1
|
Barnett MA, Chin BM, Aguirre GK, Burge J, Brainard DH. Temporal dynamics of human color processing measured using a continuous tracking task. J Vis 2025; 25:12. [PMID: 40014317 PMCID: PMC11875027 DOI: 10.1167/jov.25.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
We characterized the temporal dynamics of color processing using a continuous tracking paradigm by estimating subjects' temporal lag in tracking chromatic Gabor targets. To estimate the lag, we computed the cross-correlation between the velocities of the Gabor target's random walk and the velocities of the subject's tracking. Lag was taken as the time of the peak of the resulting cross-correlogram. We measured how the lag changes as a function of chromatic direction and contrast for stimuli in the LS cone contrast plane. In the same set of subjects, we also measured detection thresholds for stimuli with matched spatial, temporal, and chromatic properties. We created a model of tracking and detection performance to test whether a common representation of chromatic contrast accounts for both measures. The model summarizes the effect of chromatic contrast over different chromatic directions through elliptical isoperformance contours, the shapes of which are contrast independent. The fitted elliptical isoperformance contours have essentially the same orientation in the detection and tracking tasks. For the tracking task, however, there is a striking reduction in relative sensitivity to signals originating in the S cones.
Collapse
|
2
|
Greene MJ, Boehm AE, Vanston JE, Pandiyan VP, Sabesan R, Tuten WS. Unique yellow shifts for small and brief stimuli in the central retina. J Vis 2024; 24:2. [PMID: 38833255 PMCID: PMC11156209 DOI: 10.1167/jov.24.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.
Collapse
Affiliation(s)
- Maxwell J Greene
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - John E Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Vimal P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Stauch BJ, Peter A, Ehrlich I, Nolte Z, Fries P. Human visual gamma for color stimuli. eLife 2022; 11:e75897. [PMID: 35532123 PMCID: PMC9122493 DOI: 10.7554/elife.75897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Strong gamma-band oscillations in primate early visual cortex can be induced by homogeneous color surfaces (Peter et al., 2019; Shirhatti and Ray, 2018). Compared to other hues, particularly strong gamma oscillations have been reported for red stimuli. However, precortical color processing and the resultant strength of input to V1 have often not been fully controlled for. Therefore, stronger responses to red might be due to differences in V1 input strength. We presented stimuli that had equal luminance and cone contrast levels in a color coordinate system based on responses of the lateral geniculate nucleus, the main input source for area V1. With these stimuli, we recorded magnetoencephalography in 30 human participants. We found gamma oscillations in early visual cortex which, contrary to previous reports, did not differ between red and green stimuli of equal L-M cone contrast. Notably, blue stimuli with contrast exclusively on the S-cone axis induced very weak gamma responses, as well as smaller event-related fields and poorer change-detection performance. The strength of human color gamma responses for stimuli on the L-M axis could be well explained by L-M cone contrast and did not show a clear red bias when L-M cone contrast was properly equalized.
Collapse
Affiliation(s)
- Benjamin J Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Brain Imaging Center, Goethe University FrankfurtFrankfurtGermany
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
| | - Isabelle Ehrlich
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| | - Zora Nolte
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- International Max Planck Research School for Neural CircuitsFrankfurtGermany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
4
|
Rucker F, Britton S, Taylor C. Color and Temporal Frequency Sensitive Eye Growth in Chick. Invest Ophthalmol Vis Sci 2019; 59:6003-6013. [PMID: 30572345 PMCID: PMC6306076 DOI: 10.1167/iovs.18-25322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Longitudinal chromatic aberration can provide luminance and chromatic signals for emmetropization. A previous experiment examined the role of temporal sensitivity to luminance flicker in the emmetropization response. In the current experiment, we investigate the role of temporal sensitivity to color flicker. Methods Five-day-old chicks were exposed to sinusoidal color modulation of blue/yellow (N = 73) or red/green LEDs (N = 84) at 80% contrast for 3 days. The modulation frequencies used were as follows: 0, 0.2, 1, 2, 5, and 10 Hz. There were 5 to 16 chicks per condition. Mean illumination was 680 lux. Changes in ocular components were measured using Lenstar, and refraction was measured with a Hartinger refractometer. Results Eyes grew less when exposed to high temporal frequencies and more at low temporal frequencies. With blue/yellow modulation, the temporal variation was small; eyes grew 268 ± 15 μm at 0 Hz and 224 ± 12 μm at 10 Hz, representing a 16.4% growth reduction. With red/green modulation, eyes grew 336 ± 31 μm at 0 Hz and 218 ± 20 μm at 10 Hz, representing a 35% growth reduction. Choroidal and anterior chamber changes compensated for eye growth, reducing refractive effects; blue/yellow refraction changes ranged from −0.63 to 1.04 diopters. Conclusions At high temporal frequencies, color is not a factor, but at low temporal frequencies, red/green modulation produced maximal growth. The pattern of changes observed in each ocular component with changes in the temporal frequency and/or the color of the stimulus was consistent with the idea that the natural sunlight spectrum may be optimal for emmetropization.
Collapse
Affiliation(s)
- Frances Rucker
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, Massachusetts, United States
| | - Stephanie Britton
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, Massachusetts, United States
| | - Christopher Taylor
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Baudin J, Angueyra JM, Sinha R, Rieke F. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones. eLife 2019; 8:39166. [PMID: 30672735 PMCID: PMC6344076 DOI: 10.7554/elife.39166] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Daylight vision starts with signals in three classes of cone photoreceptors sensitive to short (S), middle (M), and long (L) wavelengths. Psychophysical studies show that perceptual sensitivity to rapidly varying inputs differs for signals originating in S cones versus L and M cones; notably, S-cone signals appear perceptually delayed relative to L- and M-cone signals. These differences could originate in the cones themselves or in the post-cone circuitry. To determine if the cones could contribute to these and related perceptual phenomena, we compared the light responses of primate S, M, and L cones. We found that S cones generate slower light responses than L and M cones, show much smaller changes in response kinetics as background-light levels increase, and are noisier than L and M cones. It will be important to incorporate these differences into descriptions of how cone signaling shapes human visual perception.
Collapse
Affiliation(s)
- Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States.,Google Inc., Seattle, United States
| | - Juan M Angueyra
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Raunak Sinha
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States.,Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
6
|
Kóbor P, Petykó Z, Telkes I, Martin PR, Buzás P. Temporal properties of colour opponent receptive fields in the cat lateral geniculate nucleus. Eur J Neurosci 2017; 45:1368-1378. [PMID: 28391639 DOI: 10.1111/ejn.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
The primordial form of mammalian colour vision relies on opponent interactions between inputs from just two cone types, 'blue' (S-) and 'green' (ML-) cones. We recently described the spatial receptive field structure of colour opponent blue-ON cells from the lateral geniculate nucleus of cats. Functional inputs from the opponent cone types were spatially coextensive and equally weighted, supporting their high chromatic and low achromatic sensitivity. Here, we studied relative cone weights, temporal frequency tuning and visual latency of cat blue-ON cells and non-opponent achromatic cells to temporally modulated cone-isolating and achromatic stimuli. We confirmed that blue-ON cells receive equally weighted antagonistic inputs from S- and ML-cones whereas achromatic cells receive exclusive ML-cone input. The temporal frequency tuning curves of S- and ML-cone inputs to blue-ON cells were tightly correlated between 1 and 48 Hz. Optimal temporal frequencies of blue-ON cells were around 3 Hz, whereas the frequency optimum of achromatic cells was close to 10 Hz. Most blue-ON cells showed negligible response to achromatic flicker across all frequencies tested. Latency to visual stimulation was significantly greater in blue-ON than in achromatic cells. The S- and ML-cone responses of blue-ON cells had on average, similar latencies to each other. Altogether, cat blue-ON cells showed remarkable balance of opponent cone inputs. Our results also confirm similarities to primate blue-ON cells suggesting that colour vision in mammals evolved on the basis of a sluggish pathway that is optimized for chromatic sensitivity at a wide range of spatial and temporal frequencies.
Collapse
Affiliation(s)
- Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Petykó
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Paul R Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624, Pécs, Hungary.,Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
Rucker F, Britton S, Spatcher M, Hanowsky S. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes. Invest Ophthalmol Vis Sci 2016; 56:6121-31. [PMID: 26393671 DOI: 10.1167/iovs.15-17238] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. METHODS Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. RESULTS Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change -0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>-0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. CONCLUSIONS Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.
Collapse
|
8
|
Abstract
We review the features of the S-cone system that appeal to the psychophysicist and summarize the celebrated characteristics of S-cone mediated vision. Two factors are emphasized: First, the fine stimulus control that is required to isolate putative visual mechanisms and second, the relationship between physiological data and psychophysical approaches. We review convergent findings from physiology and psychophysics with respect to asymmetries in the retinal wiring of S-ON and S-OFF visual pathways, and the associated treatment of increments and decrements in the S-cone system. Beyond the retina, we consider the lack of S-cone projections to superior colliculus and the use of S-cone stimuli in experimental psychology, for example to address questions about the mechanisms of visually driven attention. Careful selection of stimulus parameters enables psychophysicists to produce entirely reversible, temporary, "lesions," and to assess behavior in the absence of specific neural subsystems.
Collapse
|
9
|
Pietersen ANJ, Cheong SK, Solomon SG, Tailby C, Martin PR. Temporal response properties of koniocellular (blue-on and blue-off) cells in marmoset lateral geniculate nucleus. J Neurophysiol 2014; 112:1421-38. [DOI: 10.1152/jn.00077.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Visual perception requires integrating signals arriving at different times from parallel visual streams. For example, signals carried on the phasic-magnocellular (MC) pathway reach the cerebral cortex pathways some tens of milliseconds before signals traveling on the tonic-parvocellular (PC) pathway. Visual latencies of cells in the koniocellular (KC) pathway have not been specifically studied in simian primates. Here we compared MC and PC cells to “blue-on” (BON) and “blue-off” (BOF) KC cells; these cells carry visual signals originating in short-wavelength-sensitive (S) cones. We made extracellular recordings in the lateral geniculate nucleus (LGN) of anesthetized marmosets. We found that BON visual latencies are 10–20 ms longer than those of PC or MC cells. A small number of recorded BOF cells ( n = 7) had latencies 10–20 ms longer than those of BON cells. Within all cell groups, latencies of foveal receptive fields (<10° eccentricity) were longer (by 3–8 ms) than latencies of peripheral receptive fields (>10°). Latencies of yellow-off inputs to BON cells lagged the blue-on inputs by up to 30 ms, but no differences in visual latency were seen on comparing marmosets expressing dichromatic (“red-green color-blind”) or trichromatic color vision phenotype. We conclude that S-cone signals leaving the LGN on KC pathways are delayed with respect to signals traveling on PC and MC pathways. Cortical circuits serving color vision must therefore integrate across delays in (red-green) chromatic signals carried by PC cells and (blue-yellow) signals carried by KC cells.
Collapse
Affiliation(s)
- A. N. J. Pietersen
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - S. K. Cheong
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - S. G. Solomon
- School of Medical Sciences, University of Sydney, Sydney, Australia
- Department of Experimental Psychology, University College London, London, United Kingdom; and
| | - C. Tailby
- School of Medical Sciences, University of Sydney, Sydney, Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - P. R. Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
- School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Antidromic latency of magnocellular, parvocellular, and koniocellular (Blue-ON) geniculocortical relay cells in marmosets. Vis Neurosci 2014; 31:263-73. [DOI: 10.1017/s0952523814000066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe studied the functional connectivity of cells in the lateral geniculate nucleus (LGN) with the primary visual cortex (V1) in anesthetized marmosets (Callithrix jacchus). The LGN sends signals to V1 along parallel visual pathways called parvocellular (P), magnocellular (M), and koniocellular (K). To better understand how these pathways provide inputs to V1, we antidromically activated relay cells in the LGN by electrically stimulating V1 and measuring the conduction latencies of P (n = 7), M (n = 14), and the “Blue-ON” (n = 5) subgroup of K cells (K-BON cells). We found that the antidromic latencies of K-BON cells were similar to those of P cells. We also measured the response latencies to high contrast visual stimuli for a subset of cells. We found the LGN cells that have the shortest latency of response to visual stimulation also have the shortest antidromic latencies. We conclude that Blue color signals are transmitted directly to V1 from the LGN by K-BON cells.
Collapse
|
11
|
Abstract
The retinal image is sampled concurrently, and largely independently, by three physiologically and anatomically distinct pathways, each with separate ON and OFF subdivisions. The retinal circuitry giving rise to an ON pathway receiving input from the short-wave-sensitive (S) cones is well understood, but the S-cone OFF circuitry is more controversial. Here, we characterize the temporal properties of putative S-cone ON and OFF pathways in younger and older observers by measuring thresholds for stimuli that produce increases or decreases in S-cone stimulation, while the middle- and long-wave-sensitive cones are unmodulated. We characterize the data in terms of an impulse response function, the theoretical response to a flash of infinitely short duration, from which the response to any temporally varying stimulus may be predicted. Results show that the S-cone response to increments is faster than to decrements, but this difference is significantly greater for older individuals. The impulse response function amplitudes for increment and decrement responses are highly correlated across individuals, whereas the timing is not. This strongly suggests that the amplitude is controlled by neural circuitry that is common to S-cone ON and OFF responses (photoreceptors), whereas the timing is controlled by separate postreceptoral pathways. The slower response of the putative OFF pathway is ascribed to different retinal circuitry, possibly attributable to a sign-inverting amacrine cell not present in the ON pathway. It is significant that this pathway is affected selectively in the elderly by becoming slower, whereas the temporal properties of the S-cone ON response are stable across the life span of an individual.
Collapse
Affiliation(s)
- Keizo Shinomori
- School of Information, Kochi University of Technology, 185 Tosayamada-Miyanokuchi, Kami, Kochi 782-8502, Japan; and
| | - John S. Werner
- Department of Ophthalmology and Vision Science and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|