1
|
Fajstavr D, Fajstavrová K, Frýdlová B, Slepičková Kasálková N, Švorčík V, Slepička P. Biopolymer Honeycomb Microstructures: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:772. [PMID: 36676507 PMCID: PMC9863042 DOI: 10.3390/ma16020772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this review, we present a comprehensive summary of the formation of honeycomb microstructures and their applications, which include tissue engineering, antibacterial materials, replication processes or sensors. The history of the honeycomb pattern, the first experiments, which mostly involved the breath figure procedure and the improved phase separation, the most recent approach to honeycomb pattern formation, are described in detail. Subsequent surface modifications of the pattern, which involve physical and chemical modifications and further enhancement of the surface properties, are also introduced. Different aspects influencing the polymer formation, such as the substrate influence, a particular polymer or solvent, which may significantly contribute to pattern formation, and thus influence the target structural properties, are also discussed.
Collapse
|
2
|
Kryszak B, Szustakiewicz K, Dzienny P, Junka A, Paleczny J, Szymczyk-Ziółkowska P, Hoppe V, Grzymajło M, Antończak A. 'Cookies on a tray': Superselective hierarchical microstructured poly(l-lactide) surface as a decoy for cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112648. [PMID: 35034812 DOI: 10.1016/j.msec.2022.112648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
In this research we developed a micro-sized hierarchical structures on a poly(l-lactide) (PLLA) surface. The obtained structures consist of round-shaped protrusions with a diameter of ~20 μm, a height of ~3 μm, and the distance between them ~30 μm. We explored the effect of structuring PLLA to design a non-cytotoxic material with increased roughness to encourage cells to settle on the surface. The PLLA films were prepared using the casting melt extrusion technique and were modified using ultra-short pulse irradiation - a femtosecond laser operating at λ = 1030 nm. A hierarchical microstructure was obtained resembling 'cookies on a tray'. The cellular response of fibro- and osteoblasts cell lines was investigated. The conducted research has shown that the laser-modified surface is more conducive to cell adhesion and growth (compared to unmodified surface) to such an extent that allows the formation of highly-selectively patterns consisting of living cells. In contrast to eukaryotic cells, the pathogenic bacteria Staphylococcus aureus covered modified and unmodified structures in an even, non-preferential manner. In turn, adhesion pattern of eukaryotic fungus Saccharomyces boulardii resembled that of fibro- and osteoblast cells rather than that of Staphylococcus. The discovered effect can be used for fabrication of personalized and smart implants in regenerative medicine.
Collapse
Affiliation(s)
- Bartłomiej Kryszak
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Paulina Dzienny
- Laser and Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystem, WUST, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | | | - Viktoria Hoppe
- Center for Advanced Manufacturing Technologies, Faculty of Mechanical Engineering, WUST, Poland
| | - Michał Grzymajło
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Arkadiusz Antończak
- Laser and Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystem, WUST, Poland
| |
Collapse
|
3
|
Wen W, Liu K, Zou Z, Zhou C, Luo B. Synergistic Effect of Surface-Modified MgO and Chitin Whiskers on the Hydrolytic Degradation Behavior of Injection Molding Poly(l-lactic acid). ACS Biomater Sci Eng 2019; 5:2942-2952. [DOI: 10.1021/acsbiomaterials.8b01629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ziping Zou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| |
Collapse
|
4
|
Chen S, Gao S, Jing J, Lu Q. Designing 3D Biological Surfaces via the Breath-Figure Method. Adv Healthc Mater 2018; 7:e1701043. [PMID: 29334182 DOI: 10.1002/adhm.201701043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/17/2017] [Indexed: 11/07/2022]
Abstract
The fabrication of biointerfaces that mimic cellular physiological environments is critical to understanding cell behaviors in vitro and for the design of tissue engineering. Breath figure is a self-assemble method that uses water droplets condensed from moisture as template and ends up with a highly ordered hexagonal pore array; this approach is used to fabricate various biological substrates. This progress report provides an overview of strategies to achieve topographical modifications and chemical-patterned arrays, such as modulation of the pore size, shape and selective decoration of the honeycomb holes. Using recent results in the biological fields, potential future applications and developments of honeycomb structures are commented upon.
Collapse
Affiliation(s)
- Shuangshuang Chen
- School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Su Gao
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiange Jing
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Qinghua Lu
- School of Chemical Science and Engineering Tongji University Shanghai 200092 China
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
5
|
Vargas-Alfredo N, Santos-Coquillat A, Martínez-Campos E, Dorronsoro A, Cortajarena AL, Del Campo A, Rodríguez-Hernández J. Highly Efficient Antibacterial Surfaces Based on Bacterial/Cell Size Selective Microporous Supports. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44270-44280. [PMID: 29131567 DOI: 10.1021/acsami.7b11337] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on the fabrication of efficient antibacterial substrates selective for bacteria, i.e., noncytotoxic against mammalian cells. The strategy proposed is based on the different size of bacteria (1-4 μm) in comparison with mammalian cells (above 20 μm) that permit the bacteria to enter in contact with the inner part of micrometer-sized pores where the antimicrobial functionality are placed. On the contrary, mammalian cells, larger in terms of size, remain at the top surface, thus reducing adverse cytotoxic effects and improving the biocompatibility of the substrates. For this purpose, we fabricated well-ordered functional microporous substrates (3-5 μm) using the breath figures approach that enabled the selective functionalization of the pore cavity, whereas the rest of the surface remained unaffected. Microporous surfaces were prepared from polymer blends comprising a homopolymer (i.e., polystyrene) and a block copolymer (either polystyrene-b-poly(dimethylaminoethyl methacrylate) (PDMAEMA) or a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate)). As a result, porous surfaces with a narrow size distribution and a clear enrichment of the PDMAEMA or the quaternized PDMAEMA block inside the pores were obtained that, in the case of the quaternized PDMAEMA, provided an excellent antimicrobial activity to the films.
Collapse
Affiliation(s)
- Nelson Vargas-Alfredo
- Polymer Functionalization Group (FUPOL), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC) , C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Santos-Coquillat
- Tissue Engineering Group, Instituto de Estudios Biofuncionales (IEB), Associated Unit to the ICTP-CSIC Group, Universidad Complutense de Madrid (UCM) , Paseo Juan XXIII, No. 1, 28040 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales (IEB), Associated Unit to the ICTP-CSIC Group, Universidad Complutense de Madrid (UCM) , Paseo Juan XXIII, No. 1, 28040 Madrid, Spain
| | - Ane Dorronsoro
- CIC biomaGUNE, Parque Tecnológico de San Sebastián , Paseo Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Parque Tecnológico de San Sebastián , Paseo Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science , Ma Díaz de Haro 3, 48013 Bilbao, Spain
| | - Adolfo Del Campo
- Instituto de Cerámica y Vidrio (ICV-CSIC) , C/Kelsen 5, 28049 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group (FUPOL), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC) , C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
6
|
Vargas-Alfredo N, Martínez-Campos E, Santos-Coquillat A, Dorronsoro A, Cortajarena AL, Del Campo A, Rodríguez-Hernández J. Fabrication of biocompatible and efficient antimicrobial porous polymer surfaces by the Breath Figures approach. J Colloid Interface Sci 2017; 513:820-830. [PMID: 29222981 DOI: 10.1016/j.jcis.2017.11.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
We designed and fabricated highly efficient and selective antibacterial substrates, i.e. surface non-cytotoxic against mammalian cells but exhibiting strong antibacterial activity. For that purpose, microporous substrates (pore sizes in the range of 3-5 μm) were fabricated using the Breath Figures approach (BFs). These substrates have additionally a defined chemical composition in the pore cavity (herein either a poly(acrylic acid) or the antimicrobial peptide Nisin) while the composition of the rest of the surface is identical to the polymer matrix. As a result, considering the differences in size of bacteria (1-4 μm) in comparison to mammalian cells (above 10 µm) the bacteria were able to enter in contact with the inner part of the pores where the antimicrobial functionality has been placed. On the opposite, mammalian cells remain in contact with the top surface thus preventing cytotoxic effects and enhancing the biocompatibility of the substrates. The resulting antimicrobial surfaces were exposed to Staphylococcus aureus as a model bacteria and murine endothelial C166-GFP cells. Superior antibacterial performance while maintaining an excellent biocompatibility was obtained by those surfaces prepared using PAA while no evidence of significant antibacterial activity was observed at those surfaces prepared using Nisin.
Collapse
Affiliation(s)
- Nelson Vargas-Alfredo
- Polymer Functionalization Group (FUPOL), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue Engineering Group (TEG), Instituto de Estudios Biofuncionales (IEB), Universidad Complutense de Madrid (UCM), Associated Unit to the Institute of Polymer Science and Technology (CSIC), Paseo Juan XXIII, N°1, 28040, Spain
| | - Ana Santos-Coquillat
- Tissue Engineering Group (TEG), Instituto de Estudios Biofuncionales (IEB), Universidad Complutense de Madrid (UCM), Associated Unit to the Institute of Polymer Science and Technology (CSIC), Paseo Juan XXIII, N°1, 28040, Spain
| | - Ane Dorronsoro
- CIC biomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013 Bilbao, Spain
| | - Adolfo Del Campo
- Instituto de Cerámica y Vidrio (ICV-CSIC), C/Kelsen 5, 28049 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group (FUPOL), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
7
|
From honeycomb- to microsphere-patterned surfaces of poly(lactic acid) and a starch-poly(lactic acid) blend via the breath figure method. J Appl Biomater Funct Mater 2017; 15:e31-e42. [PMID: 27647384 DOI: 10.5301/jabfm.5000281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. METHODS Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. RESULTS The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. CONCLUSIONS The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.
Collapse
|
8
|
Martínez-Campos E, Elzein T, Bejjani A, García-Granda MJ, Santos-Coquillat A, Ramos V, Muñoz-Bonilla A, Rodríguez-Hernández J. Toward Cell Selective Surfaces: Cell Adhesion and Proliferation on Breath Figures with Antifouling Surface Chemistry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6344-6353. [PMID: 26909529 DOI: 10.1021/acsami.5b12832] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the preparation of microporous functional polymer surfaces that have been proven to be selective surfaces toward eukaryotic cells while maintaining antifouling properties against bacteria. The fabrication of functional porous films has been carried out by the breath figures approach that allowed us to create porous interfaces with either poly(ethylene glycol) methyl ether methacrylate (PEGMA) or 2,3,4,5,6-pentafluorostyrene (5FS). For this purpose, blends of block copolymers in a polystyrene homopolymer matrix have been employed. In contrast to the case of single functional polymer, using blends enables us to vary the chemical distribution of the functional groups inside and outside the formed pores. In particular, fluorinated groups were positioned at the edges while the hydrophilic PEGMA groups were selectively located inside the pores, as demonstrated by TOF-SIMS. More interestingly, studies of cell adhesion, growth, and proliferation on these surfaces confirmed that PEGMA functionalized interfaces are excellent candidates to selectively allow cell growth and proliferation while maintaining antifouling properties.
Collapse
Affiliation(s)
- Enrique Martínez-Campos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid , Paseo Juan XXIII, no. 1 28040 Madrid, Spain
| | - Tamara Elzein
- Lebanese Atomic Energy Commission, National Council for Scientific Research CNRS-L , P.O. Box 11-8281, Riad El Solh, 1107 2260, Beirut, Lebanon
| | - Alice Bejjani
- Lebanese Atomic Energy Commission, National Council for Scientific Research CNRS-L , P.O. Box 11-8281, Riad El Solh, 1107 2260, Beirut, Lebanon
| | - Maria Jesús García-Granda
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid , Paseo Juan XXIII, no. 1 28040 Madrid, Spain
| | - Ana Santos-Coquillat
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid , Paseo Juan XXIII, no. 1 28040 Madrid, Spain
| | - Viviana Ramos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid , Paseo Juan XXIII, no. 1 28040 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid , C/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC) , C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
9
|
Zhang A, Bai H, Li L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem Rev 2015; 115:9801-68. [PMID: 26284609 DOI: 10.1021/acs.chemrev.5b00069] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aijuan Zhang
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| | - Hua Bai
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| | - Lei Li
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| |
Collapse
|
10
|
Kim S, Zhou Y, Cirillo JD, Polycarpou AA, Liang H. Bacteria repelling on highly-ordered alumina-nanopore structures. JOURNAL OF APPLIED PHYSICS 2015; 117:155302. [PMID: 25944966 PMCID: PMC4401798 DOI: 10.1063/1.4918305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
Bacteria introduce diseases and infections to humans by their adherence to biomaterials, such as implants and surgical tools. Cell desorption is an effective step to reduce such damage. Here, we report mechanisms of bacteria desorption. An alumina nanopore structure (ANS) with pore size of 35 nm, 55 nm, 70 nm, and 80 nm was used as substrate to grow Escherichia coli (E. coli) cells. A bacteria repelling experimental method was developed to quantitatively evaluate the area percentage of adherent bacterial cells that represent the nature of cell adhesion as well as desorption. Results showed that there were two crucial parameters: contact angle and contact area that affect the adhesion/desorption. The cells were found to be more easily repelled when the contact angle increased. The area percentage of adherent bacterial cells decreased with the decrease in the contact area of a cell on ANS. This means that cell accessibility on ANS depends on the contact area. This research reveals the effectiveness of the nanopored structures in repelling cells.
Collapse
Affiliation(s)
- Sunghan Kim
- Department of Mechanical Engineering, Texas A&M University , College Station, Texas 77843-3123, USA
| | - Yan Zhou
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843-3123, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center , Bryan, TX 77807-3206, College Station, Texas 77843-3123, USA
| | - Andreas A Polycarpou
- Department of Mechanical Engineering, Texas A&M University , College Station, Texas 77843-3123, USA
| | | |
Collapse
|
11
|
Muñoz-Bonilla A, Fernández-García M, Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Zhou X, Chen Z, Wang Y, Guo Y, Tung CH, Zhang F, Liu X. Honeycomb-patterned phthalocyanine films with photo-active antibacterial activities. Chem Commun (Camb) 2013; 49:10614-6. [DOI: 10.1039/c3cc42085j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|