1
|
Mathur P, Kumawat M, Nagar R, Singh R, Daima HK. Tailoring metal oxide nanozymes for biomedical applications: trends, limitations, and perceptions. Anal Bioanal Chem 2024; 416:5965-5984. [PMID: 39009769 DOI: 10.1007/s00216-024-05416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Nanomaterials with enzyme-like properties are known as 'nanozymes'. Nanozymes are preferred over natural enzymes due to their nanoscale characteristics and ease of tailoring of their physicochemical properties such as size, structure, composition, surface chemistry, crystal planes, oxygen vacancy, and surface valence state. Interestingly, nanozymes can be precisely controlled to improve their catalytic ability, stability, and specificity which is unattainable by natural enzymes. Therefore, tailor-made nanozymes are being favored over natural enzymes for a range of potential applications and better prospects. In this context, metal oxide nanoparticles with nanozyme-mimicking characteristics are exclusively being used in biomedical sectors and opening new avenues for future nanomedicine. Realising the importance of this emerging area, here, we discuss the mechanistic actions of metal oxide nanozymes along with their key characteristics which affect their enzymatic actions. Further, in this critical review, the recent progress towards the development of point-of-care (POC) diagnostic devices, cancer therapy, drug delivery, advanced antimicrobials/antibiofilm, dental caries, neurodegenerative diseases, and wound healing potential of metal oxide nanozymes is deliberated. The advantages of employing metal oxide nanozymes, their potential limitations in terms of nanotoxicity, and possible prospects for biomedical applications are also discussed with future recommendations.
Collapse
Affiliation(s)
- Parikshana Mathur
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Mamta Kumawat
- Department of Biotechnology, JECRC University, Sitapura Extension, Jaipur, 303905, Rajasthan, India
| | - Rashi Nagar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Ragini Singh
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522302, Andhra Pradesh, India.
| | - Hemant Kumar Daima
- Nanomedicine and Nanotoxicity Research Laboratory, Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
2
|
Sun H, Zhang L, Zhao N, Xin H. Cu 2+-Citrate-Chitosan Complex Nanoparticles for the Chemodynamic Therapy of Lung Cancer. ACS OMEGA 2024; 9:8425-8433. [PMID: 38405439 PMCID: PMC10883013 DOI: 10.1021/acsomega.3c09619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Lung cancer poses a significant threat to human health. Surgical intervention is the preferred treatment modality for lung cancer, but a large number of patients are deprived of the opportunity for surgery for various reasons and are compelled to undergo radiotherapy and chemotherapy, which entail systemic adverse reactions. In recent years, with the advancement of nanomedicine, chemodynamic therapy (CDT) based on free radicals has been extensively investigated. In this study, we fabricated copper-citrate-chitosan composite nanoparticles (CuCC NPs) by encapsulating copper-citrate complexes with natural chitosan polymers, resulting in a substantial reduction in the biotoxicity of copper ions. The CuCC NPs selectively accumulated in tumor tissues through the enhanced permeability and retention effect (EPR) and gradually degraded within the acidic and glutathione (GSH)-rich microenvironment of the tumor, thereby releasing the loaded copper ions. Through CDT, the copper ions converted the overexpressed hydrogen peroxide (H2O2) in the tumor tissue into hydroxyl radicals (•OH), leading to the eradication of tumor cells. In animal experiments, CuCC NPs exhibited remarkable efficacy in CDT. Further histopathological and hematological analyses demonstrated that CuCC NPs could induce substantial apoptosis in tumor tissues while maintaining an extremely high level of safety.
Collapse
Affiliation(s)
- Hechen Sun
- Department of Thoracic
Surgery, China-Japan Union Hospital of Jilin
University, Changchun 130031, PR China
| | - Lening Zhang
- Department of Thoracic
Surgery, China-Japan Union Hospital of Jilin
University, Changchun 130031, PR China
| | - Nan Zhao
- Department of Thoracic
Surgery, China-Japan Union Hospital of Jilin
University, Changchun 130031, PR China
| | - Hua Xin
- Department of Thoracic
Surgery, China-Japan Union Hospital of Jilin
University, Changchun 130031, PR China
| |
Collapse
|
3
|
Cheng X, Wang L, Liu L, Shi S, Xu Y, Xu Z, Wei B, Li C. A sequentially responsive cascade nanoplatform for increasing chemo-chemodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113099. [PMID: 36584448 DOI: 10.1016/j.colsurfb.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) is promising carrier material for drugs delivery in cancer therapy. However, the slow degradation and lack of targeting have greatly limited the clinical effectiveness of PLGA-based nanomedicines. Herein, we fabricated a hybrid nanosystem (3 P @ He/Pt-NPs) comprising of acid-sensitive polymer (mPOE-PLGA), active-targeting polymer (PBA-PLGA) and therapeutic agents (hemin+cisplatin) to combat these problems. In neutral environment, PEGylation can effectively improve the blood stability and circulation time of hybrid nanosystem. After reaching tumor regions, this nanosystem efficiently increased cellular uptake by dePEGylation and PBA-mediated active-targeting. Furthermore, encapsulated hemin could catalyze the oxygen bubbles generation, which remarkably increasing the drugs release rate. Subsequently, hybrid particles produced a higher cell-killing effect to lung cancer cells (A549) by the combination therapy (chemotherapy and chemodynamic therapy (CDT)). Importantly, cisplatin further amplified CDT effect by inducing H2O2 regeneration owing to the cascade enzymatic reactions, while hemin decreased intracellular glutathione (GSH) level, resulting in a low detoxification effect to cisplatin. Thus, hybrid particles could efficiently inhibit drug-resistant tumor growth and the inhibition rate reached 83.2%. Overall, this hybrid polymer nanosystem improve the drawbacks of PLGA-based nanocarriers, and can realize a cascading enhanced tumor treatment.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Lu Wang
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Liwen Liu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Shuiqing Shi
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Zhengrong Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China.
| |
Collapse
|
4
|
Tao H, Chen X, Li R, Wang Z, Zhao X, Liu C, Duan S, Wang X. A flexible visual detection of calcium peroxide in flour employing enhanced catalytic activity of heterogeneous catalysts binary copper trapped silica-layered magnetite nanozyme. Colloids Surf B Biointerfaces 2022; 219:112823. [PMID: 36088830 DOI: 10.1016/j.colsurfb.2022.112823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
Herein, a novel heterogeneous nanozyme with peroxidase (POD)-like activity was conducted to achieve ultrasensitive visual detection of calcium peroxide (CaO2) in flour by the assembly of binary copper-trapped mesoporous silica layer coated magnetite nanoparticles (Fe3O4 @SiO2 @CuO NPs). The prepared nanozymes were characterized using HRTEM, SEM, FT-IR, XRD, DLS, and EIS, which displayed a dispersed core-shell structure with a uniform diameter of approximately 100 nm. The nanozymes exhibited remarkable and stable POD-like activity in a wide range of pH values, incubation temperature, and reaction time, and the optimum catalytic activity was obtained at pH 3.6, 37 °C, and 10 min. The quantification range of CaO2 of this method is 0.1-5 mM with a limit as low as 5.6 × 10-3 mM, and it is not affected by multiple interferences. In conclusion, this detection method is sensitive, stable, low-cost, and simple to operate, so it has broad application prospects in the detection of food additives such as CaO2.
Collapse
Affiliation(s)
- Haizhen Tao
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xuyang Chen
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zichao Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xuanping Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chuan Liu
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, PR China.
| | - Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
5
|
Liu X, Dai W, Xu W, Chen Y. Anti-Tumor Effect and Drug Delivery of Biomimetic Exosomes Nanoplatform Loading with Paclitaxel (PTX) for Treating Lung Adenocarcinoma. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study constructed an exosome (Exo) nanomedicine with the ability to actively penetrate into lung tumor tissue, in order to improve the anti-tumor effect of paclitaxel (PTX). For reaching this goal A549 lung adenocarcinoma cells were employed. The exosomes were collected by gradient
centrifugation, and the Exo/PTX was prepared after targeted modification. Then the in vitro properties and in vivo tumor inhibitory effects of Exo/PTX were then characterized and evaluated. to conduct in vitro and in vivo study. The prepared Exo/PTX had a particle
size of about 100 nm, and had a saucer-like double-layer membrane structure, which had a high encapsulation efficiency and drug loading. in vitro studies have shown that Exo/PTX can be largely taken up by lung cancer cells, thereby enhancing the drug’s effects on promoting apoptosis.
The results of in vivo experiments showed that Exo/PTX can effectively inhibit the growth of tumor tissue. The results of this study showed that using exosome for drug delivery of PTX can increase the efficacy and decrease the drug toxicity and side effects.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacy, Zhongshan Torch Development Zone People’s Hospital, Zhongshan 528437, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan 528401, China
| | - Wenhua Xu
- Prevention and Treatment Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen 518027, China
| | - Yao Chen
- Department of Pharmacy, Zhongshan Torch Development Zone People’s Hospital, Zhongshan 528437, China
| |
Collapse
|
6
|
Xiao HF, Yu H, Wang DQ, Liu XZ, Sun WR, Li YJ, Sun GB, Liang Y, Sun HF, Wang PY, Xie SY, Wang RR. Dual-Targeted Fe₃O₄@MnO₂ Nanoflowers for Magnetic Resonance Imaging-Guided Photothermal-Enhanced Chemodynamic/Chemotherapy for Tumor. J Biomed Nanotechnol 2022; 18:352-368. [PMID: 35484752 DOI: 10.1166/jbn.2022.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T₂-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.
Collapse
Affiliation(s)
- Hui-Fang Xiao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Hui Yu
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - De-Qiang Wang
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Xin-Zheng Liu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Wan-Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Guang-Bin Sun
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Yan Liang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Hong-Fang Sun
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| |
Collapse
|
7
|
Chen Z, He S, Xu R, Han Q, Xia X, Song Y, Zhang J. Nanobead-Based Screening Method for Antibody Pairing of Dengue Virus Nonstructural Protein-1. J Biomed Nanotechnol 2021; 17:1788-1797. [PMID: 34688323 DOI: 10.1166/jbn.2021.3148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dengue fever is a classic mosquito viral disease. Dengue virus non-structural protein-1 as a membrane-associated homologous dimer anchored to the surface of infected cells and also secreted into the blood. The nonstructural protein-1 levels are related to disease severity, and the presence of nonstructural protein-1 secreted from cells to the serum of people infected with the dengue virus is an early marker of infection. Paired antibodies are key in the establishment of rapid detection technology. In this study, the prepared recombinant nonstructural protein-1 protein of dengue virus serotype 3 was purified by the prokaryotic expression, and prepared monoclonal antibodies by cell fusion. A method for paired antibody screening was established based on the N-hydroxy succinimide-nanobeads and the prepared monoclonal antibodies. A simple and rapid point-of-care system integrating the paired antibodies and lateral flow assay was established to verify the screened antibody pairs. The results confirmed that the antibody pair screening method based on N-hydroxy succinimide-nanobeads is feasible.
Collapse
Affiliation(s)
- Zhixin Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuzhen He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueshan Xia
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|