1
|
El-Sherbiny MM, El-Hefnawy ME, Tayel AA. Innovative anticancer nanocomposites from Corchorus olitorius mucilage/chitosan/selenium nanoparticles. Int J Biol Macromol 2024; 282:137320. [PMID: 39515688 DOI: 10.1016/j.ijbiomac.2024.137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cancers are continuing to threaten human health globally; the achievement of effectual and biosafe anticancerous compounds is a precious goal. The extraction of Corchorus olitorius mucilage (Jm) and its usage for selenium nanoparticles (SeNPs) biosynthesis was projected. The innovative formulation of bioactive nanocomposites (NCs) from Jm/SeNPs and chitosan nanoparticles (Cht) was also proposed to apply these NCs as effectual anticancers against CaCo-2 and HeLa cancerous cells. The Jm/SeNPs biosynthesis (mean diameter = 6.45 nm) was innovatively achieved and confirmed using infrared and ultraviolet-visible analysis. The constructions of different NCs were done (N1: 2Jm/SeNPs:1Cht; N2: 1Jm/SeNPs:1Cht; and N3: 1Jm/SeNPs:2Cht) with mean particles' diameter of 88.41, 46.86 and 69.35 nm, respectively. The cytotoxicity assay of constructed NCs indicated their potentialities to suppress examined cells; N1 (negatively charged; -16.2 mV) was the most forceful with IC50 of 12.36 and 73.15 mg/L against CaCo-2 and HeLa cells, respectively. The scanning microscopy imaging of treated CaCo-2 cells with N1 of Cht/Jm/SeNPs indicated that the NCs led to remarkable apoptotic destructions of treated cells, including cell shrinkage, membrane blebbing, cytoplasmic vacuolization, cell debris and apoptotic indices. The innovative NCs from Cht/Jm/SeNPs are promisingly recommended as effectual, natural and bioactive anticancer formulations against human cancers.
Collapse
Affiliation(s)
| | - Mohamed E El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
2
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
3
|
El-Sherbiny MM, Orif MI, El-Hefnawy ME, Alhayyani S, Al-Goul ST, Elekhtiar RS, Mahrous H, Tayel AA. Fabrication of bioactive nanocomposites from chitosan, cress mucilage, and selenium nanoparticles with powerful antibacterial and anticancerous actions. Front Microbiol 2023; 14:1210780. [PMID: 37547689 PMCID: PMC10402636 DOI: 10.3389/fmicb.2023.1210780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Natural bioactive alternatives are the utmost requests from researchers to provide biosafe and effectual health-guarding agents. The biopolymers chitosan nanoparticles (NCT), mucilage of cress seed (GCm; Lepidium sativum), and GCm-mediated selenium nanoparticles (GCm/SeNPs) were innovatively employed for fabricating novel bioactive natural nanocomposites (NCs) with elevated bioactivities as bactericidal (against Salmonella typhimurium and Staphylococcus aureus) and anticancer (against CaCo-2 and HeLa cells). The SeNPs were successfully generated with GCm, and different NCs formulations were fabricated from NCT:GCm/SeNPs amalgam ratios including T1, T2, and T3 with 2:1, 1:1, and 1:2 ratios, respectively. The infrared analysis of synthesized molecules appointed apparent physical interactions among interacted molecules. The average particles' sizes and charges of molecules/NCs were (12.7, 316.4, 252.8, and 127.3 nm) and (-6.9, +38.7, +26.2, and -25.8 mV) for SeNPs, T1, T2, and T3, respectively. The biocidal assessment of NCs indicated that T1 was the strongest antibacterial formulation, whereas T3 was the superior anticancer amalgam. These NCs formulations could exceed the biocidal potentialities of standard biocides. T1-NC could cause severe destructions/deformations in challenged S. typhimurium within 9 h, whereas T3-NCs induced apparent fluorescent apoptosis signs in treated HeLa cells. The prospective applications innovatively designed biocidal natural NCs that are recommended for controlling pathogenic bacteria and fighting cancerous cells.
Collapse
Affiliation(s)
- Mohsen M. El-Sherbiny
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed I. Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed E. El-Hefnawy
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Soha T. Al-Goul
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rawan S. Elekhtiar
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Hoda Mahrous
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| |
Collapse
|
4
|
Alothaid H. Evaluation of cytotoxicity, oxidative stress and organ-specific effects of activated carbon from Al-Baha date palm kernels. Saudi J Biol Sci 2022; 29:103387. [PMID: 35923600 PMCID: PMC9340513 DOI: 10.1016/j.sjbs.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background Activated carbon (AC) is a carbonaceous material derived from carbonization and activation of carbon-containing compounds at high temperature and has a large surface area, providing it with excellent adsorption properties. Human exposure to ACs via ingestion is increasing and, unfortunately, there is little to no evidence related to its level of toxicity Materials and methods Activated carbon of powdered date kernels from Al-Baha city in Saudi Arabia were used to treat rats and cell lines (HepG2 and HCT-116). Toxicity, microbiological tests and biochemical analyses were carried out to investigate biological activity of both commercially available AC (CAC), pharmaceutical AC (PAC) and AC from date palm kernels (AAC) Results None of the ACs showed activity on Staphylococcus aureus, Bacillus subtilis, Protius mirabilis and Escherichia coli. AAC showed the most cytotoxic effect on both HCT-116 and HepG2 cell lines after 24 h, with IC50 of 48.7 ± 17.2 µg/ml and 51 ± 6.24 µg/ml respectively. Rats treated with AAC for 48 h showed no impairment of hepatic and renal functions, unlike those exposed to CAC and PAC. Similarly, AAC-exposed rats did not show oxidative stress in both the liver and kidneys while CAC and PAC exposure resulted in depletion of CAT, GPx, SOD and GSH in both organs. L-arginase and α-fucosidase expression were also induced by both PAC and CAC while α-fucosidase levels were unaffected in AAC-exposed rats Conclusion AAC appears to be biologically safe compared with PAC and CAC due to its antioxidant activities and non-effect on both hepatic and renal functions.
Collapse
|
5
|
Ibrahim EH, Alshahrani MY, Ghramh HA, Alothaid H, Kilany M, Morsy K, El-kott AF, Taha R, El-Mekkawy HI, EL-Shaboury GA, El-Mansi AA, Mohammed ME, Sayed MA, Yahia IS. Origanum majorana harvested from Al-Soda, Saudi Arabia promotes mitotic arrest and apoptosis in colon cancer cells. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101878. [DOI: 10.1016/j.jksus.2022.101878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2025]
|
6
|
Nutraceutical Profiling, Bioactive Composition, and Biological Applications of Lepidium sativum L. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2910411. [PMID: 35096265 PMCID: PMC8791756 DOI: 10.1155/2022/2910411] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Abstract
The roots, leaves, and seeds of Lepidium sativum L., popularly known as Garden cress in different regions, have high economic importance; although, the crop is particularly cultivated for the seeds. In traditional medicine, this plant has been reported to possess various biological activities. This review is aimed at providing updated and critical scientific information about the traditional, nutritional, phytochemical, and biological activities of L. sativum. In addition, the geographic distribution is also reviewed. The comprehensive literature search was carried out with the help of different search engines PubMed, Web of Science, and Science Direct. This review highlighted the importance of L. sativum as an edible herb that possesses a wide range of therapeutic properties along with high nutritional values. Preclinical studies (in vitro and in vivo) displayed anticancer, hepatoprotective, antidiabetic, hypoglycemic, antioxidant, antimicrobial, gastrointestinal, and fracture/bone healing activities of L. sativum and support the clinical importance of plant-derived bioactive compounds for the treatment of different diseases. Screening of literature revealed that L. sativum species and their bioactive compounds may be a significant source for new drug compounds and also could be used against malnutrition. Further clinical trials are needed to effectively assess the actual potential of the species and its bioactive compounds.
Collapse
|
7
|
Haj Bloukh S, Edis Z, Abu Sara H, Alhamaidah MA. Antimicrobial Properties of Lepidium sativum L. Facilitated Silver Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13091352. [PMID: 34575428 PMCID: PMC8466285 DOI: 10.3390/pharmaceutics13091352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance toward commonly used medicinal drugs is a dangerously growing threat to our existence. Plants are naturally equipped with a spectrum of biomolecules and metabolites with important biological activities. These natural compounds constitute a treasure in the fight against multidrug-resistant microorganisms. The development of plant-based antimicrobials through green synthesis may deliver alternatives to common drugs. Lepidium sativum L. (LS) is widely available throughout the world as a fast-growing herb known as garden cress. LS seed oil is interesting due to its antimicrobial, antioxidant, and anti-inflammatory activities. Nanotechnology offers a plethora of applications in the health sector. Silver nanoparticles (AgNP) are used due to their antimicrobial properties. We combined LS and AgNP to prevent microbial resistance through plant-based synergistic mechanisms within the nanomaterial. AgNP were prepared by a facile one-pot synthesis through plant-biomolecules-induced reduction of silver nitrate via a green method. The phytochemicals in the aqueous LS extract act as reducing, capping, and stabilizing agents of AgNP. The composition of the LS-AgNP biohybrids was confirmed by analytical methods. Antimicrobial testing against 10 reference strains of pathogens exhibited excellent to intermediate antimicrobial activity. The bio-nanohybrid LS-AgNP has potential uses as a broad-spectrum microbicide, disinfectant, and wound care product.
Collapse
Affiliation(s)
- Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.); (M.A.A.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Zehra Edis
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Correspondence:
| | - Hamid Abu Sara
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.); (M.A.A.)
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mustafa Ameen Alhamaidah
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.); (M.A.A.)
| |
Collapse
|