1
|
Sun X, Guo Y, Zheng X, Bai Y, Lu Y, Yang X, Cai Z, Xu E, He Y, Heng BC, Xu M, Deng X, Zhang X. Optimizing the Electrical Microenvironment Provided by 3D Micropillar Topography on a Piezoelectric BaTiO 3 Substrate to Enhance Osseointegration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414161. [PMID: 39564749 DOI: 10.1002/adma.202414161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Indexed: 11/21/2024]
Abstract
The electrical properties of bone implant scaffolds are a pivotal factor in regulating cellular behavior and promoting osteogenesis. The previous study shows that built-in electric fields established between electropositive nanofilms and electronegative bone defect walls are beneficial for promoting bone defect healing. Considering that the physiological electrical microenvironment is spatially distributed in 3D, it is imperative to establish a 3D spatial charged microenvironment on bone scaffolds to optimize the efficacy of osseointegration. Nevertheless, this still poses a formidable challenge. Here, a bone repair strategy that utilizes micro-scale 3D topography is developed on a piezoelectric BaTiO3 (BTO) substrate to provide 3D spatial electrical stimulation. The BTO micropillar arrays, especially with a height of 50 µm and positive-charge distribution (50 µm positive), promote the spreading, cytoskeletal reorganization, focal adhesion maturation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). They enhanced the clustering of mechanosensing integrin α5 in BMSCs. The biomimetic 3D spatial electrical microenvironment accelerated bone repair and osseointegration in a rat femoral diaphysis defect repair model. The study thus reveals that implants with a 3D spatial electrical microenvironment can significantly enhance osseointegration, thereby providing a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.
Collapse
Affiliation(s)
- Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xiaona Zheng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yixuan Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xue Yang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Ziming Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Erxiang Xu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Oral Translational Medicine Research Center, Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair, Reconstruction and Regeneration, The First People's Hospital of Jinzhong, Jinzhong, Shanxi, 030600, P. R. China
| |
Collapse
|
2
|
Tamaño-Machiavello M, Carvalho E, Correia D, Cordón L, Lanceros-Méndez S, Sempere A, Sabater i Serra R, Ribelles JG. Osteogenic differentiation of human mesenchymal stem cells on electroactive substrates. Heliyon 2024; 10:e28880. [PMID: 38601667 PMCID: PMC11004758 DOI: 10.1016/j.heliyon.2024.e28880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
This study investigates the effect of electroactivity and electrical charge distribution on the biological response of human bone marrow stem cells (hBMSCs) cultured in monolayer on flat poly(vinylidene fluoride), PVDF, substrates. Differences in cell behaviour, including proliferation, expression of multipotency markers CD90, CD105 and CD73, and expression of genes characteristic of different mesenchymal lineages, were observed both during expansion in basal medium before reaching confluence and in confluent cultures in osteogenic induction medium. The crystallisation of PVDF in the electrically neutral α-phase or in the electroactive phase β, both unpoled and poled, has been found to have an important influence on the biological response. In addition, the presence of a permanent positive or negative surface electrical charge distribution in phase β substrates has also shown a significant effect on cell behaviour.
Collapse
Affiliation(s)
- M.N. Tamaño-Machiavello
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
| | - E.O. Carvalho
- Centre of Physics, Universidade do Minho, 4710-057, Braga, Portugal
| | - D. Correia
- Centre of Chemistry, University of Minho, 4710-057, Braga, Portugal
| | - L. Cordón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, València, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - S. Lanceros-Méndez
- Centre of Physics, Universidade do Minho, 4710-057, Braga, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - A. Sempere
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, València, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Hematology Department, Hospital Universitario y Politécnico La Fe, València, Spain
| | - R. Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - J.L. Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| |
Collapse
|
3
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Weng Y, Jian Y, Huang W, Xie Z, Zhou Y, Pei X. Alkaline earth metals for osteogenic scaffolds: From mechanisms to applications. J Biomed Mater Res B Appl Biomater 2023; 111:1447-1474. [PMID: 36883838 DOI: 10.1002/jbm.b.35246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.
Collapse
Affiliation(s)
- Yihang Weng
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Yujia Jian
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenlong Huang
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuojun Xie
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Zhou
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xibo Pei
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Mukherjee A, Bravo-Cordero JJ. Regulation of dormancy during tumor dissemination: the role of the ECM. Cancer Metastasis Rev 2023; 42:99-112. [PMID: 36802311 PMCID: PMC10027413 DOI: 10.1007/s10555-023-10094-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
The study of the metastatic cascade has revealed the complexity of the process and the multiple cellular states that disseminated cancer cells must go through. The tumor microenvironment and in particular the extracellular matrix (ECM) plays an important role in regulating the transition from invasion, dormancy to ultimately proliferation during the metastatic cascade. The time delay from primary tumor detection to metastatic growth is regulated by a molecular program that maintains disseminated tumor cells in a non-proliferative, quiescence state known as tumor cell dormancy. Identifying dormant cells and their niches in vivo and how they transition to the proliferative state is an active area of investigation, and novel approaches have been developed to track dormant cells during dissemination. In this review, we highlight the latest research on the invasive nature of disseminated tumor cells and their link to dormancy programs. We also discuss the role of the ECM in sustaining dormant niches at distant sites.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Division of Hematology and Medical Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Medical Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
EVL Promotes Osteo-/Odontogenic Differentiation of Dental Pulp Stem Cells via Activating JNK Signaling Pathway. Stem Cells Int 2023; 2023:7585111. [PMID: 36684389 PMCID: PMC9851786 DOI: 10.1155/2023/7585111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Human dental pulp stem cells (hDPSCs) were recognized as a suitable and promising source of stem cells in dental pulp regeneration. However, the mechanism by which hDPSCs differentiation into osteo-/odontogenic lineage remains unclear. Ena/VASP-like protein (EVL) has been found to be involved in diverse biological processes. In this study, we explored the role and underlying mechanism of EVL in osteo-/odontogenic differentiation of hDPSCs. Methods Expression of EVL was detected in hDPSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB) analyses during osteo-/odontogenic differentiation. The function of EVL in osteo-/odontogenic differentiation and involvement of MAPK signaling pathways were evaluated by alkaline phosphatase (ALP) staining and activity, alizarin red staining (ARS), and qRT-PCR and western blot analyses. Results The expression of EVL was upregulated during osteo-/odontogenic differentiation of hDPSCs. Overexpression of EVL significantly increased osteo-/odontogenic capacity of hDPSCs, which was reflected in increased alkaline phosphatase (ALP) staining, ALP activity, mineralized nodule formation, and the expressions of genes related to osteo-/odontogenic differentiation, while downregulation of EVL inhibited it. In addition, EVL activated the JNK pathway and phosphorylation of p38 MAPK during differentiation procedure of hDPSCs. The EVL-enhanced differentiation of DPSCs was suppressed by blocking the JNK pathway, rather than the p38 MAPK pathway. Conclusion EVL promotes the osteo-/odontogenic differentiation of hDPSCs by activating the JNK pathway, providing a future target for osteo-/odontogenic differentiation and dental pulp regeneration.
Collapse
|
7
|
Li Y, Yang X, Wen Y, Zhao Y, Yan L, Han G, Shao L. Progress reports of mineralized membranes: Engineering strategies and multifunctional applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|