1
|
Bremova-Ertl T, Hofmann J, Stucki J, Vossenkaul A, Gautschi M. Inborn Errors of Metabolism with Ataxia: Current and Future Treatment Options. Cells 2023; 12:2314. [PMID: 37759536 PMCID: PMC10527548 DOI: 10.3390/cells12182314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
A number of hereditary ataxias are caused by inborn errors of metabolism (IEM), most of which are highly heterogeneous in their clinical presentation. Prompt diagnosis is important because disease-specific therapies may be available. In this review, we offer a comprehensive overview of metabolic ataxias summarized by disease, highlighting novel clinical trials and emerging therapies with a particular emphasis on first-in-human gene therapies. We present disease-specific treatments if they exist and review the current evidence for symptomatic treatments of these highly heterogeneous diseases (where cerebellar ataxia is part of their phenotype) that aim to improve the disease burden and enhance quality of life. In general, a multimodal and holistic approach to the treatment of cerebellar ataxia, irrespective of etiology, is necessary to offer the best medical care. Physical therapy and speech and occupational therapy are obligatory. Genetic counseling is essential for making informed decisions about family planning.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
- Center for Rare Diseases, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland
| | - Jan Hofmann
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
| | - Janine Stucki
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
| | - Anja Vossenkaul
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.V.); (M.G.)
| | - Matthias Gautschi
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.V.); (M.G.)
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Abd El-Rahman AA, El-Shafei SMA, Shehab GMG, Mansour L, Abuelsaad ASA, Gad RA. Assessment of Biochemical and Neuroactivities of Cultural Filtrate from Trichoderma harzianum in Adjusting Electrolytes and Neurotransmitters in Hippocampus of Epileptic Rats. Life (Basel) 2023; 13:1815. [PMID: 37763219 PMCID: PMC10533195 DOI: 10.3390/life13091815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Epilepsy is a serious chronic neurological disorder, which is accompanied by recurrent seizures. Repeated seizures cause physical injuries and neuronal dysfunction and may be a risk of cancer and vascular diseases. However, many antiepileptic drugs (AEDs) have side effects of mood alteration or neurocognitive function, a reduction in neuron excitation, and the inhibition of normal activity. Therefore, the present study aimed to evaluate the effect of secondary metabolites of Trichoderma harzianum cultural filtrate (ThCF) when adjusting different electrolytes and neurotransmitters in the hippocampus of epileptic rats. METHODS Cytotoxicity of ThCF against LS-174T cancer cells was assessed using a sulforhodamine B (SRB) assay. Quantitative estimation for some neurotransmitters, electrolytes in sera or homogenate of hippocampi tissues, and mRNA gene expression for ion or voltage gates was assessed by quantitative Real-Time PCR. RESULTS Treatment with ThCF reduces the proliferative percentage of LS-174T cells in a concentration-dependent manner. ThCF administration improves hyponatremia, hyperkalemia, and hypocalcemia in the sera of the epilepticus model. ThCF rebalances the elevated levels of many neurotransmitters and reduces the release of GABA and acetylcholine-esterase. Also, treatments with ThCF ameliorate the downregulation of mRNA gene expression for some gate receptors in hippocampal homogenate tissues and recorded a highly significant elevation in the expression of SCN1A, CACNA1S, and NMDA. CONCLUSION Secondary metabolites of Trichoderma (ThCF) have cytotoxic activity against LS-174T (colorectal cancer cell line) and anxiolytic-like activity through a GABAergic mechanism of action and an increase in GABA as inhibitory amino acid in the selected brain regions and reduced levels of NMDA and DOPA. The present data suggested that ThCF may inhibit intracellular calcium accumulation by triggering the NAADP-mediated Ca2+ signaling pathway. Therefore, the present results suggested further studies on the molecular pathway for each metabolite of ThCF, e.g., 6-pentyl-α-pyrone (6-PP), harzianic acid (HA), and hydrophobin, as an alternative drug to mitigate the side effects of AEDs.
Collapse
Affiliation(s)
- Atef A. Abd El-Rahman
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt;
| | - Sally M. A. El-Shafei
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt;
| | - Gaber M. G. Shehab
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Rania A. Gad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, NAHDA University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
3
|
Beccano-Kelly DA, Cherubini M, Mousba Y, Cramb KM, Giussani S, Caiazza MC, Rai P, Vingill S, Bengoa-Vergniory N, Ng B, Corda G, Banerjee A, Vowles J, Cowley S, Wade-Martins R. Calcium dysregulation combined with mitochondrial failure and electrophysiological maturity converge in Parkinson's iPSC-dopamine neurons. iScience 2023; 26:107044. [PMID: 37426342 PMCID: PMC10329047 DOI: 10.1016/j.isci.2023.107044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive deterioration of motor and cognitive functions. Although death of dopamine neurons is the hallmark pathology of PD, this is a late-stage disease process preceded by neuronal dysfunction. Here we describe early physiological perturbations in patient-derived induced pluripotent stem cell (iPSC)-dopamine neurons carrying the GBA-N370S mutation, a strong genetic risk factor for PD. GBA-N370S iPSC-dopamine neurons show an early and persistent calcium dysregulation notably at the mitochondria, followed by reduced mitochondrial membrane potential and oxygen consumption rate, indicating mitochondrial failure. With increased neuronal maturity, we observed decreased synaptic function in PD iPSC-dopamine neurons, consistent with the requirement for ATP and calcium to support the increase in electrophysiological activity over time. Our work demonstrates that calcium dyshomeostasis and mitochondrial failure impair the higher electrophysiological activity of mature neurons and may underlie the vulnerability of dopamine neurons in PD.
Collapse
Affiliation(s)
- Dayne A. Beccano-Kelly
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Marta Cherubini
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Yassine Mousba
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Kaitlyn M.L. Cramb
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Stefania Giussani
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Maria Claudia Caiazza
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Pavandeep Rai
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Siv Vingill
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Nora Bengoa-Vergniory
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Bryan Ng
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Gabriele Corda
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Abhirup Banerjee
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Jane Vowles
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sally Cowley
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
5
|
Lloyd-Evans E, Waller-Evans H. Lysosomal Ca 2+ Homeostasis and Signaling in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035311. [PMID: 31653642 DOI: 10.1101/cshperspect.a035311] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcium (Ca2+) signaling is an essential process in all cells that is maintained by a plethora of channels, pumps, transporters, receptors, and intracellular Ca2+ sequestering stores. Changes in cytosolic Ca2+ concentration govern processes as far reaching as fertilization, cell growth, and motility through to cell death. In recent years, lysosomes have emerged as a major intracellular Ca2+ storage organelle with an increasing involvement in triggering or regulating cellular functions such as endocytosis, autophagy, and Ca2+ release from the endoplasmic reticulum. This review will summarize recent work in the area of lysosomal Ca2+ signaling and homeostasis, including newly identified functions, and the involvement of lysosome-derived Ca2+ signals in human disease. In addition, we explore recent controversies in the techniques used for measurement of lysosomal Ca2+ content.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Helen Waller-Evans
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
6
|
Belova LA, Mashin VV, Dudikov EM, Belov DV, Krupennikov AA. [A multicenter observation study of the efficacy of cortexin and recognan (citicoline) in the treatment of cognitive impairments in chronic cerebrovascular pathology]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:35-38. [PMID: 30874524 DOI: 10.17116/jnevro201911902135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To make a critical assessment of the therapeutic effect of complex therapy with cortexin and recognan (citicoline) for cognitive impairments in patients with chronic cerebrovascular pathology. MATERIAL AND METHODS Presented is an analysis of results of the multicenter observation program to assess the efficacy of cortexin and recognan (citicoline) in the treatment of cognitive impairments in patients with chronic cerebrovascular pathology. Three hundred and nine patients with chronic cerebrovascular pathology, including 134 (43.4%) men and 175 (56.6%) women, aged from 30 to 80, average age 63.4±9.4 years, with confirmed cognitive deficit were examined. The diagnosis was established on the basis of complaints, case reports, the results of CT/MRI studies, as well as assessments of the neurological status and cognitive functions. Cognitive impairments were confirmed by the number of points on the Mini-mental state examination (MMSE) and the Clock drawing test. The assessment of depression was made with the Mini Geriatric Depression Scale (MGDS). All patients received cortexin and recognan (citicoline) ('Geropharm', Russia) at doses 10 mg/day for 10 days and 1000 mg/day for 1 month, respectively. RESULTS AND CONCLUSION Complex therapy with cortexin and recognan (citicoline) showed high efficacy in the treatment of vascular cognitive disorders. The results of the study allow us to recommend the complex administration of cortexin and recognan (citicoline) ('Geropharm', Russia) in doses of 10 mg/day for 10 days and 1000 mg/day for 1 month, respectively, for chronic cerebrovascular pathology.
Collapse
Affiliation(s)
- L A Belova
- Ulyanovsk State University, Ulyanovsk, Russia
| | - V V Mashin
- Ulyanovsk State University, Ulyanovsk, Russia
| | - E M Dudikov
- Ulyanovsk State University, Ulyanovsk, Russia
| | - D V Belov
- Ulyanovsk State University, Ulyanovsk, Russia
| | | |
Collapse
|
7
|
Mashin VV, Belova LA, Dudikov EM, Bergelson TM, Lankov VA, Zakuraeva KA. [The efficacy of recognan in the early stage of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:44-48. [PMID: 29171488 DOI: 10.17116/jnevro201711710144-48] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIM To assess the efficacy and safety of recognan in patients with acute ischemic stroke (IS). MATERIAL AND METHODS Seventy-nine patients, aged from 30 to 80 years, were examined in the early stage of IS. All patients received recognan (citicoline) in dose of 1000 mg/daily during 15 days. The recovery of cognitive functions (MMSE), level of consciousness (Glasgow Coma Scale), severity of focal neurological deficit (NIHSS) and functional recovery (Rankin scale, Barthel index, Rivermead Mobility Index) were assessed. RESULTS AND CONCLUSION A decrease of cognitive impairment, improvement of memory, regression of neurological symptoms and increase in the motor activity were observed. Recognan used in dose of 1000 mg/daily during 15 days in the complex treatment of patients with IS promotes the recovery of cognitive function, reduces neurological symptoms and improves the recovery of motor activity.
Collapse
Affiliation(s)
- V V Mashin
- Ulyanovsk State University, Ulyanovsk, Russia
| | - L A Belova
- Ulyanovsk State University, Ulyanovsk, Russia
| | - E M Dudikov
- Ulyanovsk State University, Ulyanovsk, Russia
| | | | - V A Lankov
- Ulyanovsk State University, Ulyanovsk, Russia
| | | |
Collapse
|