1
|
Min SH, Wang Z, Chen MT, Hu R, Gong L, He Z, Wang X, Hess RF, Zhou J. Metaplasticity: Dark exposure boosts local excitability and visual plasticity in adult human cortex. J Physiol 2023; 601:4105-4120. [PMID: 37573529 DOI: 10.1113/jp284040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
An interlude of dark exposure for about 1 week is known to shift excitatory/inhibitory (E/I) balance of the mammalian visual cortex, promoting plasticity and accelerating visual recovery in animals that have experienced cortical lesions during development. However, the translational impact of our understanding of dark exposure from animal studies to humans remains elusive. Here, we used magnetic resonance spectroscopy as a probe for E/I balance in the primary visual cortex (V1) to determine the effect of 60 min of dark exposure, and measured binocular combination as a behavioural assay to assess visual plasticity in 14 normally sighted human adults. To induce neuroplastic changes in the observers, we introduced 60 min of monocular deprivation, which is known to temporarily shift sensory eye balance in favour of the previously deprived eye. We report that prior dark exposure for 60 min strengthens local excitability in V1 and boosts visual plasticity in normal adults. However, we show that it does not promote plasticity in amblyopic adults. Nevertheless, our findings are surprising, given the fact that the interlude is very brief. Interestingly, we find that the increased concentration of the excitatory neurotransmitter is not strongly correlated with the enhanced functional plasticity. Instead, the absolute degree of change in its concentration is related to the boost, suggesting that the dichotomy of cortical excitation and inhibition might not explain the physiological basis of plasticity in humans. We present the first evidence that an environmental manipulation that shifts cortical E/I balance can also act as a metaplastic facilitator for visual plasticity in humans. KEY POINTS: A brief interlude (60 min) of dark exposure increased the local concentration of glutamine/glutamate but not that of GABA in the visual cortex of adult humans. After dark exposure, the degree of the shift in sensory eye dominance in favour of the previously deprived eye from short-term monocular deprivation was larger than that from only monocular deprivation. The neurochemical and behavioural measures were associated: the magnitude of the shift in the concentration of glutamine/glutamate was correlated with the boost in perceptual plasticity after dark exposure. Surprisingly, the increase in the concentration of glutamine/glutamate was not correlated with the perceptual boost after dark exposure, suggesting that the physiological mechanism of how E/I balance regulates plasticity is not deterministic. In other words, an increased excitation did not unilaterally promote plasticity.
Collapse
Affiliation(s)
- Seung Hyun Min
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zili Wang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Meng Ting Chen
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rongjie Hu
- Center for Biomedical Imaging, University of Science and Technology of China, Anhui, China
| | - Ling Gong
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhifen He
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Anhui, China
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Jiawei Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Jeon BB, Fuchs T, Chase SM, Kuhlman SJ. Visual experience has opposing influences on the quality of stimulus representation in adult primary visual cortex. eLife 2022; 11:80361. [PMID: 36321876 PMCID: PMC9629826 DOI: 10.7554/elife.80361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Transient dark exposure, typically 7–10 days in duration, followed by light reintroduction is an emerging treatment for improving the restoration of vision in amblyopic subjects whose occlusion is removed in adulthood. Dark exposure initiates homeostatic mechanisms that together with light-induced changes in cellular signaling pathways result in the re-engagement of juvenile-like plasticity in the adult such that previously deprived inputs can gain cortical territory. It is possible that dark exposure itself degrades visual responses, and this could place constraints on the optimal duration of dark exposure treatment. To determine whether eight days of dark exposure has a lasting negative impact on responses to classic grating stimuli, neural activity was recorded before and after dark exposure in awake head-fixed mice using two-photon calcium imaging. Neural discriminability, assessed using classifiers, was transiently reduced following dark exposure; a decrease in response reliability across a broad range of spatial frequencies likely contributed to the disruption. Both discriminability and reliability recovered. Fixed classifiers were used to demonstrate that stimulus representation rebounded to the original, pre-deprivation state, thus dark exposure did not appear to have a lasting negative impact on visual processing. Unexpectedly, we found that dark exposure significantly stabilized orientation preference and signal correlation. Our results reveal that natural vision exerts a disrupting influence on the stability of stimulus preference for classic grating stimuli and, at the same time, improves neural discriminability for both low and high-spatial frequency stimuli.
Collapse
Affiliation(s)
- Brian B Jeon
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States
| | - Thomas Fuchs
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| | - Steven M Chase
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States
| | - Sandra J Kuhlman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
3
|
Abstract
For four decades, investigations of the biological basis of critical periods in the developing mammalian visual cortex were dominated by study of the consequences of altered early visual experience in cats and nonhuman primates. The neural deficits thus revealed also provided insight into the origin and neural basis of human amblyopia that in turn motivated additional studies of humans with abnormal early visual input. Recent human studies point to deficits arising from alterations in all visual cortical areas and even in nonvisual cortical regions. As the new human data accumulated in parallel with a near-complete shift toward the use of rodent animal models for the study of neural mechanisms, it is now essential to review the human data and the earlier animal data obtained from cats and monkeys to infer general conclusions and to optimize future choice of the most appropriate animal model. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Donald E Mitchell
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Daphne Maurer
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada;
| |
Collapse
|
4
|
Huang X, Xia H, Zhang Q, Blakemore C, Nan Y, Wang W, Gao J, Ng SS, Wen J, Huang T, Li X, Pu M. New treatment for amblyopia based on rules of synaptic plasticity: a randomized clinical trial. SCIENCE CHINA. LIFE SCIENCES 2022; 65:451-465. [PMID: 35015247 DOI: 10.1007/s11427-021-2030-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Amblyopia resulting from early deprivation of vision or defocus in one eye reflects an imbalance of input from the eyes to the visual cortex. We tested the hypothesis that asynchronous stimulation of the two eyes might induce synaptic plasticity and rebalance input. Experiments on normal adults showed that repetitive brief exposure of grating stimuli, with the onset of each stimulus delayed by 8.3 ms in one eye, results in a shift in perceptual eye dominance. Clinical studies (Clinical trial registration number: ChiCTR2100049130), using popular 3D movies with similar asynchrony between the two eyes (amblyopic eye stimulated first) to treat anisometropic amblyopia, established that just 10.5 h of conditioning over <3 weeks produced improvement that met criteria for successful treatment. The benefits of asynchronous conditioning accumulate over 20-30 45 min sessions, and are maintained for at least 2 years. Finally, we demonstrate that asynchronous binocular treatment alone is more effective than patching only. This novel treatment is popular with children and is some 50 times more efficient than patching alone.
Collapse
Affiliation(s)
- Xin Huang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100083, China
| | - Huika Xia
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100083, China.,Department of Ophthalmology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Qi Zhang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100083, China
| | - Colin Blakemore
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| | - Yan Nan
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100083, China
| | - Wenyao Wang
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100083, China.,Department of Computer Science, School of Electrical Engineering and Computer Sciences, Peking University, Beijing, 100191, China
| | - Jie Gao
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100083, China
| | - Spencer S Ng
- Department of Biology, University of California, Los Angeles, 90095-7246, USA
| | - Jing Wen
- Department of Pediatric Ophthalmology, Peking University First Hospital, Beijing, 100034, China.,National Amblyopia and Strabismus Prevention and Treatment Center, Beijing, 100034, China
| | - Tiejun Huang
- Department of Computer Science, School of Electrical Engineering and Computer Sciences, Peking University, Beijing, 100191, China. .,National Engineering Laboratory for Video Technology, Peking University, Beijing, 100871, China.
| | - Xiaoqing Li
- Department of Pediatric Ophthalmology, Peking University First Hospital, Beijing, 100034, China. .,National Amblyopia and Strabismus Prevention and Treatment Center, Beijing, 100034, China.
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, 100083, China. .,Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100083, China.
| |
Collapse
|
5
|
Li J, Kim S, Pappas SS, Dauer WT. CNS critical periods: implications for dystonia and other neurodevelopmental disorders. JCI Insight 2021; 6:142483. [PMID: 33616084 PMCID: PMC7934928 DOI: 10.1172/jci.insight.142483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Critical periods are discrete developmental stages when the nervous system is especially sensitive to stimuli that facilitate circuit maturation. The distinctive landscapes assumed by the developing CNS create analogous periods of susceptibility to pathogenic insults and responsiveness to therapy. Here, we review critical periods in nervous system development and disease, with an emphasis on the neurodevelopmental disorder DYT1 dystonia. We highlight clinical and laboratory observations supporting the existence of a critical period during which the DYT1 mutation is uniquely harmful, and the implications for future therapeutic development.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | | | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute
- Department of Neurology, and
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Balsor JL, Ahuja D, Jones DG, Murphy KM. A Primer on Constructing Plasticity Phenotypes to Classify Experience-Dependent Development of the Visual Cortex. Front Cell Neurosci 2020; 14:245. [PMID: 33192303 PMCID: PMC7482673 DOI: 10.3389/fncel.2020.00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
Many neural mechanisms regulate experience-dependent plasticity in the visual cortex (V1), and new techniques for quantifying large numbers of proteins or genes are transforming how plasticity is studied into the era of big data. With those large data sets comes the challenge of extracting biologically meaningful results about visual plasticity from data-driven analytical methods designed for high-dimensional data. In other areas of neuroscience, high-information content methodologies are revealing more subtle aspects of neural development and individual variations that give rise to a richer picture of brain disorders. We have developed an approach for studying V1 plasticity that takes advantage of the known functions of many synaptic proteins for regulating visual plasticity. We use that knowledge to rebrand protein measurements into plasticity features and combine those into a plasticity phenotype. Here, we provide a primer for analyzing experience-dependent plasticity in V1 using example R code to identify high-dimensional changes in a group of proteins. We describe using PCA to classify high-dimensional plasticity features and use them to construct a plasticity phenotype. In the examples, we show how to use this analytical framework to study and compare experience-dependent development and plasticity of V1 and apply the plasticity phenotype to translational research questions. We include an R package “PlasticityPhenotypes” that aggregates the coding packages and custom code written in RStudio to construct and analyze plasticity phenotypes.
Collapse
Affiliation(s)
- Justin L Balsor
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, ON, Canada
| | - Dezi Ahuja
- Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, ON, Canada
| | | | - Kathryn M Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, ON, Canada.,Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Jost RM, Kelly KR, Hunter JS, Stager DR, Luu B, Leffler JN, Dao L, Beauchamp CL, Birch EE. A randomized clinical trial of contrast increment protocols for binocular amblyopia treatment. J AAPOS 2020; 24:282.e1-282.e7. [PMID: 33045374 PMCID: PMC8328197 DOI: 10.1016/j.jaapos.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Most clinical trials of contrast-rebalanced binocular amblyopia treatment used a contrast increment protocol of 10% daily with successful play. Paired with a definition of success requiring only 15-30 min/day of gameplay, this increment protocol could allow children to reach 100% fellow eye contrast in 3-9 hours; however, this may not provide adequate therapeutic time with reduced fellow eye contrast. The purpose of this study was to compare the original protocol against three alternative contrast increment protocols designed to increase the number of treatment hours. METHODS In this prospective study, 63 amblyopic children (4-10 years; amblyopic eye visual acuity, 20/40-125) were randomly assigned one of four daily contrast increment protocols for 4 weeks, all starting with 20% fellow eye contrast: 10%, 5%, 0%, or 10% for first 4 weeks then reset to 20% and repeat 10% increment for the final 4 weeks. Children played contrast-rebalanced games for 1 hour/day, 5 days/week. Best-corrected visual acuity, stereoacuity, and suppression were assessed at baseline and every 2 weeks until the 8-week outcome visit. RESULTS At baseline, mean amblyopic eye best-corrected visual acuity was 0.47 ± 0.14 logMAR (20/60), improving overall 0.14 ± 0.08 logMAR (1.4 lines; P < 0.0001) at 8 weeks. All four protocols resulted in similar improvement in visual acuity (0.13-0.16 logMAR; all Ps < 0.0002). Stereoacuity and suppression also improved (all Ps < 0.05). CONCLUSIONS None of the new protocols resulted in less improvement than the original 10% contrast increment protocol. Contrast-rebalanced binocular games yielded significant improvements in visual acuity, stereoacuity, and suppression with or without daily contrast increments.
Collapse
Affiliation(s)
- Reed M Jost
- Retina Foundation of the Southwest, Dallas, Texas.
| | | | | | - David R Stager
- Pediatric Ophthalmology & Adult Strabismus, Plano, Texas
| | - Becky Luu
- Pediatric Ophthalmology & Adult Strabismus, Plano, Texas
| | | | - Lori Dao
- ABC Eyes Pediatric Ophthalmology, Dallas, Texas
| | | | - Eileen E Birch
- Retina Foundation of the Southwest, Dallas, Texas; University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
Park WJ, Fine I. New insights into cortical development and plasticity: from molecules to behavior. CURRENT OPINION IN PHYSIOLOGY 2020; 16:50-60. [PMID: 32923755 PMCID: PMC7480792 DOI: 10.1016/j.cophys.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human brain contains 100 billion neurons, and each neuron can have up to 200,000 connections to other neurons. Recent advancements in neuroscience-ranging from molecular studies in animal models to behavioral studies in humans-have given us deeper insights into the development of this extraordinarily intricate system. Studies show a complex interaction between biological predispositions and environment; while the gross neuroanatomy and low-level functions develop early prior to receiving environmental inputs, functional selectivity is shaped through experience, governed by the maturation of local excitatory and inhibitory circuits and synaptic plasticity during sensitive periods early in development. Plasticity does not end with the closing of the early sensitive period - the environment continues to play an important role in learning throughout the lifespan. Recent work delineating the cascade of events that initiates, controls and ends sensitive periods, offers new hope of eventually being able to remediate various clinical conditions by selectively reopening plasticity.
Collapse
Affiliation(s)
- Woon Ju Park
- Department of Psychology, University of Washington, Seattle, WA 98195
| | - Ione Fine
- Department of Psychology, University of Washington, Seattle, WA 98195
| |
Collapse
|