1
|
Visual exposure enhances stimulus encoding and persistence in primary cortex. Proc Natl Acad Sci U S A 2021; 118:2105276118. [PMID: 34663727 PMCID: PMC8639370 DOI: 10.1073/pnas.2105276118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/28/2022] Open
Abstract
Experience shapes sensory responses, already at the earliest stages of cortical processing. We provide evidence that, in the primary visual cortex of anesthetized cats, brief repetitive exposure to a set of simple, abstract stimuli expands the range and decreases the variability of neuronal responses that persist after stimulus offset. These refinements increase the stimulus-specific clustering of neuronal population responses and result in a more efficient encoding of both stimulus identity and stimulus structure, thus potentially benefiting simple readouts in higher cortical areas. Similar results can be achieved via local plasticity mechanisms in recurrent networks, through self-organized refinements of internal dynamics that do not require changes in firing amplitudes. The brain adapts to the sensory environment. For example, simple sensory exposure can modify the response properties of early sensory neurons. How these changes affect the overall encoding and maintenance of stimulus information across neuronal populations remains unclear. We perform parallel recordings in the primary visual cortex of anesthetized cats and find that brief, repetitive exposure to structured visual stimuli enhances stimulus encoding by decreasing the selectivity and increasing the range of the neuronal responses that persist after stimulus presentation. Low-dimensional projection methods and simple classifiers demonstrate that visual exposure increases the segregation of persistent neuronal population responses into stimulus-specific clusters. These observed refinements preserve the representational details required for stimulus reconstruction and are detectable in postexposure spontaneous activity. Assuming response facilitation and recurrent network interactions as the core mechanisms underlying stimulus persistence, we show that the exposure-driven segregation of stimulus responses can arise through strictly local plasticity mechanisms, also in the absence of firing rate changes. Our findings provide evidence for the existence of an automatic, unguided optimization process that enhances the encoding power of neuronal populations in early visual cortex, thus potentially benefiting simple readouts at higher stages of visual processing.
Collapse
|
2
|
Liu X, Li H, Wang Y, Lei T, Wang J, Spillmann L, Andolina IM, Wang W. From Receptive to Perceptive Fields: Size-Dependent Asymmetries in Both Negative Afterimages and Subcortical On and Off Post-Stimulus Responses. J Neurosci 2021; 41:7813-7830. [PMID: 34326144 PMCID: PMC8445057 DOI: 10.1523/jneurosci.0300-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Negative afterimages are perceptual phenomena that occur after physical stimuli disappear from sight. Their origin is linked to transient post-stimulus responses of visual neurons. The receptive fields (RFs) of these subcortical ON- and OFF-center neurons exhibit antagonistic interactions between central and surrounding visual space, resulting in selectivity for stimulus polarity and size. These two features are closely intertwined, yet their relationship to negative afterimage perception remains unknown. Here we tested whether size differentially affects the perception of bright and dark negative afterimages in humans of both sexes, and how this correlates with neural mechanisms in subcortical ON and OFF cells. Psychophysically, we found a size-dependent asymmetry whereby dark disks produce stronger and longer-lasting negative afterimages than bright disks of equal contrast at sizes >0.8°. Neurophysiological recordings from retinal and relay cells in female cat dorsal lateral geniculate nucleus showed that subcortical ON cells exhibited stronger sustained post-stimulus responses to dark disks, than OFF cells to bright disks, at sizes >1°. These sizes agree with the emergence of center-surround antagonism, revealing stronger suppression to opposite-polarity stimuli for OFF versus ON cells, particularly in dorsal lateral geniculate nucleus. Using a network-based retino-geniculate model, we confirmed stronger antagonism and temporal transience for OFF-cell post-stimulus rebound responses. A V1 population model demonstrated that both strength and duration asymmetries can be propagated to downstream cortical areas. Our results demonstrate how size-dependent antagonism impacts both the neuronal post-stimulus response and the resulting afterimage percepts, thereby supporting the idea of perceptual RFs reflecting the underlying neuronal RF organization of single cells.SIGNIFICANCE STATEMENT Visual illusions occur when sensory inputs and perceptual outcomes do not match, and provide a valuable tool to understand transformations from neural to perceptual responses. A classic example are negative afterimages that remain visible after a stimulus is removed from view. Such perceptions are linked to responses in early visual neurons, yet the details remain poorly understood. Combining human psychophysics, neurophysiological recordings in cats and retino-thalamo-cortical computational modeling, our study reveals how stimulus size and the receptive-field structure of subcortical ON and OFF cells contributes to the parallel asymmetries between neural and perceptual responses to bright versus dark afterimages. Thus, this work provides a deeper link from the underlying neural mechanisms to the resultant perceptual outcomes.
Collapse
Affiliation(s)
- Xu Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ye Wang
- State Key Laboratory of Media Convergence and Communication, Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, 100024, China
| | - Tianhao Lei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, Freiburg, 79085, Germany
| | - Ian Max Andolina
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
| | - Wei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Haberbosch L, Schmidt S, Jooss A, Köhn A, Kozarzewski L, Rönnefarth M, Scholz M, Brandt SA. Rebound or Entrainment? The Influence of Alternating Current Stimulation on Individual Alpha. Front Hum Neurosci 2019; 13:43. [PMID: 30809139 PMCID: PMC6380175 DOI: 10.3389/fnhum.2019.00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 01/25/2019] [Indexed: 01/11/2023] Open
Abstract
Alternating current stimulation (ACS) is an established means to manipulate intrinsic cortical oscillations. While working towards clinical impact, ACS mechanisms of action remain unclear. For ACS’s well-documented influence on occipital alpha, hypotheses include neuronal entrainment as well as rebound phenomena. As a retinal origin is also discussed, we employed a novel form of ACS with the advantage that it specifically targets occipital alpha-oscillations via retinofugal pathways retinofugal ACS (rACS). We aimed to confirm alpha-enhancement outlasting the duration of stimulation with 10 Hz rACS. To distinguish entrainment from rebound effects, we investigated the correlation between alpha peak frequency change and alpha-enhancement strength. We quantified the alpha band power before and after 10 Hz rACS in 15 healthy subjects. Alpha power enhancement and alpha peak frequency change were assessed over the occipital electrodes and compared to sham stimulation. RACS significantly enhanced occipital alpha power in comparison to sham stimulation (p < 0.05). Alpha peak frequency changed by a mean 0.02 Hz (± 0.04). A greater change in alpha peak frequency did not correlate with greater effects on alpha power. Our findings show an alpha-enhancement consistent with studies conducted for transcranial ACS (tACS) and contribute evidence for a retinal involvement in tACS effects on occipital alpha. Furthermore, the lack of correlation between alpha peak frequency change and alpha-enhancement strength provides an argument against entrainment effects and in favor of a rebound phenomenon.
Collapse
Affiliation(s)
- Linus Haberbosch
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sein Schmidt
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Jooss
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arvid Köhn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Kozarzewski
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Rönnefarth
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Scholz
- Neural Information Processing Group, University of Technology Berlin, Berlin, Germany
| | - Stephan A Brandt
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Bachmann M, Päeske L, Ioannides AA, Lass J, Hinrikus H. After-effect induced by microwave radiation in human electroencephalographic signal: a feasibility study. Int J Radiat Biol 2018; 94:896-901. [DOI: 10.1080/09553002.2018.1478164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Maie Bachmann
- Centre for Biomedical Engineering, Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Laura Päeske
- Centre for Biomedical Engineering, Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Andreas A. Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd, Nicosia, Cyprus
| | - Jaanus Lass
- Centre for Biomedical Engineering, Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Hiie Hinrikus
- Centre for Biomedical Engineering, Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
5
|
Abstract
Perceptual filling-in is the phenomenon where visual information is perceived although information is not physically present. For instance, the blind spot, which corresponds to the retinal location where there are no photoreceptor cells to capture the visual signals, is filled-in by the surrounding visual signals. The neural mechanism for such immediate filling-in of surfaces is unclear. By means of computational modeling, we show that surround inhibition produces rebound or after-discharge spiking in neurons that otherwise do not receive sensory information. The behavior of rebound spiking mimics the immediate surface filling-in illusion observed at the blind spot and also reproduces the filling-in of an empty object after a background flash, like in the color dove illusion. In conclusion, we propose rebound spiking as a possible neural mechanism for surface filling-in.
Collapse
Affiliation(s)
- Hans Supèr
- Department of Basic Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain.
| | | |
Collapse
|