1
|
Mohamad EA, Yousuf AA, Mohamed RH, Mohammed HS. Preparation and characterization of chitosan-coated noisomal doxorubicin for enhanced its medical application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2204-2219. [PMID: 38923918 DOI: 10.1080/09205063.2024.2370591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to synthesize and characterize chitosan-coated noisomal doxorubicin for the purpose of enhancing its medical application, particularly in the field of cancer treatment. Doxorubicin, a potent chemotherapeutic agent, was encapsulated within noisomes, which are lipid-based nanocarriers known for their ability to efficiently deliver drugs to target sites. Chitosan, a biocompatible and biodegradable polysaccharide, was used to coat the surface of the noisomes to improve their stability and enhance drug release properties. The synthesized chitosan-coated noisomal doxorubicin was subjected to various characterization techniques to evaluate its physicochemical properties. Transmission electron microscopy (TEM) revealed a spherical structure with a diameter of 500-550 ± 5.45 nm and zeta potential of +11 ± 0.13 mV with no aggregation or agglomeration. Chitosan-coated noisomes can loaded doxorubicin with entrapping efficacy 75.19 ± 1.45%. While scanning electron microscopy (SEM) revealed well-defined pores within a fibrous surface. It is observed that chitosan-coated niosomes loading doxorubicin have optimum roughness (22.88 ± 0.71 nm). UV spectroscopy was employed to assess the drug encapsulation efficiency and release profile. Differential scanning calorimetry (DSC) helped determine the thermal behavior, which indicated a broad endotherm peak at 52.4 °C, while X-ray diffraction (XRD) analysis provided information about the crystallinity of the formulation with an intense peak at 23.79°. Fourier-transform infrared spectroscopy (FTIR) indicated the formation of new bonds between the drug and the polymer. The findings from this study will contribute to the knowledge of the physical and chemical properties of the synthesized formulation, which is crucial for ensuring its stability, drug release kinetics, and biological activity. The enhanced chitosan-coated noisomal doxorubicin has the potential to improve the effectiveness and safety of doxorubicin in cancer treatment, offering a promising strategy for enhanced medical applications.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Alzahraa Alsayed Yousuf
- Physics Department, Center of Basics Science, Misr University for Science and Technology, 6th of October City, Egypt
| | - Rasha H Mohamed
- Physics Department, Center of Basics Science, Misr University for Science and Technology, 6th of October City, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Mohan K, Kandasamy S, Rajarajeswaran J, Sundaram T, Bjeljac M, Surendran RP, Ganesan AR. Chitosan-based insecticide formulations for insect pest control management: A review of current trends and challenges. Int J Biol Macromol 2024; 280:135937. [PMID: 39313045 DOI: 10.1016/j.ijbiomac.2024.135937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, India
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Marko Bjeljac
- Institute for Plant Health, Laimburg Research Centre, 39040 Auer (Ora), Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | | | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway.
| |
Collapse
|
3
|
Attia MM, Khalf MA, Abou-Okada M, Shamseldean MSM, Salem MA, Al-Sabi MNS. Chitosan–silver nanocomposites as a promising tool for controlling the bed bug: Cimex lectularius (Heteroptera: Cimicidae). J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115221149724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study evaluates the use of chitosan–silver nanocomposites (CSN) as an insecticide against the bed bug ( Cimex lectularius). Adult bed bugs were collected from infested residential areas and identified using light microscopy and scanning electron microscopy. CSN were prepared and photographed for characterization using transmission electron microscopy, dynamic light scattering, and zeta potential. The insecticidal effect of different concentrations of CSN (400–1000 ppm) was compared to that of 0.1% cypermethrin as a positive control and normal saline as a negative control. The bugs ( n = 25) were immersed for 20 min in the corresponding medium, dried with filter papers, and then incubated at 27–28°C and 70% RH with a 12:12 h light–dark photoperiod. The mortality rates were recorded at different time intervals (2, 4, 6, 12, and 24 h post-incubation (hPI)), and the entire experiment was repeated five times. Image analysis showed round- to spherical-shaped CSN ranging in size from 34 to 72 nm. The mortality rates were positively associated with increasing concentrations of CSN. The mortality rate first reached 100% for concentrations of 800 ppm at 24 hPI and 1000 ppm at 12 hPI. The calculated LC50 was found at a concentration of 1165 ppm at 2 hPI, and the LC99 was found at a concentration of 1914 ppm at 2 hPI. The positive control, cypermethrin, induced 100% mortality among the bugs at 2 hPI, while the negative control caused no mortality. These results clearly show the potential of CSN as an insecticide against C. lectularius. Future studies on best practices for implementing these particles in clinical settings are recommended.
Collapse
Affiliation(s)
- Marwa M Attia
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud A Khalf
- Department of Veterinary Hygiene and Management; Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud Abou-Okada
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad SM Shamseldean
- Department of Zoology and Agricultural Nematology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mai A Salem
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
4
|
Qashqoosh MTA, Alahdal FAM, Manea YK, Zubair S, Khan RH, Khan AM, Naqvi S. Binding ability of roxatidine acetate and roxatidine acetate supported chitosan nanoparticles towards bovine serum albumin: characterization, spectroscopic and molecular docking studies. J Biomol Struct Dyn 2023; 41:106-124. [PMID: 34821213 DOI: 10.1080/07391102.2021.2004234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RxAc drug loaded on Tween80-chitosan-TPP nanoparticles (NRxAc) has been characterized and probed by UV-Vis, PXRD, FTIR, DLS and SEM technique. The physicochemical characteristics of NRxAc have been employed and evaluated for formulation of drug, particle size, external morphology, drug content and in vitro drug release. Multi-spectroscopic (i.e. fluorescence, UV-Vis, CD spectroscopy) and molecular docking techniques were also used to study the interaction of BSA with RxAc and NRxAc. RxAc and NRxAc quenched the fluorescence emission of BSA via a static quenching mechanism. The experimental data of Fluorescence demonstrated that the binding constant of RxAc and NRxAc were found around 104 L.mol-1, which suggests moderate binding affinity with BSA via hydrophobic forces. Through the site marker displacement experiments and molecular docking, the probable binding location of RxAc and NRxAc has been suggested in subdomain IB (site III) of BSA. Altogether, the results of present study can provide an important insight and a great deal of helpful information for future design of antiulcer drugs. Hence, The RxAc-loaded chitosan nanoparticles produced might be utilized as a successful tool for developing and using antiulcer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohsen T A Qashqoosh
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, University of Aden, Aden, Yemen
| | - Faiza A M Alahdal
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, Hodeidah University, Al Hudaydah, Yemen
| | - Yahiya Kadaf Manea
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, University of Aden, Aden, Yemen
| | - Swaleha Zubair
- Department of Computer science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Amjad Mumtaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saeeda Naqvi
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
5
|
El-Shafai NM, Farrag F, Shukry M, Mehany H, Aboelmaati M, Abu-Ali O, Saleh D, Ramadan M, El-Mehasseb I. Effect of a Novel Hybrid Nanocomposite of Cisplatin-Chitosan on Induced Tissue Injury as a Suggested Drug by Reducing Cisplatin Side Effects. Biol Trace Elem Res 2022; 200:4017-4026. [PMID: 34719747 DOI: 10.1007/s12011-021-02994-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/26/2021] [Indexed: 10/19/2022]
Abstract
The self-assembly of cisplatin (Cis-Pt) and chitosan nanoparticles (Cs NPs) has been synthesized and characterized successfully by different analyses and techniques, such as scanning electron microscopy, ultraviolet-visible spectrophotometry, and Fourier transform infrared spectroscopy. The efficiency of loading Cis-Pt on Cs NPs for decreasing the side effects of Cis-Pt by loading it on Cs NP surface was revealed through histopathological and physiological measurements for the liver, testis, and kidney cells. Self-assembly hybrid nanocomposite (Cis-Pt@Cs) could improve spermatogenic cells, seminiferous tubules, and Leydig cells in the interstitial tissue. Kidney examination showed intact glomeruli with a mild increase in capsular space in addition to the intact renal tubular epithelial lining, and liver findings showed improvement in dilation and congestion of the central vein besides mild dilation of blood sinusoids in addition to a mild degree of hepatocyte vacuolation. The serum levels of hepatic, renal, and testicular marker analysis were measured, where Cis-Pt increased the serum levels of alanine aminotransferase, aspartate aminotransferase activity, urea, creatinine, and decreased testosterone levels, while synthesized self-assembly appeared normalized levels. From the results, the self-assembly hybrid nanocomposite decreases and improves the side effects of Cis-Pt.
Collapse
Affiliation(s)
- Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt.
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Hany Mehany
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Mohamed Aboelmaati
- Institute of Nanoscience and Nanotechnology, KafrelSheikh University, Kafr El-Shaikh, Egypt
| | - Ola Abu-Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Dalia Saleh
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohamed Ramadan
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ibrahim El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| |
Collapse
|
6
|
Kalaivani R, Maruthupandy M, Muneeswaran T, Singh M, Sureshkumar S, Anand M, Ramakritinan C, Quero F, Kumaraguru A. Chitosan mediated gold nanoparticles against pathogenic bacteria, fungal strains and MCF-7 cancer cells. Int J Biol Macromol 2020; 146:560-568. [DOI: 10.1016/j.ijbiomac.2020.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022]
|
7
|
Wardhono EY, Pinem MP, Kustiningsih I, Agustina S, Oudet F, Lefebvre C, Clausse D, Saleh K, Guénin E. Cellulose Nanocrystals to Improve Stability and Functional Properties of Emulsified Film Based on Chitosan Nanoparticles and Beeswax. NANOMATERIALS 2019; 9:nano9121707. [PMID: 31795284 PMCID: PMC6955958 DOI: 10.3390/nano9121707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The framework of this work was to develop an emulsion-based edible film based on a chitosan nanoparticle matrix with cellulose nanocrystals (CNCs) as a stabilizer and reinforcement filler. The chitosan nanoparticles were synthesized based on ionic cross-linking with sodium tripolyphosphate and glycerol as a plasticizer. The emulsified film was prepared through a combination system of Pickering emulsification and water evaporation. The oil-in-water emulsion was prepared by dispersing beeswax into an aqueous colloidal suspension of chitosan nanoparticles using high-speed homogenizer at room temperature. Various properties were characterized, including surface morphology, stability, water vapor barrier, mechanical properties, compatibility, and thermal behaviour. Experimental results established that CNCs and glycerol improve the homogeneity and stability of the beeswax dispersed droplets in the emulsion system which promotes the water-resistant properties but deteriorates the film strength at the same time. When incorporating 2.5% w/w CNCs, the tensile strength of the composite film reached the maximum value, 74.9 MPa, which was 32.5% higher than that of the pure chitosan film, while the optimum one was at 62.5 MPa, and was obtained by the addition of 25% w/w beeswax. All film characterizations demonstrated that the interaction between CNCs and chitosan molecules improved their physical and thermal properties.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
- Correspondence: (E.Y.W.); (E.G.); Tel.: +62-254-395-502 (E.Y.W.); +33-344-234-584 (E.G.)
| | - Mekro Permana Pinem
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Indar Kustiningsih
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
| | - Sri Agustina
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Cilegon 42435, Banten, Indonesia; (M.P.P.); (I.K.); (S.A.)
| | - François Oudet
- Service d’Analyse Physico-Chimique (SAPC), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (F.O.); (C.L.)
| | - Caroline Lefebvre
- Service d’Analyse Physico-Chimique (SAPC), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (F.O.); (C.L.)
| | - Danièle Clausse
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Khashayar Saleh
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr Schweitzer, 60200 Compiègne, France; (D.C.); (K.S.)
- Correspondence: (E.Y.W.); (E.G.); Tel.: +62-254-395-502 (E.Y.W.); +33-344-234-584 (E.G.)
| |
Collapse
|
8
|
Anand M, Sathyapriya P, Maruthupandy M, Hameedha Beevi A. Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.flm.2018.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Muthumari K, Anand M, Maruthupandy M. Collagen Extract from Marine Finfish Scales as a Potential Mosquito Larvicide. Protein J 2017; 35:391-400. [PMID: 27804059 DOI: 10.1007/s10930-016-9685-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collagen is a peptide being utilized in medical, health care, nutrient and decorative industry. Marine fish scales are one of the good sources of collagen, which is extracted using the advanced enzymatic digestion method. Scales of Sardinella longiceps (Oil Sardine) have a high proportion of collagen. This product is well absorbed with broad adaptive values that encourage the inclusion of nutriments. In this paper, we have performed the isolation and characterization of collagen from S. longiceps fish scales. The unnecessary proteins on the surface of fish scales was removed by demineralization process. The fish scale collagen was extracted in two different methods: acid (acetic acid) and enzymatic (pepsin) technique. The molecular mass of the extracted collagen was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The absorption spectra of the extracted collagen was measured to estimate its amino acid (tyrosine) content. Fourier transform infrared (FTIR) spectrum showed the existence of bands corresponding to the collagen extracted from S. longiceps fish scale and the crystallinity of extracted collagen was obtained using X-ray diffraction (XRD) analysis. The morphological micrograph was also analyzed by scanning electron microscope (SEM). The anti-larval effect of the collagen extract was determined using mosquito larvae of Aedes aegypti (Ae. aegypti) and the activity was statistically significant.
Collapse
Affiliation(s)
- K Muthumari
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - M Anand
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| | - M Maruthupandy
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| |
Collapse
|