1
|
Greene MJ, Boehm AE, Vanston JE, Pandiyan VP, Sabesan R, Tuten WS. Unique yellow shifts for small and brief stimuli in the central retina. J Vis 2024; 24:2. [PMID: 38833255 PMCID: PMC11156209 DOI: 10.1167/jov.24.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.
Collapse
Affiliation(s)
- Maxwell J Greene
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - John E Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Vimal P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Godat T, Kohout K, Parkins K, Yang Q, McGregor JE, Merigan WH, Williams DR, Patterson SS. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Noncardinal Color Directions. J Neurosci 2024; 44:e1738232024. [PMID: 38548340 PMCID: PMC11063829 DOI: 10.1523/jneurosci.1738-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.
Collapse
Affiliation(s)
- Tyler Godat
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Institute of Optics, University of Rochester, Rochester, New York 14611
| | - Kendall Kohout
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - William H Merigan
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Institute of Optics, University of Rochester, Rochester, New York 14611
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| |
Collapse
|
3
|
Rezeanu D, Neitz M, Neitz J. From cones to color vision: a neurobiological model that explains the unique hues. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:A1-A8. [PMID: 37132996 PMCID: PMC11016238 DOI: 10.1364/josaa.477227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 05/04/2023]
Abstract
The irreducible unique hues-red, green, blue, and yellow-remain one of the great mysteries of vision science. Attempts to create a physiologically parsimonious model that can predict the spectral locations of the unique hues all rely on at least one post hoc adjustment to produce appropriate loci for unique green and unique red, and struggle to explain the non-linearity of the Blue/Yellow system. We propose a neurobiological color vision model that overcomes these challenges by using physiological cone ratios, cone-opponent normalization to equal-energy white, and a simple adaptation mechanism to produce color-opponent mechanisms that accurately predict the spectral locations and variability of the unique hues.
Collapse
Affiliation(s)
- Dragos Rezeanu
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98109, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
4
|
Munds RA, Cooper EB, Janiak MC, Lam LG, DeCasien AR, Bauman Surratt S, Montague MJ, Martinez MI, Research Unit CB, Kawamura S, Higham JP, Melin AD. Variation and heritability of retinal cone ratios in a free-ranging population of rhesus macaques. Evolution 2022; 76:1776-1789. [PMID: 35790204 PMCID: PMC9544366 DOI: 10.1111/evo.14552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023]
Abstract
A defining feature of catarrhine primates is uniform trichromacy-the ability to distinguish red (long; L), green (medium; M), and blue (short; S) wavelengths of light. Although the tuning of photoreceptors is conserved, the ratio of L:M cones in the retina is variable within and between species, with human cone ratios differing from other catarrhines. Yet, the sources and structure of variation in cone ratios are poorly understood, precluding a broader understanding of color vision variability. Here, we report a large-scale study of a pedigreed population of rhesus macaques (Macaca mulatta). We collected foveal RNA and analyzed opsin gene expression using cDNA and estimated additive genetic variance of cone ratios. The average L:M ratio and standard error was 1.03:1 ± 0.02. There was no age effect, and genetic contribution to variation was negligible. We found marginal sex effects with females having larger ratios than males. S cone ratios (0.143:1 ± 0.002) had significant genetic variance with a heritability estimate of 43% but did not differ between sexes or age groups. Our results contextualize the derived human condition of L-cone dominance and provide new information about the heritability of cone ratios and variation in primate color vision.
Collapse
Affiliation(s)
- Rachel A. Munds
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Eve B. Cooper
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460
| | - Mareike C. Janiak
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada,Department of AnthropologyNew York UniversityNew YorkNew York10003,School of Science, Engineering and EnvironmentUniversity of SalfordSalfordM5 4NTUnited Kingdom
| | - Linh Gia Lam
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Alex R. DeCasien
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460,Section on Developmental NeurogenomicsNational Institute of Mental HealthBethesdaMaryland20892
| | | | - Michael J. Montague
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Melween I. Martinez
- Caribbean Primate Research CenterUniversity of Puerto RicoSan JuanPuerto Rico00936
| | | | - Shoji Kawamura
- Department of Integrated BiosciencesUniversity of TokyoKashiwa277‐8562Japan
| | - James P. Higham
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460
| | - Amanda D. Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada,Department of Medical GeneticsUniversity of CalgaryCalgaryABT2N 1N4Canada,Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryABT2N 1N4Canada
| |
Collapse
|
5
|
Rezeanu D, Neitz M, Neitz J. How We See Black and White: The Role of Midget Ganglion Cells. Front Neuroanat 2022; 16:944762. [PMID: 35864822 PMCID: PMC9294633 DOI: 10.3389/fnana.2022.944762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
According to classical opponent color theory, hue sensations are mediated by spectrally opponent neurons that are excited by some wavelengths of light and inhibited by others, while black-and-white sensations are mediated by spectrally non-opponent neurons that respond with the same sign to all wavelengths. However, careful consideration of the morphology and physiology of spectrally opponent L vs. M midget retinal ganglion cells (RGCs) in the primate retina indicates that they are ideally suited to mediate black-and-white sensations and poorly suited to mediate color. Here we present a computational model that demonstrates how the cortex could use unsupervised learning to efficiently separate the signals from L vs. M midget RGCs into distinct signals for black and white based only correlation of activity over time. The model also reveals why it is unlikely that these same ganglion cells could simultaneously mediate our perception of red and green, and shows how, in theory, a separate small population of midget RGCs with input from S, M, and L cones would be ideally suited to mediating hue perception.
Collapse
Affiliation(s)
| | | | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Wetzel D, Ungewiss J, Wörner M, Wilhelm H, Schiefer U. Dissociation between red and white stimulus perception: A perimetric quantification of protanopic color vision deficiencies. PLoS One 2021; 16:e0260362. [PMID: 34928982 PMCID: PMC8687589 DOI: 10.1371/journal.pone.0260362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Significance Horizontal visual field extension was assessed for red and white stimuli in subjects with protanopia using semi-automated kinetic perimetry. In contrast to a conventional anomaloscope, the “red/white dissociation ratio” (RWR) allows to describe protanopia numerically. For the majority of subjects with protanopia a restriction for faint red stimuli was found. Purpose Comparing the horizontal visual field extensions for red and white stimuli in subjects with protanopia and those with normal trichromacy and assessing the related intra-subject intra-session repeatability. Methods The subjects were divided into groups with protanopia and with normal trichromacy, based on color vision testing (HMC anomaloscope, Oculus, Wetzlar/FRG). Two stimulus characteristics, III4e and III1e, according to the Goldmann-classification, were presented with semi-automated kinetic perimetry (Octopus 900 perimeter, Haag-Streit, Köniz/CH). They moved along the horizontal meridian, with an angular velocity of 3°/s towards the visual field center, starting from either the temporal or nasal periphery. If necessary, a 20° nasal fixation point offset was chosen to capture the temporal periphery of the visual field. For each condition the red/white dissociation ratio (RWR); Pat Appl. DPMA DRN 43200082D) between the extent of the isopter for red (RG610, Schott, Mainz/ FRG) and white stimuli along the horizontal meridian was determined. Results All data are listed as median/interquartile range: Five males with protanopia (age 22.1/4.5 years) and six males with normal trichromacy (control group, age 30.5/15.2 years) were enrolled. The RWR is listed for the right eye, as no clinically relevant difference between right and left eye occurred. Protanopes’ RWR for mark III4e (in brackets: control group) was 0.941/0.013 (0.977/0.019) and for mark III1e 0.496/0.062 (0.805/0.051), respectively. Conclusions In this exploratory “proof-of-concept study” red/white dissociation ratio perimetry is introduced as a novel technique aiming at assessing and quantifying the severity of protanopia. Further effort is needed to understand the magnitude of the observed red-/white dissociation and to extend this methodology to a wider age range of the sample and to anomalous trichromacies (protanomalia) with varying magnitude.
Collapse
Affiliation(s)
- Denise Wetzel
- Study course Ophthalmic Optics/Optometry, Aalen University of Applied Sciences, Aalen, Germany
| | - Judith Ungewiss
- Competence Center Vision Research / Study course Ophthalmic Optics/Optometry, Aalen University of Applied Sciences, Aalen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
- * E-mail:
| | - Michael Wörner
- Competence Center Vision Research / Study course Ophthalmic Optics/Optometry, Aalen University of Applied Sciences, Aalen, Germany
- Department of Ophthalmology, Tübingen University, Tübingen, Germany
| | | | - Ulrich Schiefer
- Competence Center Vision Research / Study course Ophthalmic Optics/Optometry, Aalen University of Applied Sciences, Aalen, Germany
- Blickshift GmbH, Stuttgart, Germany
| |
Collapse
|
7
|
Price TD, Stoddard MC, Shevell SK, Bloch NI. Understanding how neural responses contribute to the diversity of avian colour vision. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Patterson SS, Neitz M, Neitz J. Reconciling Color Vision Models With Midget Ganglion Cell Receptive Fields. Front Neurosci 2019; 13:865. [PMID: 31474825 PMCID: PMC6707431 DOI: 10.3389/fnins.2019.00865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Midget retinal ganglion cells (RGCs) make up the majority of foveal RGCs in the primate retina. The receptive fields of midget RGCs exhibit both spectral and spatial opponency and are implicated in both color and achromatic form vision, yet the exact mechanisms linking their responses to visual perception remain unclear. Efforts to develop color vision models that accurately predict all the features of human color and form vision based on midget RGCs provide a case study connecting experimental and theoretical neuroscience, drawing on diverse research areas such as anatomy, physiology, psychophysics, and computer vision. Recent technological advances have allowed researchers to test some predictions of color vision models in new and precise ways, producing results that challenge traditional views. Here, we review the progress in developing models of color-coding receptive fields that are consistent with human psychophysics, the biology of the primate visual system and the response properties of midget RGCs.
Collapse
Affiliation(s)
- Sara S Patterson
- Department of Ophthalmology, University of Washington, Seattle, WA, United States.,Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Neitz M, Patterson SS, Neitz J. Photopigment genes, cones, and color update: disrupting the splicing code causes a diverse array of vision disorders. Curr Opin Behav Sci 2019; 30:60-66. [PMID: 32195292 DOI: 10.1016/j.cobeha.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human long- and middle-wavelength sensitive cone opsin genes exhibit an extraordinary degree of haplotype diversity that results from recombination mechanisms that have intermixed the genes. As a first step in expression, genes-including the protein coding exons and intervening introns-are transcribed. Next, transcripts are spliced to remove the introns and join the exons to generate a mature message that codes for the protein. Important information necessary for splicing is contained within exons, and is overlaid by the protein code. Intermixing the long- and middle-wavelength sensitive cone opsin genes has disrupted the splicing code, leading to exclusion of some exons from the mature message and is associated with several vision disorders including nearsightedness, cone dystrophy, and color vision deficiencies.
Collapse
Affiliation(s)
- Maureen Neitz
- University of Washington, Department of Ophthalmology, Vision Sciences Center, 750 Republican St, Box 358058, Seattle, WA 98109
| | - Sara S Patterson
- University of Washington, Graduate Program in Neuroscience, Vision Science Center, 750 Republican St, Box 358058, Seattle, WA 98109
| | - Jay Neitz
- University of Washington, Department of Ophthalmology, Vision Sciences Center, 750 Republican St, Box 358058, Seattle, WA 98109
| |
Collapse
|
10
|
Schmidt BP, Boehm AE, Foote KG, Roorda A. The spectral identity of foveal cones is preserved in hue perception. J Vis 2019; 18:19. [PMID: 30372729 PMCID: PMC6205561 DOI: 10.1167/18.11.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Organisms are faced with the challenge of making inferences about the physical world from incomplete incoming sensory information. One strategy to combat ambiguity in this process is to combine new information with prior experiences. We investigated the strategy of combining these information sources in color vision. Single cones in human subjects were stimulated and the associated percepts were recorded. Subjects rated each flash for brightness, hue, and saturation. Brightness ratings were proportional to stimulus intensity. Saturation was independent of intensity, but varied between cones. Hue, in contrast, was assigned in a stereotyped manner that was predicted by cone type. These experiments revealed that, near the fovea, long and middle wavelength sensitive cones produce sensations that can be reliably distinguished on the basis of hue, but not saturation or brightness. Taken together, these observations implicate the high-resolution, color-opponent parvocellular pathway in this low-level visual task.
Collapse
Affiliation(s)
- Brian P Schmidt
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra E Boehm
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| | - Katharina G Foote
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
To MPS, Tolhurst DJ. V1-based modeling of discrimination between natural scenes within the luminance and isoluminant color planes. J Vis 2019; 19:9. [PMID: 30650432 DOI: 10.1167/19.1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have been developing a computational visual difference predictor model that can predict how human observers rate the perceived magnitude of suprathreshold differences between pairs of full-color naturalistic scenes (To, Lovell, Troscianko, & Tolhurst, 2010). The model is based closely on V1 neurophysiology and has recently been updated to more realistically implement sequential application of nonlinear inhibitions (contrast normalization followed by surround suppression; To, Chirimuuta, & Tolhurst, 2017). The model is based originally on a reliable luminance model (Watson & Solomon, 1997) which we have extended to the red/green and blue/yellow opponent planes, assuming that the three planes (luminance, red/green, and blue/yellow) can be modeled similarly to each other with narrow-band oriented filters. This paper examines whether this may be a false assumption, by decomposing our original full-color stimulus images into monochromatic and isoluminant variants, which observers rate separately and which we model separately. The ratings for the original full-color scenes correlate better with the new ratings for the monochromatic variants than for the isoluminant ones, suggesting that luminance cues carry more weight in observers' ratings to full-color images. The ratings for the original full-color stimuli can be predicted from the new monochromatic and isoluminant rating data by combining them by Minkowski summation with power m = 2.71, consistent with other studies involving feature summation. The model performed well at predicting ratings for monochromatic stimuli, but was weaker for isoluminant stimuli, indicating that mirroring the monochromatic models is not sufficient to model the color planes. We discuss several alternative strategies to improve the color modeling.
Collapse
Affiliation(s)
- Michelle P S To
- Department of Psychology, Lancaster University, Lancaster, UK
| | | |
Collapse
|
12
|
Schmidt BP, Sabesan R, Tuten WS, Neitz J, Roorda A. Sensations from a single M-cone depend on the activity of surrounding S-cones. Sci Rep 2018; 8:8561. [PMID: 29867090 PMCID: PMC5986870 DOI: 10.1038/s41598-018-26754-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/18/2018] [Indexed: 11/15/2022] Open
Abstract
Color vision requires the activity of cone photoreceptors to be compared in post-receptoral circuitry. Decades of psychophysical measurements have quantified the nature of these comparative interactions on a coarse scale. How such findings generalize to a cellular scale remains unclear. To answer that question, we quantified the influence of surrounding light on the appearance of spots targeted to individual cones. The eye's aberrations were corrected with adaptive optics and retinal position was precisely tracked in real-time to compensate for natural movement. Subjects reported the color appearance of each spot. A majority of L-and M-cones consistently gave rise to the sensation of white, while a smaller group repeatedly elicited hue sensations. When blue sensations were reported they were more likely mediated by M- than L-cones. Blue sensations were elicited from M-cones against a short-wavelength light that preferentially elevated the quantal catch in surrounding S-cones, while stimulation of the same cones against a white background elicited green sensations. In one of two subjects, proximity to S-cones increased the probability of blue reports when M-cones were probed. We propose that M-cone increments excited both green and blue opponent pathways, but the relative activity of neighboring cones favored one pathway over the other.
Collapse
Affiliation(s)
- Brian P Schmidt
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98109, USA.
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, CA, 94720, USA.
| | - Ramkumar Sabesan
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, CA, 94720, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - William S Tuten
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Evolution of the circuitry for conscious color vision in primates. Eye (Lond) 2016; 31:286-300. [PMID: 27935605 DOI: 10.1038/eye.2016.257] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/06/2016] [Indexed: 11/08/2022] Open
Abstract
There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision.
Collapse
|
14
|
Sabesan R, Schmidt BP, Tuten WS, Roorda A. The elementary representation of spatial and color vision in the human retina. SCIENCE ADVANCES 2016; 2:e1600797. [PMID: 27652339 PMCID: PMC5023317 DOI: 10.1126/sciadv.1600797] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/19/2016] [Indexed: 05/05/2023]
Abstract
The retina is the most accessible element of the central nervous system for linking behavior to the activity of isolated neurons. We unraveled behavior at the elementary level of single input units-the visual sensation generated by stimulating individual long (L), middle (M), and short (S) wavelength-sensitive cones with light. Spectrally identified cones near the fovea of human observers were targeted with small spots of light, and the type, proportion, and repeatability of the elicited sensations were recorded. Two distinct populations of cones were observed: a smaller group predominantly associated with signaling chromatic sensations and a second, more numerous population linked to achromatic percepts. Red and green sensations were mainly driven by L- and M-cones, respectively, although both cone types elicited achromatic percepts. Sensations generated by cones were rarely stochastic; rather, they were consistent over many months and were dominated by one specific perceptual category. Cones lying in the midst of a pure spectrally opponent neighborhood, an arrangement purported to be most efficient in producing chromatic signals in downstream neurons, were no more likely to signal chromatic percepts. Overall, the results are consistent with the idea that the nervous system encodes high-resolution achromatic information and lower-resolution color signals in separate pathways that emerge as early as the first synapse. The lower proportion of cones eliciting color sensations may reflect a lack of evolutionary pressure for the chromatic system to be as fine-grained as the high-acuity achromatic system.
Collapse
Affiliation(s)
- Ramkumar Sabesan
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| | - Brian P. Schmidt
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98109, USA
| | - William S. Tuten
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|