1
|
Niehorster DC. Optic Flow: A History. Iperception 2021; 12:20416695211055766. [PMID: 34900212 PMCID: PMC8652193 DOI: 10.1177/20416695211055766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
The concept of optic flow, a global pattern of visual motion that is both caused by and signals self-motion, is canonically ascribed to James Gibson's 1950 book "The Perception of the Visual World." There have, however, been several other developments of this concept, chiefly by Gwilym Grindley and Edward Calvert. Based on rarely referenced scientific literature and archival research, this article describes the development of the concept of optic flow by the aforementioned authors and several others. The article furthermore presents the available evidence for interactions between these authors, focusing on whether parts of Gibson's proposal were derived from the work of Grindley or Calvert. While Grindley's work may have made Gibson aware of the geometrical facts of optic flow, Gibson's work is not derivative of Grindley's. It is furthermore shown that Gibson only learned of Calvert's work in 1956, almost a decade after Gibson first published his proposal. In conclusion, the development of the concept of optic flow presents an intriguing example of convergent thought in the progress of science.
Collapse
Affiliation(s)
- Diederick C. Niehorster
- Lund University Humanities Lab, Lund University, Lund, Sweden
- Department of Psychology, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 2021; 137:74-92. [PMID: 33607346 DOI: 10.1016/j.cortex.2020.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
During locomotion, leg movements define the direction of walking (forward or backward) and the path one is taking (straight or curved). These aspects of locomotion produce characteristic visual motion patterns during movement. Here, we tested whether cortical regions responding to either egomotion-compatible visual motion, or leg movements, or both, are sensitive to these locomotion-relevant aspects of visual motion. We compared a curved path (typically the visual feedback of a changing direction of movement in the environment) to a linear path for simulated forward and backward motion in an event-related fMRI experiment. We used an individual surface-based approach and two functional localizers to define (1) six egomotion-related areas (V6+, V3A, intraparietal motion area [IPSmot], cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) using the flow field stimulus and (2) three leg-related cortical regions (human PEc [hPEc], human PE [hPE] and primary somatosensory cortex [S-I]) using a somatomotor task. Then, we extracted the response from all these regions with respect to the main event-related fMRI experiment, consisting of passive viewing of an optic flow stimulus, simulating a forward or backward direction of self-motion in either linear or curved path. Results showed that some regions have a significant preference for the curved path motion (hPEc, hPE, S-I, IPSmot) or a preference for the forward motion (V3A), while other regions have both a significant preference for the curved path motion and for the forward compared to backward motion (V6+, CSv, pCi). We did not find any significant effects of the present stimuli in PIC. Since controlling locomotion mainly means controlling changes of walking direction in the environment during forward self-motion, such a differential functional profile among these cortical regions suggests that they play a differentiated role in the visual guidance of locomotion.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
3
|
Burlingham CS, Heeger DJ. Heading perception depends on time-varying evolution of optic flow. Proc Natl Acad Sci U S A 2020; 117:33161-33169. [PMID: 33328275 PMCID: PMC7776640 DOI: 10.1073/pnas.2022984117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is considerable support for the hypothesis that perception of heading in the presence of rotation is mediated by instantaneous optic flow. This hypothesis, however, has never been tested. We introduce a method, termed "nonvarying phase motion," for generating a stimulus that conveys a single instantaneous optic flow field, even though the stimulus is presented for an extended period of time. In this experiment, observers viewed stimulus videos and performed a forced-choice heading discrimination task. For nonvarying phase motion, observers made large errors in heading judgments. This suggests that instantaneous optic flow is insufficient for heading perception in the presence of rotation. These errors were mostly eliminated when the velocity of phase motion was varied over time to convey the evolving sequence of optic flow fields corresponding to a particular heading. This demonstrates that heading perception in the presence of rotation relies on the time-varying evolution of optic flow. We hypothesize that the visual system accurately computes heading, despite rotation, based on optic acceleration, the temporal derivative of optic flow.
Collapse
Affiliation(s)
| | - David J Heeger
- Department of Psychology, New York University, New York, NY 10003;
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|
4
|
When flow is not enough: evidence from a lane changing task. PSYCHOLOGICAL RESEARCH 2018; 84:834-849. [PMID: 30088078 DOI: 10.1007/s00426-018-1070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Humans are able to estimate their heading on the basis of optic flow information and it has been argued that we use flow in this way to guide navigation. Consistent with this idea, several studies have reported good navigation performance in flow fields. However, one criticism of these studies is that they have generally focused on the task of walking or steering towards a target, offering an additional, salient directional cue. Hence, it remains a matter of debate as to whether humans are truly able to control steering in the presence of optic flow alone. In this study, we report a set of maneuvers carried out in flow fields in the absence of a physical target. To do this, we studied the everyday task of lane changing, a commonplace multiphase steering maneuver which can be conceptualized without the need for a target. What is more (and here is the crucial quirk), previous literature has found that in the absence of visual feedback, drivers show a systematic, asymmetric steering response, resulting in a systematic final heading error. If optic flow is sufficient for controlling navigation through our environment, we would expect this asymmetry to disappear whenever optic flow is provided. However, our results show that this asymmetry persisted, even in the presence of a flow field, implying that drivers are unable to use flow to guide normal steering responses in this task.
Collapse
|
5
|
Rushton SK, Chen R, Li L. Ability to identify scene-relative object movement is not limited by, or yoked to, ability to perceive heading. J Vis 2018; 18:11. [PMID: 30029224 DOI: 10.1167/18.6.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During locomotion humans can judge where they are heading relative to the scene and the movement of objects within the scene. Both judgments rely on identifying global components of optic flow. What is the relationship between the perception of heading, and the identification of object movement during self-movement? Do they rely on a shared mechanism? One way to address these questions is to compare performance on the two tasks. We designed stimuli that allowed direct comparison of the precision of heading and object movement judgments. Across a series of experiments, we found the precision was typically higher when judging scene-relative object movement than when judging heading. We also found that manipulations of the content of the visual scene can change the relative precision of the two judgments. These results demonstrate that the ability to judge scene-relative object movement during self-movement is not limited by, or yoked to, the ability to judge the direction of self-movement.
Collapse
Affiliation(s)
- Simon K Rushton
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Rongrong Chen
- Department of Psychology, The University of Hong Kong, Hong Kong SAR
| | - Li Li
- Department of Psychology, The University of Hong Kong, Hong Kong SAR.,Neural Science Program, NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, PRC
| |
Collapse
|
6
|
Nooij SAE, Nesti A, Bülthoff HH, Pretto P. Perception of rotation, path, and heading in circular trajectories. Exp Brain Res 2016; 234:2323-37. [PMID: 27056085 PMCID: PMC4923114 DOI: 10.1007/s00221-016-4638-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/23/2016] [Indexed: 11/04/2022]
Abstract
When in darkness, humans can perceive the direction and magnitude of rotations and of linear translations in the horizontal plane. The current paper addresses the integrated perception of combined translational and rotational motion, as it occurs when moving along a curved trajectory. We questioned whether the perceived motion through the environment follows the predictions of a self-motion perception model (e.g., Merfeld et al. in J Vestib Res 3:141-161, 1993; Newman in A multisensory observer model for human spatial orientation perception, 2009), which assume linear addition of rotational and translational components. For curved motion in darkness, such models predict a non-veridical motion percept, consisting of an underestimation of the perceived rotation, a distortion of the perceived travelled path, and a bias in the perceived heading (i.e., the perceived instantaneous direction of motion with respect to the body). These model predictions were evaluated in two experiments. In Experiment 1, seven participants were moved along a circular trajectory in darkness while facing the motion direction. They indicated perceived yaw rotation using an online tracking task, and perceived travelled path by drawings. In Experiment 2, the heading was systematically varied, and six participants indicated, in a 2-alternative forced-choice task, whether they perceived facing inward or outward of the circular path. Overall, we found no evidence for the heading bias predicted by the model. This suggests that the sum of the perceived rotational and translational components alone cannot adequately explain the overall perceived motion through the environment. Possibly, knowledge about motion dynamics and familiar stimuli combinations may play an important additional role in shaping the percept.
Collapse
Affiliation(s)
- Suzanne A E Nooij
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Alessandro Nesti
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Heinrich H Bülthoff
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Paolo Pretto
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
7
|
Li L, Niehorster DC. Influence of optic flow on the control of heading and target egocentric direction during steering toward a goal. J Neurophysiol 2014; 112:766-77. [PMID: 25128559 DOI: 10.1152/jn.00697.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although previous studies have shown that people use both optic flow and target egocentric direction to walk or steer toward a goal, it remains in question how enriching the optic flow field affects the control of heading specified by optic flow and the control of target egocentric direction during goal-oriented locomotion. In the current study, we used a control-theoretic approach to separate the control response specific to these two cues in the visual control of steering toward a goal. The results showed that the addition of optic flow information (such as foreground motion and global flow) in the display improved the overall control precision, the amplitude, and the response delay of the control of heading. The amplitude and the response delay of the control of target egocentric direction were, however, not affected. The improvement in the control of heading with enriched optic flow displays was mirrored by an increase in the accuracy of heading perception. The findings provide direct support for the claim that people use the heading specified by optic flow as well as target egocentric direction to walk or steer toward a goal and suggest that the visual system does not internally weigh these two cues for goal-oriented locomotion control.
Collapse
Affiliation(s)
- Li Li
- Department of Psychology, The University of Hong Kong, Hong Kong, Special Administrative Region of the People's Republic of China
| | - Diederick C Niehorster
- Department of Psychology, The University of Hong Kong, Hong Kong, Special Administrative Region of the People's Republic of China
| |
Collapse
|
8
|
A unified model of heading and path perception in primate MSTd. PLoS Comput Biol 2014; 10:e1003476. [PMID: 24586130 PMCID: PMC3930491 DOI: 10.1371/journal.pcbi.1003476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/03/2014] [Indexed: 11/20/2022] Open
Abstract
Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal medial superior temporal area (MSTd) has been implicated in heading perception. However, the majority of MSTd neurons respond optimally to spiral patterns, rather than to the radial expansion patterns associated with heading. No existing theory of curved path perception explains the neural mechanisms by which humans accurately assess path and no functional role for spiral-tuned cells has yet been proposed. Here we present a computational model that demonstrates how the continuum of observed cells (radial to circular) in MSTd can simultaneously code curvature and heading across the neural population. Curvature is encoded through the spirality of the most active cell, and heading is encoded through the visuotopic location of the center of the most active cell's receptive field. Model curvature and heading errors fit those made by humans. Our model challenges the view that the function of MSTd is heading estimation, based on our analysis we claim that it is primarily concerned with trajectory estimation and the simultaneous representation of both curvature and heading. In our model, temporal dynamics afford time-history in the neural representation of optic flow, which may modulate its structure. This has far-reaching implications for the interpretation of studies that assume that optic flow is, and should be, represented as an instantaneous vector field. Our results suggest that spiral motion patterns that emerge in spatio-temporal optic flow are essential for guiding self-motion along complex trajectories, and that cells in MSTd are specifically tuned to extract complex trajectory estimation from flow.
Collapse
|
9
|
Sikoglu EM, Calabro FJ, Beardsley SA, Vaina LM. Integration mechanisms for heading perception. ACTA ACUST UNITED AC 2010; 23:197-221. [PMID: 20529443 DOI: 10.1163/187847510x503605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies of heading perception suggest that human observers employ spatiotemporal pooling to accommodate noise in optic flow stimuli. Here, we investigated how spatial and temporal integration mechanisms are used for judgments of heading through a psychophysical experiment involving three different types of noise. Furthermore, we developed two ideal observer models to study the components of the spatial information used by observers when performing the heading task. In the psychophysical experiment, we applied three types of direction noise to optic flow stimuli to differentiate the involvement of spatial and temporal integration mechanisms. The results indicate that temporal integration mechanisms play a role in heading perception, though their contribution is weaker than that of the spatial integration mechanisms. To elucidate how observers process spatial information to extract heading from a noisy optic flow field, we compared psychophysical performance in response to random-walk direction noise with that of two ideal observer models (IOMs). One model relied on 2D screen-projected flow information (2D-IOM), while the other used environmental, i.e., 3D, flow information (3D-IOM). The results suggest that human observers compensate for the loss of information during the 2D retinal projection of the visual scene for modest amounts of noise. This suggests the likelihood of a 3D reconstruction during heading perception, which breaks down under extreme levels of noise.
Collapse
Affiliation(s)
- Elif M Sikoglu
- Brain and Vision Research Laboratory, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|