1
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Qin Z, Tang R, Liang J, Jia X. Berberine, a natural alkaloid: Advances in its pharmacological effects and mechanisms in the treatment of autoimmune diseases. Int Immunopharmacol 2024; 137:112422. [PMID: 38880024 DOI: 10.1016/j.intimp.2024.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
The rising prevalence of autoimmune diseases poses a significant challenge to global public health. Continual exploration of natural compounds for effective treatments for autoimmune diseases is crucial. Berberine, a benzylisoquinoline alkaloid, is a bioactive component found in various medicinal plants, exhibiting diverse pharmacological properties. This review aims to consolidate the current understanding of berberine's pharmacological effects and mechanisms in addressing four autoimmune diseases: rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and psoriasis. Overall, as a traditional Chinese medicinal preparation, berberine shows promise as an effective and safe treatment for autoimmune diseases. However, further comprehensive studies, particularly clinical trials, are essential to elucidate additional mechanisms and molecular targets, as well as to assess the efficacy and safety of berberine in treating these autoimmune diseases.
Collapse
Affiliation(s)
- Zhifang Qin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei Anhui 230012, China
| | - Ran Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei Anhui 230012, China
| | - Juan Liang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei Anhui 230012, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei Anhui 230012, China.
| |
Collapse
|
3
|
Almajidi YQ, Kadhim MM, Alsaikhan F, Turki Jalil A, Hassan Sayyid N, Alexis Ramírez-Coronel A, Hassan Jawhar Z, Gupta J, Nabavi N, Yu W, Ertas YN. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. ENVIRONMENTAL RESEARCH 2023; 227:115722. [PMID: 36948284 DOI: 10.1016/j.envres.2023.115722] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective inhibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently limited by resistance resulting from various factors, including increased activity of drug efflux transporters, heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of micelles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemotherapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery for cancer suppression.
Collapse
Affiliation(s)
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group(GIEE), National University of Education, Ecuador
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P, India
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
4
|
Murakami T, Bodor E, Bodor N. Approaching strategy to increase the oral bioavailability of berberine, a quaternary ammonium isoquinoline alkaloid: Part 2. Development of oral dosage formulations. Expert Opin Drug Metab Toxicol 2023; 19:139-148. [PMID: 37060323 DOI: 10.1080/17425255.2023.2203858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Berberine (BBR) possesses a wide variety of pharmacological activities. However, the oral bioavailability of BBR is low due to extensive intestinal first-pass metabolism by cytochrome P450s (CYPs), insufficient absorption due to low solubility and P-glycoprotein (P-gp)-mediated efflux transport, and hepatic first-pass metabolism in rats. AREAS COVERED Various dosage formulations were developed to increase the oral bioavailability of BBR by overcoming the reducing factors. This article provides the developing strategy of oral dosage formulations of BBR based on the physicochemical (low solubility, formation of salts/ion-pair complex) and pharmacokinetic properties (substrate of P-gp/CYPs, extensive intestinal first-pass metabolism). Literature was searched by using PubMed. EXPERT OPINION Here, formulations increasing the dissolution rates/solubility; formulations containing a P-gp inhibitor; formulations containing solubilizer exhibiting P-gp and/or CYPs inhibitors; formulations containing absorption enhancers; gastro/duodenal retentive formulations; lipid-based formulations; formulations targeting lymphatic transport; and physicochemical modifications increasing lipophilicity were reviewed. Among these formulations, formulations that can reduce intestinal first-pass metabolisms such as formulations containing CYPs inhibitor(s) and formulations containing absorption enhancer(s) significantly increased the oral bioavailability of BBR. Further studies on other dosing routes that can avoid first-pass metabolism such as the rectal route would also be important to increase the bioavailability of BBR.
Collapse
Affiliation(s)
| | - Erik Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
| | - Nicholas Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
- College of Pharmacy, University of Florida, Gainesville, Florida32611, USA
| |
Collapse
|
5
|
Liu Y, Meng X. A Novel Vaccaria Semen Carbonisatum Carbon Nanocomposites and Their Protective Effects on Alcohol-Induced Liver Injury in Mice. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: To discover the efficacy of Vaccariae Semen Carbonisatum nano-components (VSC-NCs) on alcoholic liver injury in mice. Methods: VSC was calcined at high temperature in a muffle furnace, and VSC-NCs were extracted and isolated. Mouse model of alcoholic
liver injury was used and alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bile acid (TBA), oxidative stress and histopathological assessments were done. Results: Characterization and analysis showed that VSC-NCs were spherical, with
a particle size distribution of 1.0 to 5.5 nm. The results of animal experiments showed that VSC-NCs could significantly reduce the content of ALT, AST, TBA and ALP in mice with alcohol-induced liver injury, and at the same time significantly increase the level of SOD and reduce the level
of malondialdehyde. These results indicated that VSC-NCs could improve the scavenging of reactive oxygen species (ROS) in the body. The ability to reduce the production of lipid peroxides, so as to achieve hepatoprotective effect. Conclusion: VSC-NCs were prepared for the first time,
and was confirmed that it has a significant protective effect on liver injury caused by alcohol. In addition, VSC-NCs can be used as a potential drug for the treatment of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yantong Liu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| | - Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|