1
|
Lee S, Dohlman TH, Dana R. Immunology in corneal transplantation-From homeostasis to graft rejection. Transplant Rev (Orlando) 2025; 39:100909. [PMID: 39798206 PMCID: PMC11975484 DOI: 10.1016/j.trre.2025.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Immunology depends on maintaining a delicate balance within the human body, and disruptions can result in conditions such as autoimmune diseases, immunodeficiencies, and hypersensitivity reactions. This balance is especially crucial in transplantation immunology, where one of the primary challenges is preventing graft rejection. Such rejection can lead to organ failure, increased patient mortality, and higher healthcare costs due to the limited availability of donor tissues relative to patient needs. Xenotransplantation, like using porcine corneas for human transplants, offers a potential solution to the donor tissue shortage but faces substantial immunological rejection issues. To prevent rejection in both allo- and xenotransplantation, a deep understanding of how the body maintains immunological balance is essential, particularly since achieving tolerance to non-self tissues is considered the "holy grail" of the field. The cornea, the most frequently transplanted solid organ, has a high acceptance rate due to its immune-privileged status and serves as an ideal model for studying graft rejection mechanisms that disrupt tolerance. However, multiple immune pathways complicate our understanding of these mechanisms. This review examines the rejection mechanisms in corneal transplantation, identifying key cells involved and potential therapeutic strategies to induce and maintain immunological tolerance in both allo- and xenografts across various transplants.
Collapse
Affiliation(s)
- Seokjoo Lee
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sakowska J, Glasner P, Dukat-Mazurek A, Rydz A, Zieliński M, Pellowska I, Biernat W, Glasner L, Michalska-Małecka K, Trzonkowski P. Local T cell infiltrates are predominantly associated with corneal allograft rejection. Transpl Immunol 2023; 79:101852. [PMID: 37196866 DOI: 10.1016/j.trim.2023.101852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Corneal transplantations (CTXs) are a vision-saving procedure. Routinely, while CTXs' survival rates remain high, the risk of graft failure increases significantly for repeated CTXs. The reason is an alloimmunization following previous CTXs and development of memory T (Tm) and B (Bm) cells. METHODS We characterized populations of cells present in explanted human corneas from patients receiving the first CTX and marked as a primary CTX (PCTX) or the second or more CTXs and marked as a repeated CTX (RCTX). Cells extracted from resected corneas and from peripheral blood mononuclear cells (PBMCs) were analyzed by the flow cytometry method using multiple surface and intracellular markers. RESULTS Overall, the number of cells was similar in PCTX and RCTX patients. Extracted infiltrates from PCTXs and RCTXs contained similar numbers of T cell subsets, namely CD4+, CD8+, CD4+ Tm, CD8+ Tm, CD4+Foxp3+ T regulatory (Tregs), CD8+ Treg cells, while very few B cells (all p = NS). However, when compared to peripheral blood, PCTX and RCTX corneas contained significantly higher percentages of effector memory CD4+ and CD8+ T cells (both p < 0,05). In comparison to PCTX, RCTX group had the highest levels of Foxp3 in T CD4+ Tregs (p = 0,04) but decreased percentage of Helios-positive CD4+ Tregs. CONCLUSION PCTXs and especially RCTXs are rejected mainly by local T cells. The accumulation of effector CD4+ and CD8+ T cells, as well as CD4+ and CD8+ Tm cells is associated with the final rejection. Furthermore, local CD4+ and CD8+ Tregs expressing Foxp3 and Helios are probably insufficient to impose the acceptance of CTX.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland.
| | - Paulina Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Anna Rydz
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Irena Pellowska
- Department of Clinical Pathomorphology, University Clinical Centre in Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Leopold Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| |
Collapse
|
3
|
Local and Systemic Injections of Human Cord Blood Myeloid-Derived Suppressor Cells to Prevent Graft Rejection in Corneal Transplantation. Biomedicines 2022; 10:biomedicines10123223. [PMID: 36551981 PMCID: PMC9776015 DOI: 10.3390/biomedicines10123223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are therapeutic agents to prevent graft rejection in organ transplants by modulating inflammation. Herein, the immunosuppressive effect of human cord blood MDSCs on corneal allograft models was confirmed. CB-MDSCs were locally (subconjuctival, 5 × 105) or systemically (intravenous, 1 × 106) injected twice on days 0 and 7. A corneal transplantation model was established using C57BL/6 and BALB/c mice, and corneal graft opacity was measured to evaluate graft rejection up to 6 weeks. Results showed that graft survival in the MDSCs groups increased compared to vehicle groups after 42 days. Systemic and local MDSC administration inhibited the maturation (MHC-IIhi CD11c+) of dendritic cells (DCs) and the differentiation of interferon γ+ CD4+ Th1 in draining lymph nodes (LNs). However, vehicle groups increased the infiltration of CD3+ T cells and F4/80+ macrophages and produced prominent neovascular and lymphatic vessels into the graft site with increased mRNA expression of VEGF-A/C and VEGFR-1/R-3. Local MDSCs administration showed prominent anti-angiogenic/anti-lymphangiogenic effects even at lower MDSCs doses. Thus, CB-MDSCs could relatively suppress the infiltration of pathological T cells/macrophages into the corneas and the migration of mature DCs into draining LNs Therefore, ocular and systemic MDSCs administration showed therapeutic potential for preventing corneal allograft rejection.
Collapse
|
4
|
Liu K, He Y, Yao Y, Zhang Y, Cai Z, Ru J, Zhang X, Jin X, Xu M, Li Y, Ma Q, Gao J, Lu F. Methoxy polyethylene glycol modification promotes adipogenesis by inducing the production of regulatory T cells in xenogeneic acellular adipose matrix. Mater Today Bio 2021; 12:100161. [PMID: 34870140 PMCID: PMC8626673 DOI: 10.1016/j.mtbio.2021.100161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Acellular adipose matrix (AAM) has emerged as an important biomaterial for adipose tissue regeneration. Current decellularization methods damage the bioactive components of the extracellular matrix (ECM), and the residual immunogenic antigens may induce adverse immune responses. Here, we adopted a modified decellularization method which can protect more bioactive components with less immune reaction by methoxy polyethylene glycol (mPEG). Then, we determined the adipogenic mechanisms of mPEG-modified AAM after xenogeneic transplantation. AAM transplantation caused significantly lesser adipogenesis in the wild-type group than in the immune-deficient group. The mPEG-modified AAM showed significantly lower immunogenicity and higher adipogenesis than the AAM alone after xenogeneic transplantation. Furthermore, mPEG modification increased regulatory T (Treg) cell numbers in the AAM grafts, which in turn enhanced the M2/M1 macrophage ratio by secreting IL-10, IL-13, and TGF-β1. These findings suggest that mPEG modification effectively reduces the immunogenicity of xenogeneic AAM and promotes adipogenesis in the AAM grafts. Hence, mPEG-modified AAM can serve as an ideal biomaterial for xenogeneic adipose tissue engineering.
Collapse
Affiliation(s)
- Kaiyang Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuchen Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zihan Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiangjiang Ru
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiangdong Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxuan Jin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yibao Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qizhuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Narimatsu A, Hattori T, Usui Y, Ueno H, Funaki T, Komatsu H, Nakagawa H, Akiba H, Goto H. Blockade of costimulatory CD27/CD70 pathway promotes corneal allograft survival. Exp Eye Res 2020; 199:108190. [PMID: 32798537 DOI: 10.1016/j.exer.2020.108190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine whether the CD27/CD70 pathway plays a significant role in corneal allograft rejection by investigating the effect of blocking the CD27/CD70 pathway by anti-CD70 antibody on corneal allograft survival. METHODS Orthotopic penetrating keratoplasty was performed using C57BL/6 donor grafts and BALB/c recipients. Expression of CD27 and CD70 on rejected cornea was examined by immunohistochemistry. Corneal transplant recipients received intraperitoneal injection of anti-CD70 antibody (FR70) or control rat IgG. Alloreactivity was measured by mixed lymphoid reaction (MLR) in recipients administered control rat IgG and those administered anti-CD70 antibody. Corneal expression of IFN-γ and IL-12 was also examined in both groups. Graft opacity was assessed over an 8-week period and graft survival was evaluated using Kaplan-Meier survival curves. Proportion of CD4+CD44+ memory T cells in lymph nodes was measured by flow cytometry. RESULTS CD4+CD27+ cells and CD11c+CD70+ cells were present in rejected cornea. Anti-CD70 antibody administration suppressed alloreactivity in corneal allograft recipients, and inhibited IFN-γ expression in recipient cornea (p < 0.05). Anti-CD70 antibody suppressed opacity score of recipient cornea and prolonged corneal allograft survival (p < 0.05). Proportion of CD4+CD44+ memory T cells in recipient lymph nodes was reduced by anti-CD70 antibody treatment. CONCLUSION The CD27/CD70 pathway plays a significant role in corneal allograft rejection by initiating alloreactive Th1 cells and preserving memory T cells. Anti-CD70 antibody administration prolongs corneal allograft survival indicating the potential therapeutic effect of CD27/CD70 pathway blockade on corneal allograft rejection.
Collapse
Affiliation(s)
- Akitomo Narimatsu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takaaki Hattori
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroki Ueno
- Department of Immunology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Toshinari Funaki
- Department of Ophthalmology, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Hiroyuki Komatsu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hayate Nakagawa
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hisaya Akiba
- Department of Immunology, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
6
|
Zhu BB, Zhou J, Zheng J, Zhang Y, Wan T, Huang XD, Lin L, Jin XM. Corneal graft melting: a systematic review. Int J Ophthalmol 2020; 13:493-502. [PMID: 32309189 DOI: 10.18240/ijo.2020.03.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Corneal graft melting is a severe complication of keratoplasty. This review is to summarize the incidence, the pathogenesis, the risk factors, the prognosis and the prevention of corneal graft melting after keratoplasty. We systematically searched PubMed, Web of Science and WanFang database to retrieve potentially eligible articles about relevant clinical reports and animal experiments. We read the full texts to identify eligible articles. The selection of studies and data extraction were performed independently by two reviewers. In conclusion, the pathogenesis of corneal graft melting is complicated, and many risk factors are closely related to corneal graft melting. Analysis of pathogenesis and risk factors of corneal graft melting can facilitate the development of targeted therapies to better guide clinical practice.
Collapse
Affiliation(s)
- Bin-Bin Zhu
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jie Zhou
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jiao Zheng
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Yue Zhang
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ting Wan
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Xiao-Dan Huang
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Lin Lin
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Xiu-Ming Jin
- Eye Center, the Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
7
|
Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, Hou Y, Le VNH, Salabarria AC, Horstmann J, Bachmann BO, Cursiefen C. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 2019; 73:100768. [PMID: 31279005 DOI: 10.1016/j.preteyeres.2019.07.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
In the past decade, novel lamellar keratoplasty techniques such as Deep Anterior Lamellar Keratoplasty (DALK) for anterior keratoplasty and Descemet stripping automated endothelial keratoplasty (DSAEK)/Descemet membrane endothelial keratoplasty (DMEK) for posterior keratoplasty have been developed. DALK eliminates the possibility of endothelial allograft rejection, which is the main reason for graft failure after penetrating keratoplasty (PK). Compared to PK, the risk of endothelial graft rejection is significantly reduced after DSAEK/DMEK. Thus, with modern lamellar techniques, the clinical problem of endothelial graft rejection seems to be nearly solved in the low-risk situation. However, even with lamellar grafts there are epithelial, subepithelial and stromal immune reactions in DALK and endothelial immune reactions in DSAEK/DMEK, and not all keratoplasties can be performed in a lamellar fashion. Therefore, endothelial graft rejection in PK is still highly relevant, especially in the "high-risk" setting, where the cornea's (lymph)angiogenic and immune privilege is lost due to severe inflammation and pathological neovascularization. For these eyes, currently available treatment options are still unsatisfactory. In this review, we will describe currently used keratoplasty techniques, namely PK, DALK, DSAEK, and DMEK. We will summarize their indications, provide surgical descriptions, and comment on their complications and outcomes. Furthermore, we will give an overview on corneal transplant immunology. A specific focus will be placed on endothelial graft rejection and we will report on its incidence, clinical presentation, and current/future treatment and prevention options. Finally, we will speculate how the field of keratoplasty and prevention of corneal allograft rejection will develop in the future.
Collapse
Affiliation(s)
- Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Japan
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Viet Nhat Hung Le
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Department of Ophthalmology, Hue College of Medicine and Pharmacy, Hue University, Viet Nam
| | | | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bjoern O Bachmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Wang H, Zhao Q, Luo D, Yin Y, Li T, Zhao M. Resolvin E1 Inhibits Corneal Allograft Rejection in High-Risk Corneal Transplantation. Invest Ophthalmol Vis Sci 2019; 59:3911-3919. [PMID: 30073362 DOI: 10.1167/iovs.18-24562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the effects of Resolvin E1 (RvE1) on corneal allograft rejection in a high -risk corneal allograft transplantation model. Methods High-risk corneal beds were created via placement of intrastromal sutures in the corneas of BALB/c mice for 2 weeks. Allogeneic corneal transplantation was performed by transplanting corneas of C57BL/6 mice onto BALB/c hosts. RvE1 or normal saline (control) was subconjunctivally injected. Allograft survival was observed by slit lamp biomicroscope, and inflammatory cell infiltration was detected by hematoxylin and eosin and immunohistochemistry. The percentage of Th1, Th17, and Treg cells in draining lymph nodes (DLNs) were evaluated by flow cytometric analysis. The levels of Th1, Th2, and Th17-associated cytokines in the grafts were measured by cytometric bead array and real-time PCR. Results RvE1 treatment significantly improved allograft survival compared to the control group. After RvE1 treatment, the infiltration of neutrophils and CD4+ T (Th1/Th17) cells were decreased in corneal grafts, and the percentage of Th1/Th17 cells in DLNs were reduced. In addition, RvE1 treatment significantly reduced the mRNA expression of proinflammatory cytokines in the graft including IL-1α, IL-1β, TNF-α, IL-2, IL-6, IFN-γ, IL-17A, IL-17F, IL-21, and IL-22 as well as the protein level of the proinflammatory cytokines, including IL-2, TNF, IL-6, IFN-γ, and IL-17. However, RvE1 treatment did not alter the percentage of Treg cells in DLNs and the expression of IL-4, IL-5, and IL-10. Conclusions RvE1 treatment improves allogeneic corneal graft survival in a high-risk corneal transplantation model via inhibiting the Th1/Th17-related inflammation.
Collapse
Affiliation(s)
- Han Wang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Qingqing Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Luo
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yizhou Yin
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Ting Li
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Min Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
9
|
Tian Y, Zhu H, Wu J, Wang S. Effect of improved preservation solution with methoxy polyethylene glycol succinimidyl propionate on rat cornea. Cell Tissue Bank 2018; 19:667-679. [PMID: 30069708 DOI: 10.1007/s10561-018-9719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/28/2018] [Indexed: 11/30/2022]
Abstract
To observe the effect of DMEM/F12 pegylated with methoxy polyethylene glycol succinimidyl propionate (mPEG-SPA) on the biophysical and immune characteristics of the rat cornea preserved in it. Corneal grafts were harvested from Wistar rat and preserved in the DMEM/F12 plus mPEG-SPA, DMEM/F12 without mPEG-SPA, and standard Optisol-GS solution at 4 °C for 14 days, referred as plus-PEG, minus-PEG, and Optisol grafts, respectively. The biophysical properties of those grafts, including transmittance, thickness, water content, and biomechanics were investigated. The survival of those grafts was observed in the high-risk corneal transplantation model. Transmittance and biomechanics did not show any differences among those grafts. Thickness and water content of plus-PEG grafts were slightly improved. Proliferation and activation of lymphocytes were lower while they were incubated with plus-PEG grafts, compared with minus-PEG grafts and Optisol grafts. The mean survival time was significantly prolonged in plus-PEG grafts. DMEM/F12 solution plus mPEG-SPA improved the survival of corneal grafts and maintained the comparative biophysical characteristics of them, compared with the standard preservation solution.
Collapse
Affiliation(s)
- Ying Tian
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, People's Republic of China
| | - Haifeng Zhu
- The First Hospital of Xi'an, Xi'an, 710000, People's Republic of China.,Shaanxi Provincial Institute of Ophthalmology, Xi'an, 710000, People's Republic of China.,Shaanxi Provincial Key Laboratory of Ophthalmology, Xi'an, 710000, People's Republic of China.,Clinical Research Center for Ophthalmologic Diseases of Shaanxi, Xi'an, 710000, People's Republic of China
| | - Jie Wu
- The First Hospital of Xi'an, Xi'an, 710000, People's Republic of China.,Shaanxi Provincial Institute of Ophthalmology, Xi'an, 710000, People's Republic of China.,Shaanxi Provincial Key Laboratory of Ophthalmology, Xi'an, 710000, People's Republic of China.,Clinical Research Center for Ophthalmologic Diseases of Shaanxi, Xi'an, 710000, People's Republic of China
| | - Shuangyong Wang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, People's Republic of China.
| |
Collapse
|
10
|
Tahvildari M, Amouzegar A, Foulsham W, Dana R. Therapeutic approaches for induction of tolerance and immune quiescence in corneal allotransplantation. Cell Mol Life Sci 2018; 75:1509-1520. [PMID: 29307015 DOI: 10.1007/s00018-017-2739-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023]
Abstract
The cornea is the most commonly transplanted tissue in the body. Corneal grafts in low-risk recipients enjoy high success rates, yet over 50% of high-risk grafts (with inflamed and vascularized host beds) are rejected. As our understanding of the cellular and molecular pathways that mediate rejection has deepened, a number of novel therapeutic strategies have been unveiled. This manuscript reviews therapeutic approaches to promote corneal transplant survival through targeting (1) corneal lymphangiogenesis and hemangiogenesis, (2) antigen presenting cells, (3) effector and regulatory T cells, and (4) mesenchymal stem cells.
Collapse
Affiliation(s)
- Maryam Tahvildari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.,Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Amouzegar A, Chauhan SK, Dana R. Alloimmunity and Tolerance in Corneal Transplantation. THE JOURNAL OF IMMUNOLOGY 2017; 196:3983-91. [PMID: 27183635 DOI: 10.4049/jimmunol.1600251] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Abstract
Corneal transplantation is one of the most prevalent and successful forms of solid tissue transplantation. Despite favorable outcomes, immune-mediated graft rejection remains the major cause of corneal allograft failure. Although low-risk graft recipients with uninflamed graft beds enjoy a success rate ∼90%, the rejection rates in inflamed graft beds or high-risk recipients often exceed 50%, despite maximal immune suppression. In this review, we discuss the critical facets of corneal alloimmunity, including immune and angiogenic privilege, mechanisms of allosensitization, cellular and molecular mediators of graft rejection, and allotolerance induction.
Collapse
Affiliation(s)
- Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
12
|
Schaub F, Adler W, Koenig MC, Enders P, Grajewski RS, Cursiefen C, Heindl LM. Impact of allergy and atopy on the risk of pseudophakic cystoid macular edema. Graefes Arch Clin Exp Ophthalmol 2016; 254:2417-2423. [PMID: 27553052 DOI: 10.1007/s00417-016-3474-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To assess the risk of pseudophakic cystoid macular edema (PCME) following cataract surgery in patients with allergies and/or atopic disorders. PATIENTS AND METHODS Medical records of 3,850 consecutive eyes that underwent cataract surgery were retrospectively reviewed for prevalence of allergies and atopic status and development of PCME. Patients with any known risk factors for PCME were excluded. Macular examination was performed using spectral-domain optical coherence tomography (SD-OCT) before and at 4, 8, 12, 16, 24, and 36 weeks after surgery. If both eyes in one patient underwent cataract surgery, one eye was randomly selected. Odds ratios and confidence intervals were estimated. RESULTS Out of 240 patients enrolled in this series, 65 patients (27.1 %) showed positive allergic status, 19 patients (7.9 %) suffered from atopic syndromes, and 11 (4.6 %) showed both (allergies and atopic diseases). PCME occurred in eight patients (12.3 %) of the allergy cohort, whereas no patient (0 %) of the atopy cohort developed PCME. The risk of PCME was comparable in patients with allergies or atopic diseases to patients without allergies or atopy (allergy: p = 0.635; odds ratio (OR) 1.303, 95 % confidence interval (CI) 0.461-3.398; atopy: p = 0.234; OR 0.000, 95 % CI 0-1.815). CONCLUSION Positive status of allergy or atopy does not seem to increase the risk of PCME. Therefore, postoperative treatment after cataract surgery does not have to be modified in allergic or atopic patients.
Collapse
Affiliation(s)
- Friederike Schaub
- Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany.
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Meike C Koenig
- Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Rafael S Grajewski
- Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| |
Collapse
|
13
|
Treacy O, Fahy G, Ritter T, O'Flynn L. Corneal Immunosuppressive Mechanisms, Anterior Chamber-Associated Immune Deviation (ACAID) and Their Role in Allograft Rejection. Methods Mol Biol 2016; 1371:205-14. [PMID: 26530803 DOI: 10.1007/978-1-4939-3139-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Corneal transplantation is the most frequently performed transplant procedure in humans. Human leukocyte antigen matching, while imperative for other types of organ transplants, is usually not performed before cornea transplantation. With the use of topical steroid immunosuppressants, which are subsequently tailed off to almost zero, most corneal transplants will not be rejected in recipients with low risk of graft rejection. This phenomenon has been described as immune privilege by Medawar many years ago. However, this immune privilege is relative and can be easily eroded, e.g. by postoperative nonspecific inflammation or other causes of corneal or ocular inflammation. Interestingly, corneas that are at high risk of rejection have a higher failure rate than other organs. Considerable progress has been made in recent years to provide a better understanding of corneal immune privilege. This chapter will review current knowledge on ocular immunosuppressive mechanisms including anterior chamber-associated immune deviation and discuss their role(s) in corneal allograft rejection. Ultimately, this evolving information will be of benefit in developing therapeutic strategies to prevent corneal transplant rejection.
Collapse
Affiliation(s)
- Oliver Treacy
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Gerry Fahy
- Department of Ophthalmology, University Hospital Galway, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
14
|
van Essen TH, Roelen DL, Williams KA, Jager MJ. Matching for Human Leukocyte Antigens (HLA) in corneal transplantation - to do or not to do. Prog Retin Eye Res 2015; 46:84-110. [PMID: 25601193 DOI: 10.1016/j.preteyeres.2015.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/15/2022]
Abstract
As many patients with severe corneal disease are not even considered as candidates for a human graft due to their high risk of rejection, it is essential to find ways to reduce the chance of rejection. One of the options is proper matching of the cornea donor and recipient for the Human Leukocyte Antigens (HLA), a subject of much debate. Currently, patients receiving their first corneal allograft are hardly ever matched for HLA and even patients undergoing a regraft usually do not receive an HLA-matched graft. While anterior and posterior lamellar grafts are not immune to rejection, they are usually performed in low risk, non-vascularized cases. These are the cases in which the immune privilege due to the avascular status and active immune inhibition is still intact. Once broken due to infection, sensitization or trauma, rejection will occur. There is enough data to show that when proper DNA-based typing techniques are being used, even low risk perforating corneal transplantations benefit from matching for HLA Class I, and high risk cases from HLA Class I and probably Class II matching. Combining HLA class I and class II matching, or using the HLAMatchmaker could further improve the effect of HLA matching. However, new techniques could be applied to reduce the chance of rejection. Options are the local or systemic use of biologics, or gene therapy, aiming at preventing or suppressing immune responses. The goal of all these approaches should be to prevent a first rejection, as secondary grafts are usually at higher risk of complications including rejections than first grafts.
Collapse
Affiliation(s)
- T H van Essen
- Department of Ophthalmology, J3-S, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - D L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - K A Williams
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - M J Jager
- Department of Ophthalmology, J3-S, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, USA; Peking University Eye Center, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
15
|
Abstract
Corneal transplantation stands alone as the most common and successful form of solid organ transplantation. Even though HLA matching and systemic antirejection drugs are not routinely used, 90% of the first time corneal allografts will succeed. By contrast, all other major categories of organ transplantation require HLA matching and the use of systemically administered immunosuppressive drugs. This remarkable success of corneal transplants under these conditions is an example of "immune privilege" and is the primary reason for the extraordinary success of corneal transplantation. A number of dogmas have emerged over the past century to explain immune privilege and the immunobiology of corneal transplantation. Many of these dogmas have been based largely on inferences from clinical observations on keratoplasty patients. The past 30 years have witnessed a wealth of rodent studies on corneal transplantation that have tested hypotheses and dogmas that originated from clinical observations on penetrating keratoplasty patients. Rodent models allow the application of highly sophisticated genetic and immunological tools for testing these hypotheses in a controlled environment and with experiments designed prospectively. These studies have validated some of the widely held assumptions based on clinical observations and in other cases, previous dogmas have been replaced with new insights that could only come from prospective studies performed under highly controlled conditions. This review highlights some of the key dogmas and these widely held assumptions that have been scrutinized through the use of rodent models of penetrating keratoplasty. This review also makes note of new immunological principles of corneal immunology that have emerged from rodent studies on corneal transplantation that most likely would not have been revealed in studies on corneal transplantation patients.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
16
|
Hua J, Jin Y, Chen Y, Inomata T, Lee H, Chauhan SK, Petasis NA, Serhan CN, Dana R. The resolvin D1 analogue controls maturation of dendritic cells and suppresses alloimmunity in corneal transplantation. Invest Ophthalmol Vis Sci 2014; 55:5944-51. [PMID: 25146982 DOI: 10.1167/iovs.14-14356] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To analyze the effect of a resolvin D1 (RvD1) analogue (RvD1a) on dendritic cell maturation, T-cell sensitization, and allograft rejection in corneal allotransplantation. METHODS The receptor expression of RvD1 (ALX/FPR2) on bone marrow-derived dendritic cells (BMDC) was measured using quantitative real-time PCR. We determined BMDC maturation after treatment with RvD1a using ELISA to measure interleukin (IL)-12 protein expression and flow cytometry to assess the expression of CD40, major histocompatibility complex (MHC) II, CD80, and CD86. After corneal transplantation in BALB/c mice, we analyzed T-cell infiltration in the cornea and the draining lymph nodes using flow cytometry. The enzyme-linked immunospot (ELISPOT) assay was used to measure T-cell sensitization via the direct and indirect pathway. Angiogenesis and lymphangiogenesis in the cornea after transplantation were measured using immunohistochemistry. Graft opacity and survival were evaluated by slit lamp biomicroscopy. RESULTS The receptor for RvD1, lipoxin A4/formyl peptide receptor 2 (ALX/FPR2), was expressed at a significantly lower level on immature than mature dendritic cells (DCs), and RvD1a reduced DC expression of MHC II, CD40, and IL-12 following lipopolysaccharide (LPS) stimulation. Using a murine model of corneal transplantation, RvD1a-treated hosts exhibited significantly reduced allosensitization as demonstrated by decreased frequencies of interferon-gamma-secreting T cells in the draining lymph nodes, and reduced T-cell infiltration into the grafts. Graft survival was significantly enhanced and angiogenesis at the graft site was suppressed in RvD1a-treated hosts compared with vehicle-treated hosts. CONCLUSIONS These results suggest that RvD1 inhibits DC maturation and reduces alloimmune sensitization following transplantation, thereby establishing a novel connection between resolvin D1 and the regulation of DC-mediated, antigen-specific immunity.
Collapse
Affiliation(s)
- Jing Hua
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Yiping Jin
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Yihe Chen
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Takenori Inomata
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - HyunSoo Lee
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Sunil K Chauhan
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Nicos A Petasis
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Reza Dana
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Cunnusamy K, Niederkorn JY. IFN-γ blocks CD4+CD25+ Tregs and abolishes immune privilege of minor histocompatibility mismatched corneal allografts. Am J Transplant 2013; 13:3076-84. [PMID: 24119152 PMCID: PMC4115337 DOI: 10.1111/ajt.12466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/22/2013] [Accepted: 07/27/2013] [Indexed: 01/25/2023]
Abstract
Th1 CD4+ cells are believed to be the primary mediators of corneal allograft rejection. However, rejection of fully allogeneic C57BL/6 corneal allografts soared from 50% to 90% in both interferon-gamma (IFN-γ)(-/-) and anti-IFN-γ-treated BALB/c mice. In contrast, similar deficits in IFN-γ in BALB/c hosts enhanced immune privilege of BALB.B (minor histocompatibility [minor H] antigen-matched, major histocompatibility complex [MHC]-mismatched) and NZB (MHC-matched, minor H antigen-mismatched) corneal allografts-decreasing rejection from 80% to ~20%. This effect of IFN-γ was independent of CD4+ T cell lineage commitment as both anti-IFN-γ-treated acceptor and rejector mice displayed a Th2 cytokine profile. The presence of IFN-γ prevented the generation of alloantigen-specific CD4+CD25+ T regulatory cells (Tregs) in hosts receiving either MHC only mismatched BALB.B or minor only histocompatibility (minor H)-mismatched NZB corneal allografts. Tregs in these hosts promoted corneal allograft survival by suppressing Th2 effector cells. By contrast, IFN-γ was necessary for the generation of CD4+CD25+ Tregs that prevented rejection of fully allogeneic C57BL/6 corneal allografts in BALB/c hosts. These findings suggest that MHC-matching in combination with blockade of IFN-γ holds promise as a means of enhancing corneal allograft survival.
Collapse
Affiliation(s)
- K Cunnusamy
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
18
|
Abstract
Corneal transplants have been successfully performed in human subjects for over 100 years and enjoy an immune privilege that is unrivaled in the field of transplantation. Immune privilege is defined as the reduced incidence and tempo in the immune rejection of corneal allografts compared to other categories of organ allografts performed under the same conditions. Skin allografts transplanted across various MHC or minor histocompatibility barriers undergo rejection in approximately 100% of the hosts. By contrast, orthotopic corneal allografts experience long-term survival in 50% to >90% of the hosts, depending on the histocompatibility barriers that confront the host. The capacity of corneal allografts to evade immune rejection is attributable to multiple anatomical, physiological and immunoregulatory conditions that conspire to prevent the induction and expression of alloimmunity.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Shaharuddin B, Ahmad S, Meeson A, Ali S. Concise review: immunological properties of ocular surface and importance of limbal stem cells for transplantation. Stem Cells Transl Med 2013; 2:614-24. [PMID: 23817133 DOI: 10.5966/sctm.2012-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cornea transplantation has been considered to be different from other solid organ transplantation because of the assumed immune-privileged state of the anterior chamber of the eye. Three major lines of thought regarding the molecular mechanisms of immune privilege in the eye are as follows: (a) anatomical, cellular, and molecular barriers in the eye; (b) anterior chamber-associated immune deviation; and (c) immunosuppressive microenvironment in the eye. However, cornea transplants suffer allograft rejection when breached by vascularization. In recent developments, cellular corneal transplantation from cultivated limbal epithelial cells has shown impressive advances as a future therapy. The limbal stem cell niche contains stem cells that promote proliferation and migration and have immunosuppressive mechanisms to protect them from immunological reactions. Limbal stem cells are also noted to display an enhanced expression of genes for the antiapoptotic proteins, a property that is imperative for the survival of transplanted tissues. Further investigation of the molecular mechanisms regulating the immune regulation of limbal stem cells is relevant in the clinical setting to promote the survival of whole corneal and limbal stem cell transplantation.
Collapse
Affiliation(s)
- Bakiah Shaharuddin
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | | | | | | |
Collapse
|
20
|
Reyes NJ, Chen PW, Niederkorn JY. Allergic conjunctivitis renders CD4(+) T cells resistant to t regulatory cells and exacerbates corneal allograft rejection. Am J Transplant 2013; 13:1181-92. [PMID: 23489547 PMCID: PMC3640580 DOI: 10.1111/ajt.12198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/24/2012] [Accepted: 01/10/2013] [Indexed: 01/25/2023]
Abstract
Allergic diseases rob corneal allografts of immune privilege and increase immune rejection. Corneal allograft rejection in BALB/c allergic hosts was analyzed using a short ragweed (SWR) pollen model of allergic conjunctivitis. Allergic conjunctivitis did not induce exaggerated T-cell responses to donor C57BL/6 (B6) alloantigens or stimulate cytotoxic T lymphocyte (CTL) responses. Allergic conjunctivitis did affect T regulatory cells (Tregs) that support graft survival. Exogenous IL-4, but not IL-5 or IL-13, prevented Treg suppression of CD4(+) effector T cells isolated from naïve mice. However, mice with allergic conjunctivitis developed Tregs that suppressed CD4(+) effector T-cell proliferation. In addition, IL-4 did not inhibit Treg suppression of IL-4Rα(-/-) CD4(+) T-cell responses, suggesting that IL-4 rendered effector T cells resistant to Tregs. SRW-sensitized IL-4Rα(-/-) mice displayed the same 50% graft survival as nonallergic WT mice, that was significantly less than the 100% rejection that occurred in allergic WT hosts, supporting the role of IL-4 in the abrogation of immune privilege. Moreover, exacerbation of corneal allograft rejection in allergic mice was reversed by administering anti-IL-4 antibody. Thus, allergy-induced exacerbation of corneal graft rejection is due to the production of IL-4, which renders effector T cells resistant to Treg suppression of alloimmune responses.
Collapse
Affiliation(s)
- N J Reyes
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
21
|
Saban DR, Calder V, Kuo CH, Reyes NJ, Dartt DA, Ono SJ, Niederkorn JY. New twists to an old story: novel concepts in the pathogenesis of allergic eye disease. Curr Eye Res 2013; 38:317-30. [PMID: 23281793 DOI: 10.3109/02713683.2012.747617] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The prevalence of allergy is rising globally at a very significant rate, which is currently at 20-40% of individuals in westernized nations. In the eye, allergic conditions can take on the acute form such as in seasonal and perennial allergic conjunctivitis, or a more severe and debilitating chronic form such as in vernal and atopic keratoconjunctivitis. Indeed, some key aspects of allergic eye disease pathophysiology are understood, such as the role of mast cells in the acute allergic reaction, and the contribution of eosinophils in late-onset and chronic allergy. However, recent developments in animal models and clinical studies have uncovered new and important roles for previously underappreciated players, including chemokine receptors on ocular surface dendritic cells such as CCR7, the contribution of conjunctival epithelium to immunity, histamine and leukotriene receptors on conjunctival goblet cells and a role for mast cells in late-onset manifestations. Furthermore, recent work in animal models has delineated the contribution of IL-4 in the increased incidence of corneal graft rejection in hosts with allergic conjunctivitis. Recent studies such as these mean that conventional paradigms and concepts should be revisited. The aim of this review is to highlight some of the most recent advances and insights on newly appreciated players in the pathogenesis of allergic eye disease.
Collapse
Affiliation(s)
- Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sel S, Schlaf G, Schurat O, Altermann WW. A novel ELISA-based crossmatch procedure to detect donor-specific anti-HLA antibodies responsible for corneal allograft rejections. J Immunol Methods 2012; 381:23-31. [DOI: 10.1016/j.jim.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
|
23
|
Tan Y, Cruz-Guilloty F, Medina-Mendez CA, Cutrufello NJ, Martinez RE, Urbieta M, Wilson D, Li Y, Perez VL. Immunological disruption of antiangiogenic signals by recruited allospecific T cells leads to corneal allograft rejection. THE JOURNAL OF IMMUNOLOGY 2012; 188:5962-9. [PMID: 22593618 DOI: 10.4049/jimmunol.1103216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Corneal transplantation is the most common solid organ transplantation. The immunologically privileged nature of the cornea results in high success rates. However, T cell-mediated rejection is the most common cause of corneal graft failure. Using antiangiogenesis treatment to prevent corneal neovascularization, which revokes immune privilege, prevents corneal allograft rejection. Endostatin is an antiangiogenic factor that maintains corneal avascularity. In this study, we directly test the role of antiangiogenic and immunological signals in corneal allograft survival, specifically the potential correlation of endostatin production and T cell recruitment. We report that 75% of the corneal allografts of BALB/c mice rejected after postoperative day (POD) 20, whereas all syngeneic grafts survived through POD60. This correlates with endogenous endostatin, which increased and remained high in syngeneic grafts but decreased after POD10 in allografts. Immunostaining demonstrated that early recruitment of allospecific T cells into allografts around POD10 correlated with decreased endostatin production. In Rag(-/-) mice, both allogeneic and syngeneic corneal grafts survived; endostatin remained high throughout. However, after T cell transfer, the allografts eventually rejected, and endostatin decreased. Furthermore, exogenous endostatin treatment delayed allograft rejection and promoted survival secondary to angiogenesis inhibition. Our results suggest that endostatin plays an important role in corneal allograft survival by inhibiting neovascularization and that early recruitment of allospecific T cells into the grafts promotes destruction of endostatin-producing cells, resulting in corneal neovascularization, massive infiltration of effector T cells, and ultimately graft rejection. Therefore, combined antiangiogenesis and immune suppression will be more effective in maintaining corneal allograft survival.
Collapse
Affiliation(s)
- Yaohong Tan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE To compare the prevalence of endothelial rejection episodes and the probability of graft survival after initial and repeat penetrating keratoplasty (PK) in patients with keratoconus with and without atopy. METHODS A retrospective review was conducted of all patients receiving PK for keratoconus at the University of Texas Southwestern Medical Center at Dallas from 1988 to 2009. Inclusion criteria involved those with both an International Classification of Diseases-9 code for keratoconus and a Current Procedural Terminology code for PK based on a computer database search. Patients younger than 18 years were excluded. These records were then reviewed for a history of atopic disorders. The main outcome measures included the prevalence of endothelial rejection episodes and the probability of graft survival. The probability of corneal graft survival in patients with and without a history of atopy was compared using the Kaplan-Meier method. RESULTS There were 168 grafts in 122 patients. There were 66 (39.2%) and 102 (60.8%) grafts with and without a history of atopy, respectively. Bilateral first grafts were required in 32 patients, 14 and 18 patients with and without a history of atopy, respectively. The atopic and nonatopic groups had no significant differences with respect to age, preexisting ocular conditions, concomitant surgical procedures, and length of follow-up. Men received first grafts significantly more frequently than women in the nonatopic group (P = 0.029); however, there was no sex difference in repeat grafts. There were no significant differences in the prevalence of endothelial rejection episodes after the first (P = 0.716), second (P > 0.999), and third or further grafts (P > 0.999). Graft survival between the atopic and nonatopic groups did not differ significantly in the first (P = 0.881), second (P = 0.752), or third or further graft (P = 0.157). Among first grafts in the atopic group, no statistically significant difference in survival existed among patients analyzed with different manifestations of atopy (P = 0.061). One episode of allograft endothelial rejection created a statistically significant difference in ultimate graft survival probability in both the atopic (P = 0.003) and nonatopic (P = 0.002) groups. CONCLUSIONS Among patients with keratoconus receiving PK, there is no statistically significant difference in the prevalence of endothelial graft rejection episodes or probability of graft survival between patients with and without a clinical history of atopy.
Collapse
|
25
|
Paunicka K, Chen PW, Niederkorn JY. Role of IFN-γ in the establishment of anterior chamber-associated immune deviation (ACAID)-induced CD8+ T regulatory cells. J Leukoc Biol 2011; 91:475-83. [PMID: 22180630 DOI: 10.1189/jlb.0311173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction of alloantigens into the AC induces a form of immune tolerance known as ACAID, which induces antigen-specific CD8+ Tregs, contributing to ocular immune privilege by down-regulating immune responses. Recent evidence suggests IFN-γ is needed for the suppressive function of CD8+ ACAID Tregs. This study tested the hypothesis that IFN-γ is needed for alloantigen-specific ACAID CD8+ Tregs to execute their suppressive function but is not required for the establishment of ACAID CD8+ Tregs. To address this hypothesis, ACAID was induced by injecting BALB/c spleen cells into the AC of WT C57BL/6 mice, IFN-γ(-/-) C57BL/6 mice, or anti-IFN-γ-treated WT C57BL/6 mice. LAT assays using C57BL/6 APCs as stimulators, CD4+ T cells from C57BL/6 mice previously immunized toward BALB/c alloantigens as effector cells, and IFN-γ-competent, IFN-γ(-/-), or IFN-γR(-/-) CD8+ Tregs were used to evaluate the suppressive function of CD8+ ACAID Tregs in response to IFN-γ. IFN-γ(-/-) mice or mice treated with anti-IFN-γ antibody prior to AC injection of alloantigen failed to develop ACAID. The suppressive function of IFN-γ(-/-) ACAID CD8+ Tregs was restored through the administration of exogenous IFN-γ. This suppressive responsiveness toward IFN-γ was CD8+ Treg-intrinsic, as CD8+ Tregs from IFN-γR(-/-) mice, which were primed in the AC with alloantigens, were not able to suppress alloantigen-specific DTH responses. These results indicate that IFN-γ is not needed for the induction of CD8+ ACAID Tregs but is required for ACAID Tregs to exert the suppression of allospecific DTH responses.
Collapse
Affiliation(s)
- Kathryn Paunicka
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9057, USA
| | | | | |
Collapse
|
26
|
|
27
|
Abstract
PURPOSE OF REVIEW Corneal allografts are routinely performed without HLA typing or systemic immunosuppressive drugs. However, certain conditions create high risks for immune rejection. This review discusses recent insights into the mechanisms that rob the corneal allograft of its immune privilege. RECENT FINDINGS Studies in mice have revealed that stimuli that induce new blood vessel growth in the cornea also elicit proliferation of lymph vessels. Lymph vessels facilitate migration of antigen-presenting cells to regional lymph nodes in which they induce alloimmune responses. The presence of blood vessels in the corneal graft bed creates a unique chemokine milieu that stimulates recruitment of sensitized lymphocytes into the corneal allograft. Other data indicate that although corneal allograft survival is closely associated with Foxp3 expression in CD4+CD25+Foxp3+ T regulatory cells (Tregs), reduced expression of Foxp3 in Tregs creates a high risk for graft rejection. Recent evidence indicates that allergic diseases have a profound impact on the immune response and produce a dramatic increase in corneal allograft rejection. SUMMARY Understanding the underlying mechanisms that create 'high-risk' hosts may provide important therapeutic targets for restoring immune privilege of corneal allografts and enhancing their survival.
Collapse
|
28
|
Cunnusamy K, Paunicka K, Reyes N, Yang W, Chen PW, Niederkorn JY. Two different regulatory T cell populations that promote corneal allograft survival. Invest Ophthalmol Vis Sci 2010; 51:6566-74. [PMID: 20702818 DOI: 10.1167/iovs.10-6161] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To compare and contrast the T regulatory cells (Tregs) induced by anterior chamber (AC) injection of antigen with those induced by orthotopic corneal allografts. METHODS Anterior chamber-associated immune deviation (ACAID) Tregs were induced by injecting C57BL/6 spleen cells into the AC of BALB/c mice. Delayed-type hypersensitivity responses to C57BL/6 alloantigens were evaluated by a conventional ear swelling assay. Corneal allograft Tregs were induced by applying orthotopic C57BL/6 corneal allografts onto BALB/c hosts. The effects of anti-CD25, anti-CD8, anti-interferon-γ (IFN-γ), anti-IL-17A, or cyclophosphamide treatments on corneal allograft survival and ACAID were evaluated. RESULTS Administration of either anti-CD25 or anti-IFN-γ antibodies prevented the expression of ACAID and abolished the immune privilege of corneal allografts. By contrast, in vivo treatment with anti-CD8 antibody abrogated ACAID but had no effect on corneal allograft survival. Further discordance between ACAID and corneal allograft survival emerged in experiments in which the induction of allergic conjunctivitis or the administration of anti-IL-17A abolished the immune privilege of corneal allografts but had no effect on the induction or expression of ACAID. CONCLUSIONS Although orthotopic corneal allografts are strategically located for the induction of ACAID by the sloughing of corneal cells into the AC, the results reported here indicate that the Tregs induced by orthotopic corneal allografts are remarkably different from the Tregs that are induced by AC injection of alloantigen. Although both of these Treg populations promote corneal allograft survival, they display distinctly different phenotypes.
Collapse
Affiliation(s)
- Khrishen Cunnusamy
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | | | | | | | | | | |
Collapse
|
29
|
Stanojlovic S, Schlickeiser S, Appelt C, Vogt K, Schmitt-Knosalla I, Haase S, Ritter T, Sawitzki B, Pleyer U. Influence of combined treatment of low dose rapamycin and cyclosporin A on corneal allograft survival. Graefes Arch Clin Exp Ophthalmol 2010; 248:1447-56. [DOI: 10.1007/s00417-010-1420-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/18/2023] Open
|
30
|
Huang T, Planck SR, Rosenbaum JT, Lee EJ. Feasibility study of lamellar keratoplasty in a murine model. Ocul Immunol Inflamm 2009; 17:257-64. [PMID: 19657979 DOI: 10.1080/09273940902802683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE In contrast to penetrating keratoplasty (PK), the donor cornea in lamellar keratoplasty (LK) remains separated from the host aqueous humor. There is debate about relative merits of each approach, but experimental comparisons have never been performed in animal models. Therefore, the authors developed a murine LK model. METHODS For allogeneic PK and LK surgeries, corneas of C57BL/6 mice were transplanted to BALB/c mice, assessed by slit lamp, and scored for opacity, edema, and neovascularization up to 46 d post-transplantation. Additional PK or LK surgeries were performed for histological assessment. RESULTS Graft rejection rate was less in LK vs. PK (69.2 vs. 100%), as was neovascularization (84.6 vs. 100%). In LK, inflammatory cells infiltrated primarily the button; in PK, heavier infiltration was observed throughout the cornea. CONCLUSIONS This study demonstrates the feasibility of LK in mice and presents data suggesting that the inflammatory response in LK differs from that in PK.
Collapse
Affiliation(s)
- Ting Huang
- Key Laboratory of Ophthalmology of the Ministry of Education and Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | | | | | | |
Collapse
|
31
|
Abstract
Corneal transplantation, first reported a century ago, is the oldest and most frequent form of solid tissue transplantation. Although keratoplasty is also considered as the most successful transplant procedure, several studies indicate that the long term survival of corneal grafts is even lower than that of transplanted parenchymatous organs. Despite the immune privilege enjoyed by the cornea and anterior segment of the eye, immunologic graft rejection is a major limitation to corneal transplantation. This review gives an update on corneal immunobiology and the mechanisms of corneal graft rejection, focusing on antigen presentation, as well as on the molecular and cellular mediators of this particular immune response.
Collapse
Affiliation(s)
- Uwe Pleyer
- Department of Ophthalmology, Charité University Berlin, Germany.
| | | |
Collapse
|
32
|
Niederkorn JY, Chen PW, Mellon J, Stevens C, Mayhew E. Allergic airway hyperreactivity increases the risk for corneal allograft rejection. Am J Transplant 2009; 9:1017-26. [PMID: 19422331 PMCID: PMC2737278 DOI: 10.1111/j.1600-6143.2009.02603.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Corneal allografts transplanted into hosts with allergic conjunctivitis experience an increased incidence and swifter tempo of immune rejection compared to corneal allografts transplanted to nonallergic hosts. Previous findings suggested that increased risk for rejection was not a local effect produced by an inflamed eye, but was due to perturbation of the systemic immune responses to alloantigens on the corneal allograft. We tested the hypothesis that another allergic disease, airway hyperreactivity (AHR), would also increase the risk for corneal allograft rejection. Induction of AHR with either ovalbumin (OVA) or short ragweed (SRW) extract prior to keratoplasty resulted in a steep increase in the speed and incidence of corneal allograft rejection. Delayed-type hypersensitivity (DTH) responses to corneal alloantigens were closely associated with corneal allograft rejection. However, the deleterious effect of AHR on corneal allograft survival was not reflected in a heightened magnitude of allospecific DTH, cytotoxic T lymphocyte and lymphoproliferative responses to the alloantigens on the corneal allograft. Unlike Th2-based immediate hypersensitivity, CD8+ T-cell-based contact hypersensitivity to oxazolone did not increase the risk for corneal allograft rejection. Thus, Th2-based allergic diseases significantly reduce the immune privilege of the corneal allograft and represent important risk factors for consideration in the atopic patient.
Collapse
|
33
|
Chen H, Wang W, Xie H, Xu X, Wu J, Jiang Z, Zhang M, Zhou L, Zheng S. A pathogenic role of IL- 17 at the early stage of corneal allograft rejection. Transpl Immunol 2009; 21:155-61. [PMID: 19358887 DOI: 10.1016/j.trim.2009.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 12/20/2022]
Abstract
PURPOSE Th17, recently identified as a new subset of effector Th cells, has been shown to be involved in microbe infection and autoimmunity. However, the role of these cells in organ allograft rejection remains largely unknown. In this study, we investigate whether Th17 cells participate in allogeneic corneal rejection in a mouse model. METHODS Donor cornea (C57BL/6) was transplanted into orthotopic graft bed of Balb/c recipients. At different time points after keratoplasty, the expression of Th17 and Th1- related cytokines in draining cervical lymph nodes (LN) and grafted cornea was examined by flow cytometry and quantitative RT- PCR, respectively. Furthermore, IL- 17(-/-) Balb/c mice were used to determine the effects of Th17 cells on allogeneic cornea survival. Finally, the profiles of Th1 and proinflammatory cytokines in IL- 17(-/-) recipients after transplantation were examined. RESULTS Th17 expression was enhanced significantly in inflamed transplants and draining lymph nodes at the early stage of allocorneal rejection, while upregulation of Th1 producing IFN- gamma was seen in the late phase. Upon activation by allogeneic accessory cells, responder cells in draining LN from transplanted recipients secreted high levels of IL- 6, TGF- beta and IL- 21 compared to controls, which may drive naive T cells to differentiate into Th17 cells. Importantly, IL- 17 deficiency led to the delayed development of allogeneic rejection, but did not affect the overall survival time of transplants. This effect correlated with restrained Th1 polarization and decreased production of proinflammatory cytokines. CONCLUSION Th17 cells play a disease-promoting role at the early stage of corneal allograft rejection.
Collapse
Affiliation(s)
- Haiyong Chen
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Penetrating keratoplasty has been successfully performed on humans for over 100 years and remains the most common form of solid tissue transplantation. Although corneal allografts enjoy a remarkable degree of immune privilege, immune rejection remains the leading cause of keratoplasty failure. The immunologic basis for corneal allograft rejection was established in animal studies over 50 years ago, yet large gaps remain in our knowledge regarding the cellular and molecular mechanisms of corneal allograft rejection. The enormous redundancy in the mammalian immune system creates a condition that favors the development of multiple independent immune mechanisms that can produce corneal allograft rejection. Although there are few absolute principles, it is certain that the immune rejection of corneal allografts is (1) T cell-dependent, (1) heavily dependent upon CD4(+) T cells, (3) not restricted to either Th1 or Th2 T cell populations, and (4) dependent upon an intact repertoire of resident antigen presenting cells.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas 75390-9057, USA.
| |
Collapse
|
35
|
Abstract
BACKGROUND Several studies suggest that a significant number of corneal allografts undergo rejection in the absence of CD4 T cells. This study examined the role of CD4 T cell-independent mechanisms of corneal allograft rejection. METHODS BALB/c corneal allografts were transplanted to C57BL/6 beige nude mice that received either CD8 or CD8 T cells from C57BL/6 CD4 knockout (KO) mice that had rejected BALB/c corneal allografts. Immune effector functions of CD8 or CD8 T cells from C57BL/6 CD4 KO mice were assessed using delayed-type hypersensitivity assays and Annexin V apoptosis assays respectively. RESULTS.: Both CD8 and CD8 T cells from CD4 KO corneal allograft rejector mice mediated corneal allograft rejection following adoptive transfer to nude mice. CD8 T cells, but not CD8 T cells, from CD4 KO mice adoptively transferred donor-specific DTH and induced apoptosis of BALB/c corneal endothelial cells in vitro. Apoptosis of BALB/c corneal endothelial cells was mediated by double negative (DN) T cells, as treatment of CD8 cells from CD4 KO mice with anti-Thy 1.2 plus complement abolished their effector function. CONCLUSION The results support the proposition that CD4 T cell-independent rejection of corneal allografts can be mediated by either CD8 or CD8 T cells. The CD8 T cells represent a unique DN T cell population that might mediate rejection by either direct cytolysis or by inducing apoptosis of the donor corneal endothelium.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | | | | | | |
Collapse
|
36
|
Niederkorn JY, Stevens C, Mellon J, Mayhew E. Differential roles of CD8+ and CD8- T lymphocytes in corneal allograft rejection in 'high-risk' hosts. Am J Transplant 2006; 6:705-13. [PMID: 16539627 DOI: 10.1111/j.1600-6143.2006.01237.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined the role of perforin and FasL in corneal allograft rejection mediated by CD8+ and CD8 T cells. BALB/c corneas were transplanted orthotopically into vascularized, 'high-risk' graft beds in C57BL/6 mice, perforin knockout mice and FasL-defective gld/gld mice. CD8+ and CD8 T cells were collected following graft rejection and adoptively transferred to SCID mice, which were then challenged with BALB/c corneal allografts. In every case, CD8 T cells could mediate graft rejection when adoptively transferred to SCID mice that received BALB/c corneal allografts. Although CD8+ T cells also mediated graft rejection, the tempo was slower. Moreover, CD8+ T cells collected FasL-defective donors that had rejected corneal allografts, mediated corneal allograft rejection in only 50% of the SCID mice that received the adoptively transferred cells. In some cases, CD8+ T-cell-mediated rejection occurred in the absence of delayed-type hypersensitivity and cytotoxic T-lymphocyte activity, but was associated with CD8+ T-cell-mediated apoptosis of BALB/c corneal cells in vitro. The results demonstrate the redundancy in immune mechanisms of corneal allograft rejection. Either CD8+ or CD8 T cells can produce corneal allograft rejection, however functional FasL is necessary for optimal rejection, even in a high-risk setting.
Collapse
Affiliation(s)
- J Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | |
Collapse
|
37
|
Yamada J. Thiol redox and immune regulation in corneal transplantation. Cornea 2005; 24:S59-S65. [PMID: 16227826 DOI: 10.1097/01.ico.0000178734.50544.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Penetrating keratoplasty (PKP) is the most common type of clinical grafting performed in humans. Although PKP has emerged as the most successful form of transplantation, PKP in "high-risk" eyes shows high incidence of allograft rejection. The incidence of epithelial rejection after limbal transplantation (LT) is extremely higher and swifter than PKP rejection, and even intensive systemic immunosuppressive therapy is often of no avail. Because failure of corneal grafts is an important cause of blindness, developing new strategies for suppressing graft rejection is a worthy goal for research. Corneal allograft rejection is mainly mediated by the TH1-type immune response, which leads to a delayed-type hypersensitivity reaction. Because the TH2-type immune response regulates the TH1-type immune response, we have successfully elicited allograft survival after both PKP and LT by inducing systemic TH2-type immune responses. Because intracellular thiol redox status of antigen-presenting cells (APC) reportedly regulates TH1/TH2 balance via distinctive cytokine production by APC, we also investigated the effect of modulating macrophage intracellular thiol redox status on corneal allograft survival. These strategies are quite effective in major histocompatibility complex (MHC) matching in mice, although it is believed that MHC matching has no effect on corneal allograft survival according to many rodent studies. Recently, many laboratories are reconsidering HLA matching for allograft survival in human corneal transplantation. It may be possible that MHC matching improves corneal allograft survival in the context of TH1 suppression. We propose that the suppression of the TH1-type immune response and MHC matching together may promote allograft survival in humans.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Ophthalmology, Meiji University of Oriental Medicine, Kyoto, Japan.
| |
Collapse
|
38
|
Beauregard C, Stevens C, Mayhew E, Niederkorn JY. Cutting edge: atopy promotes Th2 responses to alloantigens and increases the incidence and tempo of corneal allograft rejection. THE JOURNAL OF IMMUNOLOGY 2005; 174:6577-81. [PMID: 15905494 DOI: 10.4049/jimmunol.174.11.6577] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A large body of evidence suggests that corneal allograft rejection is mediated by a type 1 Th cell response and that deviation toward type 2 immunity favors graft survival. However, clinical observations indicate that patients with severe ocular allergies have increased risk of corneal allograft rejection. We used a mouse model of atopic conjunctivitis to evaluate the effects of Th2 immune deviation on corneal allograft survival and possible mechanisms of graft rejection. Our results reveal the following novel findings: 1) atopic conjunctivitis promotes systemic Th2 immune responses to corneal graft donor alloantigens; 2) corneal allografts in atopic host eyes have an increased incidence and swifter tempo of rejection; 3) increased rejection is associated with alterations in systemic T cell-mediated responses to donor alloantigens; and 4) corneal allograft rejection in atopic hosts does not require the direct involvement of infiltrating eosinophils.
Collapse
Affiliation(s)
- Clay Beauregard
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | | | |
Collapse
|
39
|
Hegde S, Beauregard C, Mayhew E, Niederkorn JY. CD4(+) T-cell-mediated mechanisms of corneal allograft rejection: role of Fas-induced apoptosis. Transplantation 2005; 79:23-31. [PMID: 15714165 DOI: 10.1097/01.tp.0000147196.79546.69] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The role of CD4(+) T cells as effector cells in corneal allograft rejection is poorly understood. We investigated the role of CD4(+) T cells as helper cells in the generation of allospecific effector macrophages in corneal graft rejection and the role of CD4(+) T cells as apoptosis-inducing effector cells. METHODS Corneal allografts were transplanted to CD4 knockout, FasL-deficient, and macrophage-depleted hosts. An Annexin-V binding assay was used to evaluate the susceptibility of corneal cells to both Fas-dependent and CD4 T-cell-mediated apoptosis in vitro. RESULTS Macrophages were essential for graft rejection, but not as effector cells. Anti-BALB/c CD4(+) T cells from immunized C57BL/6 mice induced apoptosis of BALB/c corneal epithelial and endothelial cells. However, anti-BALB/c CD4(+) T cells from FasL-deficient gld/gld mice did not induce apoptosis of BALB/c corneal endothelial cells. Moreover, gld/gld mice had a reduced capacity to reject BALB/c corneal allografts. Although the initial results suggested a role for Fas-induced apoptosis in corneal graft rejection, additional experiments indicated otherwise. The incidence and tempo of immune rejection of Fas-deficient lpr/lpr corneal allografts were no different than those for corneal grafts from Fas-bearing C57BL/6 donors. Moreover, CD4(+) T-cell-mediated apoptosis of corneal cells could not be blocked with either Fas-Fc fusion protein or anti-FasL blocking antibody. CONCLUSIONS The results suggest that CD4(+) T cells function directly as effector cells and not as helper cells in the rejection of corneal allografts. Although the corneal endothelium is highly susceptible to Fas-induced apoptosis, this is apparently not the primary mechanism of CD4(+) T-cell-dependent rejection.
Collapse
Affiliation(s)
- Sushma Hegde
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|