1
|
Zheng X, Li H, Hu Z, Su D, Yang J. Structural and functional characterization of an achromatopsia-associated mutation in a phototransduction channel. Commun Biol 2022; 5:190. [PMID: 35233102 PMCID: PMC8888761 DOI: 10.1038/s42003-022-03120-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
Numerous missense mutations in cyclic nucleotide-gated (CNG) channels cause achromatopsia and retinitis pigmentosa, but the underlying pathogenic mechanisms are often unclear. We investigated the structural basis and molecular/cellular effects of R410W, an achromatopsia-associated, presumed loss-of-function mutation in human CNGA3. Cryo-EM structures of the Caenorhabditis elegans TAX-4 CNG channel carrying the analogous mutation, R421W, show that most apo channels are open. R421, located in the gating ring, interacts with the S4 segment in the closed state. R421W disrupts this interaction, destabilizes the closed state, and stabilizes the open state. CNGA3_R410W/CNGB3 and TAX4_R421W channels are spontaneously active without cGMP and induce cell death, suggesting cone degeneration triggered by spontaneous CNG channel activity as a possible cause of achromatopsia. Our study sheds new light on CNG channel allosteric gating, provides an impetus for a reevaluation of reported loss-of-function CNG channel missense disease mutations, and has implications for mutation-specific treatment of retinopathy.
Collapse
Affiliation(s)
- Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Huan Li
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Deyuan Su
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
2
|
Ribeiro J, Procyk CA, West EL, O'Hara-Wright M, Martins MF, Khorasani MM, Hare A, Basche M, Fernando M, Goh D, Jumbo N, Rizzi M, Powell K, Tariq M, Michaelides M, Bainbridge JWB, Smith AJ, Pearson RA, Gonzalez-Cordero A, Ali RR. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 2021; 35:109022. [PMID: 33882303 PMCID: PMC8065177 DOI: 10.1016/j.celrep.2021.109022] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision.
Collapse
Affiliation(s)
- Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Emma L West
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Monica F Martins
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Aura Hare
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mark Basche
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Milan Fernando
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Neeraj Jumbo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Matteo Rizzi
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Kate Powell
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Menahil Tariq
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Kellogg Eye Centre, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|
3
|
Meighan PC, Peng C, Varnum MD. Inherited macular degeneration-associated mutations in CNGB3 increase the ligand sensitivity and spontaneous open probability of cone cyclic nucleotide-gated channels. Front Physiol 2015; 6:177. [PMID: 26106334 PMCID: PMC4460308 DOI: 10.3389/fphys.2015.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/25/2015] [Indexed: 11/13/2022] Open
Abstract
Cyclic nucleotide gated (CNG) channels are a critical component of the visual transduction cascade in the vertebrate retina. Mutations in the genes encoding these channels have been associated with a spectrum of inherited retinal disorders. To gain insight into their pathophysiological mechanisms, we have investigated the functional consequences of several CNGB3 mutations, previously associated with macular degeneration (Y469D and L595F) or complete achromatopsia (S156F, P309L, and G558C), by expressing these subunits in combination with wild-type CNGA3 in Xenopus oocytes and characterizing them using patch-clamp recordings in the inside-out configuration. These mutations did not prevent the formation of functional heteromeric channels, as indicated by sensitivity to block by L-cis-diltiazem. With the exception of S156F, each of the mutant channels displayed electrophysiological properties reflecting enhanced channel activity at physiological concentrations of cGMP (i.e., a gain-of-function phenotype). The increased channel activity produced by these mutations resulted from either increased functional expression levels, or increased sensitivity to cyclic nucleotides. Furthermore, L595F increased the spontaneous open probability in the absence of activating ligand, signifying a ligand independent gain-of-function change. In addition to the CNGB3 disease-associate mutations, we characterized the effects of several common CNGB3 and CNGA3 single-nucleotide polymorphisms (SNPs) on heteromeric CNGA3+CNGB3 channel function. Two of the SNPs examined (A3-T153M, and B3-W234C) produced decreased ligand sensitivity for heteromeric CNG channels. These changes may contribute to background disease susceptibility when combined with other genetic or non-genetic factors. Together, these studies help to define the underlying molecular phenotype for mutations relating to CNG channel disease pathogenesis.
Collapse
Affiliation(s)
- Peter C Meighan
- Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University Pullman, WA, USA
| | - Changhong Peng
- Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University Pullman, WA, USA
| | - Michael D Varnum
- Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University Pullman, WA, USA ; Center for Integrated Biotechnology, Washington State University Pullman, WA, USA
| |
Collapse
|
4
|
Mosley JD, Van Driest SL, Weeke PE, Delaney JT, Wells QS, Bastarache L, Roden DM, Denny JC. Integrating EMR-linked and in vivo functional genetic data to identify new genotype-phenotype associations. PLoS One 2014; 9:e100322. [PMID: 24949630 PMCID: PMC4065041 DOI: 10.1371/journal.pone.0100322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/25/2014] [Indexed: 12/31/2022] Open
Abstract
The coupling of electronic medical records (EMR) with genetic data has created the potential for implementing reverse genetic approaches in humans, whereby the function of a gene is inferred from the shared pattern of morbidity among homozygotes of a genetic variant. We explored the feasibility of this approach to identify phenotypes associated with low frequency variants using Vanderbilt's EMR-based BioVU resource. We analyzed 1,658 low frequency non-synonymous SNPs (nsSNPs) with a minor allele frequency (MAF)<10% collected on 8,546 subjects. For each nsSNP, we identified diagnoses shared by at least 2 minor allele homozygotes and with an association p<0.05. The diagnoses were reviewed by a clinician to ascertain whether they may share a common mechanistic basis. While a number of biologically compelling clinical patterns of association were observed, the frequency of these associations was identical to that observed using genotype-permuted data sets, indicating that the associations were likely due to chance. To refine our analysis associations, we then restricted the analysis to 711 nsSNPs in genes with phenotypes in the On-line Mendelian Inheritance in Man (OMIM) or knock-out mouse phenotype databases. An initial comparison of the EMR diagnoses to the known in vivo functions of the gene identified 25 candidate nsSNPs, 19 of which had significant genotype-phenotype associations when tested using matched controls. Twleve of the 19 nsSNPs associations were confirmed by a detailed record review. Four of 12 nsSNP-phenotype associations were successfully replicated in an independent data set: thrombosis (F5,rs6031), seizures/convulsions (GPR98,rs13157270), macular degeneration (CNGB3,rs3735972), and GI bleeding (HGFAC,rs16844401). These analyses demonstrate the feasibility and challenges of using reverse genetics approaches to identify novel gene-phenotype associations in human subjects using low frequency variants. As increasing amounts of rare variant data are generated from modern genotyping and sequence platforms, model organism data may be an important tool to enable discovery.
Collapse
Affiliation(s)
- Jonathan D. Mosley
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sara L. Van Driest
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Peter E. Weeke
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jessica T. Delaney
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Quinn S. Wells
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lisa Bastarache
- Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Josh C. Denny
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|