24:162-180. [PMID: 28156178 PMCID: PMC8241076 DOI: 10.1080/10717544.2016.1236846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
Collapse
Affiliation(s)
- Orazio Vittorio
- a UNSW Australia, Children's Cancer Institute, Lowy Cancer Research Center and ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Australian Center for NanoMedicine , Sydney , NSW , Australia
| | - Manuela Curcio
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Monica Cojoc
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany
| | - Gerardo F Goya
- d Institute of Nanoscience of Aragon (INA) and Department of Condensed Matter Physics, University of Zaragoza , Zaragoza , Spain
| | - Silke Hampel
- e Leibniz Institute of Solid State and Material Research Dresden , Dresden , Germany , and
| | - Francesca Iemma
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Anna Dubrovska
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany.,f German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Giuseppe Cirillo
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| |
Collapse
|
31
|
Paunovic V, Ristic B, Markovic Z, Todorovic-Markovic B, Kosic M, Prekodravac J, Kravic-Stevovic T, Martinovic T, Micusik M, Spitalsky Z, Trajkovic V, Harhaji-Trajkovic L. c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles. Biomed Microdevices 2016; 18:37. [PMID: 27106025 DOI: 10.1007/s10544-016-0062-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 μg/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of c-Jun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK- and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.
Collapse
Affiliation(s)
- Verica Paunovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Biljana Ristic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Zoran Markovic
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84541, Bratislava, Slovakia
| | - Biljana Todorovic-Markovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Mike Petrovica Alasa 12-14, Belgrade, 11001, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Jovana Prekodravac
- Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Mike Petrovica Alasa 12-14, Belgrade, 11001, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, Belgrade, 11000, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, Belgrade, 11000, Serbia
| | - Matej Micusik
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84541, Bratislava, Slovakia
| | - Zdeno Spitalsky
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84541, Bratislava, Slovakia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Ljubica Harhaji-Trajkovic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despot Stefan Blvd. 142, Belgrade, 11000, Serbia.
| |
Collapse
|
32
|
Shahgholian N, Rajabzadeh G. Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.11.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Abruzzo A, Zuccheri G, Belluti F, Provenzano S, Verardi L, Bigucci F, Cerchiara T, Luppi B, Calonghi N. Chitosan nanoparticles for lipophilic anticancer drug delivery: Development, characterization and in vitro studies on HT29 cancer cells. Colloids Surf B Biointerfaces 2016; 145:362-372. [PMID: 27214786 DOI: 10.1016/j.colsurfb.2016.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Abstract
The aim of this study was to develop chitosan-based nanoparticles that could encapsulate lipophilic molecules and deliver them to cancer cells. Nanoparticles were prepared with different molar ratios of chitosan, hyaluronic acid and sulphobutyl-ether-β-cyclodextrin and with or without curcumin. The nanosystems were characterized in terms of their size, zeta potential, morphology, encapsulation efficiency and stability in different media. Intestinal epithelial and colorectal cancer cells were treated with unloaded nanoparticles in order to study their effect on cellular membrane organization and ROS production. Finally, in vitro assays on both cellular lines were performed in order to evaluate the ability of nanoparticles to promote curcumin internalization and to study their effect on cell proliferation and cell cycle. Results show that nanoparticles were positively charged and their size increased with the increasing amounts of the anionic excipient. Nanoparticles showed good encapsulation efficiency and stability in water. Unloaded nanoparticles led to a change in lipid organization in the cellular membrane of both cell lines, without inducing ROS generation. Confocal microscopy, cell proliferation and cell cycle studies allowed the selection of the best formulation to limit curcumin cytotoxicity in normal intestinal epithelial cells and to reduce cancer cell proliferation. The latter was the result of the increase of expression for genes involved in apoptosis.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna INSTM, Centro S3 of CNR-Istituto Nanoscienze, Via Irnerio 48, 40126 Bologna, Italy.
| | - Federica Belluti
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Simona Provenzano
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Laura Verardi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Federica Bigucci
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Barbara Luppi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
34
|
Ahmad MZ, Alkahtani SA, Akhter S, Ahmad FJ, Ahmad J, Akhtar MS, Mohsin N, Abdel-Wahab BA. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. J Drug Target 2015; 24:273-93. [DOI: 10.3109/1061186x.2015.1055570] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Saad Ahmed Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Sohail Akhter
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Farhan Jalees Ahmad
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Javed Ahmad
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Nehal Mohsin
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Basel A. Abdel-Wahab
- Deparment of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Bhushan B, Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J Mater Chem B 2015; 3:4843-4852. [PMID: 32262673 DOI: 10.1039/c5tb00572h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several diseases and disorders, including cancer are endorsed by excessive oxidative stress caused due to the incomplete removal of reactive oxygen species (ROS) by the antioxidant defense system of the body. Therefore, present interest among the scientific community lies in the development of a highly stable, biocompatible artificial enzymatic system that possesses a high ROS scavenging activity over a period of time. In recent years, catalytic nanoparticles emerged as a potential candidate in the field of nanomedicine. Due to their inherent catalytic properties, they are exploited as an artificial enzyme (nanozyme), to reinstate or correct aberrant enzymatic activities in patients. Among them, cerium oxide nanoparticles/nanoceria (CNPs) emerged as a potent artificial redox enzyme, mimicking the activity of superoxide dismutase (SOD) and catalase and endure a tremendous ROS scavenging potential as depicted in a surfeit of human cell lines and animal models. In the present article, a facile synthesis of biocompatible nanoceria encapsulated albumin nanoparticles (BCNPs) via desolvation technique that lead to the abatement of intracellular ROS is reported. Physico-chemical characterizations of as-prepared BCNPs corroborate the formation of a highly monodispersed, spherical and stable aqueous delivery system. Interestingly, such entrapment does not affect the enzyme mimetic activity of CNPs, as demonstrated by SOD assay. The biocompatibility and ROS scavenging potential of BCNPs were further assessed in vitro against human lung epithelial cells by cell viability assay and flow cytometric analysis, respectively. The quantitative and qualitative assessments of cellular uptake of BCNPs were done by inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) analysis. Furthermore, the BCNPs preserve the cell's antioxidant defense system and protect them from oxidant-mediated apoptosis as confirmed by semi-quantitative RT-PCR analysis. Thus, the as-prepared BCNPs could provide an opportunity to be utilized as a potential candidate against ROS induced diseases and disorders.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | | |
Collapse
|
36
|
Gou Q, Liu L, Wang C, Wu Q, Sun L, Yang X, Xie Y, Li P, Gong C. Polymeric nanoassemblies entrapping curcumin overcome multidrug resistance in ovarian cancer. Colloids Surf B Biointerfaces 2015; 126:26-34. [PMID: 25543980 DOI: 10.1016/j.colsurfb.2014.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 02/05/2023]
Abstract
The increasing emergence of multidrug-resistant (MDR) cells presents a challenge to effective cancer therapy. Curcumin (CUR) has multifunctional anticancer properties, but its clinical use has been limited by poor solubility. We developed biodegradable polymeric micelles entrapping CUR in order to improve its antitumor activity and to explore whether it could treat MDR cells. This delivery system produced small micelles with a high encapsulation efficiency, good stability, and slow release of CUR. CUR micelles showed cytotoxic effects in wild-type drug-sensitive A2780s and in paclitaxel-resistant A2780t ovarian adenocarcinoma cells. The concentration of free CUR that reduced cell viability by 50% (IC50) was 1.5 fold and 1.2 fold higher than that of CUR micelles in A2780s and A2780t cells, respectively. Cellular uptake studies indicated that delivery by micelles improved CUR uptake into both cell lines. Cell cycle analysis suggested that CUR micelles induced apoptosis and enhanced G2/M arrest. Overall, CUR micelles may provide a novel strategy to improve the clinical management of MDR ovarian cancer.
Collapse
Affiliation(s)
- Qiheng Gou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lei Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chunting Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lu Sun
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xi Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuxin Xie
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ping Li
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China.
| | - Changyang Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
37
|
Bhushan B, Dubey P, Kumar SU, Sachdev A, Matai I, Gopinath P. Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy. RSC Adv 2015. [DOI: 10.1039/c4ra15233f] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work niclosamide was encapsulated into albumin nanoparticles through a desolvation method to improve its scope of application in cancer therapy.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Poornima Dubey
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - S. Uday Kumar
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Abhay Sachdev
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Ishita Matai
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
38
|
Li Z, Jiang H, Xu C, Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.05.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Sridhar R, Ravanan S, Venugopal JR, Sundarrajan S, Pliszka D, Sivasubramanian S, Gunasekaran P, Prabhakaran M, Madhaiyan K, Sahayaraj A, Lim KHC, Ramakrishna S. Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer:in vitroefficacy evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:985-98. [DOI: 10.1080/09205063.2014.917039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Kumar SSD, Mahesh A, Mahadevan S, Mandal AB. Synthesis and characterization of curcumin loaded polymer/lipid based nanoparticles and evaluation of their antitumor effects on MCF-7 cells. Biochim Biophys Acta Gen Subj 2014; 1840:1913-22. [PMID: 24440669 DOI: 10.1016/j.bbagen.2014.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hybrid materials are synthesized using hydrophilic polymer and lipids which ensure their long term systemic circulation through intravenous administration and enhance loading of hydrophobic drugs. The purpose of this study is to prepare, characterize and evaluate the in vitro efficacy of curcumin loaded poly-hydroxyethyl methacrylate/stearic acid nanoparticles in MCF-7. METHODS C-PSA-NPs, prepared using the emulsification-solvent evaporation method were characterized by dynamic laser scattering, SEM, AFM, FT-IR, X-ray diffraction, and TGA. The in vitro release behavior was observed in PBS pH7.4, the anticancer potential was analyzed by MTT assay, cell cycle and apoptosis studies were performed through flow cytometry. C-PSA-NPs drug localization and cancer cell morphological changes were analyzed in MCF-7 cell line. RESULTS C-PSA-NPs exhibited the mean particle size in the range of 184nm with no aggregation. The surface charge of the material was around -29.3mV. Thermal studies (TGA) and surface chemistry studies (FT-IR, XRD) showed the existence of drug curcumin in C-PSA-NPs. The MTT assay indicated higher anticancer properties and flow cytometry studies revealed that there were better apoptotic activity and maximum localization of C-PSA-NPs than curcumin. CONCLUSIONS Polymer lipid based drug delivery appeared as one of the advancements in drug delivery systems. Through the present study, a novel polymer lipid based nanocarrier delivery system loaded with curcumin was demonstrated as an effective and potential alternative method for tumor treatment in MCF-7 cell line. GENERAL SIGNIFICANCE C-PSA-NPs exhibited potent anticancer activity in MCF-7 cell line and it indicates that C-PSA-NPs are a suitable carrier for curcumin.
Collapse
Affiliation(s)
- Sathish Sundar Dhilip Kumar
- Thermochemical Lab, Chemical Engineering Department, Central Leather Research Institute, Chennai 600 020, India
| | - Ayyavu Mahesh
- School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
| | - Surianarayanan Mahadevan
- Thermochemical Lab, Chemical Engineering Department, Central Leather Research Institute, Chennai 600 020, India.
| | - Asit Baran Mandal
- Thermochemical Lab, Chemical Engineering Department, Central Leather Research Institute, Chennai 600 020, India
| |
Collapse
|
41
|
Sindhu K, Rajaram A, Sreeram KJ, Rajaram R. Curcumin conjugated gold nanoparticle synthesis and its biocompatibility. RSC Adv 2014. [DOI: 10.1039/c3ra45345f] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gold nanoparticles have gained much attention due to their widespread biological and technological applications, and consequently their simpler synthesis via green chemistry has also become of foremost importance.
Collapse
Affiliation(s)
- K. Sindhu
- Biochemistry Laboratory
- Central Leather Research Institute
- Chennai
- India
| | - A. Rajaram
- Bio-Physics Laboratory
- Central Leather Research Institute
- Chennai
- India
| | - K. J. Sreeram
- Chemical Laboratory
- Central Leather Research Institute
- Chennai
- India
| | - Rama Rajaram
- Biochemistry Laboratory
- Central Leather Research Institute
- Chennai
- India
| |
Collapse
|
42
|
Rajangam T, An SSA. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 2013; 8:3641-62. [PMID: 24106425 PMCID: PMC3792008 DOI: 10.2147/ijn.s43945] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Thanavel Rajangam
- Department of Bionanotechnology, Gachon University, Seongnam-Si, Republic of Korea
| | | |
Collapse
|
43
|
Zhang W, Gao Z, Shao D, Zhang L, Wang C, Zhang Y. Atomic force microscopy analysis of progenitor corneal epithelial cells fractionated by a rapid centrifugation isolation technique. PLoS One 2013; 8:e59282. [PMID: 23555648 PMCID: PMC3608637 DOI: 10.1371/journal.pone.0059282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/13/2013] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate the use of atomic force microscopy (AFM) to image the three groups of corneal epithelial cells fractionated by a novel rapid centrifugation isolation technique. Methods Epithelial cells harvested from primary cultures of rabbit limbal rings were centrifuged onto uncoated dishes, first at 1400 rpm and then at 1800 rpm. The adherent cells after centrifugation at 1400 rpm (ATC1), the adherent cells at 1800 rpm (ATC2) and the non-adherent cells at 1800 rpm (NAC) were investigated for BrdU retention and were subjected to contact mode AFM and Transmission Electron Microscopy (TEM). Results Compared with unfractionated cells, the ATC1 group, accounting for about 10% of the whole population, was enriched in BrdU label-retaining cells. There were dramatic overall shape, surface membrane and intra-cellular ultrastructure differences noted among ATC1, ATC2 and NAC populations. The whole cell roughness measurements were 21.1±1.5 nm, 79.5±3.4 nm and 103±4.6 nm for the ATC1, ATC2 and NAC groups, respectively. The mero-nucleus roughness measurements were 34.2±1.7 nm, 13.0±0.8 nm and 8.5±0.5 nm in the ATC1, ATC2 and NAC populations, respectively. Conclusions AFM was found to be a good tool for distinguishing among the three groups of cells. BrdU label retention, the AFM parameters and TEM together suggest that the ATC1, ATC2 and NAC populations may be progenitor corneal epithelial cells, transit amplifying cells and terminal differentiation cells, respectively.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Zongyin Gao
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Dongping Shao
- Department of Ophthalmology, the Affiliated Nanhai Hospital of Southern Medical University, Foshan, Guangdong Province, P. R. China
| | - Liu Zhang
- Department of Ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
44
|
Teng Z, Luo Y, Wang T, Zhang B, Wang Q. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2556-2564. [PMID: 23414105 DOI: 10.1021/jf4001567] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, soy protein isolate (SPI) was conjugated with folic acid (FA) to prepare nanoparticles for target-specific drug delivery. Successful conjugation was evidenced by UV spectrophotometry and primary amino group analysis. An increase in count rate by at least 142% was observed in FA-SPI nanoparticles compared to the nonconjugated ones, whereas the particle size was decreased upon FA conjugation. This was probably attributed to the substitution of positively charged lysine residues by the FA backbone. The ζ-potential ranged from -36 to -42 mV depending on the conjugation degree, indicating desirable dispersion stability. Curcumin as a model drug was encapsulated successfully into FA-SPI nanoparticles, evidenced by X-ray diffraction study. The highest encapsulation and loading efficiencies were around 92.7% and 5.4%, respectively, which were significantly higher (P < 0.05) than those with nonconjugated SPI nanoparticles. In addition, a faster and more complete release of curcumin was observed for FA-SPI nanoparticles in PBS/Tween 20 buffer. Cell culture study showed that conjugation of FA resulted in an increase in cellular uptake by at most 93% in Caco-2 cells. These results suggested that FA-SPI is a potential wall material for encapsulation and enhanced delivery of anticancer drugs.
Collapse
Affiliation(s)
- Zi Teng
- Department of Nutrition and Food Science, University of Maryland , 0112 Skinner Building, College Park, Maryland 20742, United States
| | | | | | | | | |
Collapse
|
45
|
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des 2013; 19:1994-2010. [PMID: 23116309 PMCID: PMC3640558 DOI: 10.2174/138161213805289219] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/22/2012] [Indexed: 11/22/2022]
Abstract
Cancer is the second leading cause of death in the United States. Conventional therapies cause widespread systemic toxicity and lead to serious side effects which prohibit their long term use. Additionally, in many circumstances tumor resistance and recurrence is commonly observed. Therefore, there is an urgent need to identify suitable anticancer therapies that are highly precise with minimal side effects. Curcumin is a natural polyphenol molecule derived from the Curcuma longa plant which exhibits anticancer, chemopreventive, chemo- and radio-sensitization properties. Curcumin's widespread availability, safety, low cost and multiple cancer fighting functions justify its development as a drug for cancer treatment. However, various basic and clinical studies elucidate curcumin's limited efficacy due to its low solubility, high rate of metabolism, poor bioavailability and pharmacokinetics. A growing list of nanomedicine(s) using first line therapeutic drugs have been approved or are under consideration by the Food and Drug Administration (FDA) to improve human health. These nanotechnology strategies may help to overcome challenges and ease the translation of curcumin from bench to clinical application. Prominent research is reviewed which shows that advanced drug delivery of curcumin (curcumin nanoformulations or curcumin nanomedicine) is able to leverage therapeutic benefits by improving bioavailability and pharmacokinetics which in turn improves binding, internalization and targeting of tumor(s). Outcomes using these novel drug delivery systems have been discussed in detail. This review also describes the tumor-specific drug delivery system(s) that can be highly effective in destroying tumors. Such new approaches are expected to lead to clinical trials and to improve cancer therapeutics.
Collapse
Affiliation(s)
- Murali M. Yallapu
- Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57104, USA
| | - Meena Jaggi
- Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57104, USA
- Department of OB/GYN and Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
| | - Subhash C. Chauhan
- Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57104, USA
- Department of OB/GYN and Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
| |
Collapse
|
46
|
Abstract
There is a need for developing improved therapeutic options for the management of prostate cancer, able to inhibit proliferation of precancerous and malignant lesions and/or to improve the effectiveness of conventional chemopreventive and chemotherapeutic agents. In this perspective, application of nanotechnology based strategies for the delivery of natural compounds for effective management of the disease is being actively researched. Here, after highlighting the most promising natural compounds for chemoprevention and chemotherapy of prostate cancer, the state of the art nanotherapeutics and the recent proof-of-concept of "nanochemoprevention", as well as the clinical development of promising targeted nanoprototypes for use in the prostate cancer treatment are being discussed.
Collapse
|
47
|
Vandita K, Shashi B, Santosh KG, Pal KI. Enhanced apoptotic effect of curcumin loaded solid lipid nanoparticles. Mol Pharm 2012; 9:3411-21. [PMID: 23127155 DOI: 10.1021/mp300209k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Curcumin is reported to show potent in vitro anticancer effects in a surfeit of human cancer cell lines and majorly in the carcinogenesis of GIT, in animals. Its poor pharmacokinetics and stability limit its vivo clinical efficacy for the other systemic cancers. We recently reported on a 32-155 times enhancement in bioavailability of curcumin when incorporated into solid lipid nanoparticles (C-SLNs). Presently we report on a 54-85% reduction in IC 50 values with developed C-SLNs in comparison to free curcumin against a panel of human cancer cell lines (HL-60, A549, and PC3). Results demonstrate mechanisms similar to those claimed for free curcumin, including induction of cellular apoptosis by activation of caspases, release of cyctochrome c, loss of membrane potential, blockade of nuclear factor kappa B (NF-κB) activation, and upregulation of TNF-R for C-SLNs. However, the extent of cell death provided by C-SLNs in all these tests was significantly higher (p < 0.001). This may be attributed to the presentation of curcumin in a dispersible/soluble form which enhanced permeability across the cell surface. The display of significantly better in vitro anticancer effect coupled with high in vivo bioavailability points toward a great potential of using C-SLNs for cancer therapeutics.
Collapse
Affiliation(s)
- Kakkar Vandita
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh 160014, India
| | | | | | | |
Collapse
|
48
|
Sun ZJ, Sun B, Tao RB, Xie X, Lu XL, Dong DL. A poly(glycerol-sebacate-curcumin) polymer with potential use for brain gliomas. J Biomed Mater Res A 2012; 101:253-60. [DOI: 10.1002/jbm.a.34319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/17/2012] [Accepted: 06/18/2012] [Indexed: 11/06/2022]
|
49
|
Maya S, Sabitha M, Nair SV, Jayakumar R. Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2012. [DOI: 10.1007/12_2012_195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. NANOSCALE RESEARCH LETTERS 2011; 6:555. [PMID: 21995320 PMCID: PMC3210734 DOI: 10.1186/1556-276x-6-555] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/13/2011] [Indexed: 05/17/2023]
Abstract
Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.
Collapse
Affiliation(s)
- Wuxu Zhang
- Institute of Pharmacology and Toxicology and Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Academy of Medical Science, Zhengzhou, Henan, People's Republic of China
| | - Zhenzhong Zhang
- Nanotechnology Research Center for Drugs, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yingge Zhang
- Institute of Pharmacology and Toxicology and Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Academy of Medical Science, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|