1
|
Calma AD, Young S, Sandbach J, Riminton S, Reddel SW, Ramanathan S. Targeting alpha-4 integrin with natalizumab for intermediate uveitis associated with multiple sclerosis. Mult Scler J Exp Transl Clin 2024; 10:20552173241301034. [PMID: 39660040 PMCID: PMC11629426 DOI: 10.1177/20552173241301034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Intermediate uveitis (IU) may be associated with multiple sclerosis (MS), with both conditions possibly sharing pathogenic mechanisms. Two patients presented with bilateral IU. Despite targeted uveitis treatment with corticosteroids and methotrexate, both had ongoing disease activity with symptoms, and fluorescein angiographic abnormalities. Both were subsequently identified to have radiologically isolated MS in the absence of clinical demyelination. Treatment with natalizumab in isolation, led to rapid and sustained resolution of uveitis, enabling discontinuation of other immunosuppression. This case series adds evidence supporting use of alpha-4 integrins in the treatment of MS-associated uveitis, in addition to its known high-efficacy in MS.
Collapse
Affiliation(s)
- Aicee Dawn Calma
- Department of Neurosciences, Concord Repatriation General Hospital, Sydney, Australia
| | - Stephanie Young
- Department of Ophthalmology, Concord Repatriation General Hospital, Sydney, Australia
| | - Jennifer Sandbach
- Department of Ophthalmology, Prince of Wales Hospital, Sydney, Australia
| | - Sean Riminton
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Immunology, Concord Repatriation General Hospital, Sydney, Australia
| | - Stephen W Reddel
- Department of Neurosciences, Concord Repatriation General Hospital, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sudarshini Ramanathan
- Department of Neurosciences, Concord Repatriation General Hospital, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Wu Y, Wang Q, Jia S, Lu Q, Zhao M. Gut-tropic T cells and extra-intestinal autoimmune diseases. Autoimmun Rev 2024; 23:103544. [PMID: 38604462 DOI: 10.1016/j.autrev.2024.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Gut-tropic T cells primarily originate from gut-associated lymphoid tissue (GALT), and gut-tropic integrins mediate the trafficking of the T cells to the gastrointestinal tract, where their interplay with local hormones dictates the residence of the immune cells in both normal and compromised gastrointestinal tissues. Targeting gut-tropic integrins is an effective therapy for inflammatory bowel disease (IBD). Gut-tropic T cells are further capable of entering the peripheral circulatory system and relocating to multiple organs. There is mounting evidence indicating a correlation between gut-tropic T cells and extra-intestinal autoimmune disorders. This review aims to systematically discuss the origin, migration, and residence of gut-tropic T cells and their association with extra-intestinal autoimmune-related diseases. These discoveries are expected to offer new understandings into the development of a range of autoimmune disorders, as well as innovative approaches for preventing and treating the diseases.
Collapse
Affiliation(s)
- Yutong Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
3
|
Chen YH, Lightman S, Eskandarpour M, Calder VL. Adhesion Molecule Targeted Therapy for Non-Infectious Uveitis. Int J Mol Sci 2022; 23:503. [PMID: 35008929 PMCID: PMC8745221 DOI: 10.3390/ijms23010503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 02/01/2023] Open
Abstract
Non-infectious uveitis (NIU) is an inflammatory eye disease initiated via CD4+ T-cell activation and transmigration, resulting in focal retinal tissue damage and visual acuity disturbance. Cell adhesion molecules (CAMs) are activated during the inflammatory process to facilitate the leukocyte recruitment cascade. Our review focused on CAM-targeted therapies in experimental autoimmune uveitis (EAU) and NIU. We concluded that CAM-based therapies have demonstrated benefits for controlling EAU severity with decreases in immune cell migration, especially via ICAM-1/LFA-1 and VCAM-1/VLA-4 (integrin) pathways. P-selectin and E-selectin are more involved specifically in uveitis related to vasculitis. These therapies have potential clinical applications for the development of a more personalized and specific treatment. Localized therapies are the future direction to avoid serious systemic side effects.
Collapse
Affiliation(s)
- Yi-Hsing Chen
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.); (M.E.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Sue Lightman
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.); (M.E.)
| | - Malihe Eskandarpour
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.); (M.E.)
| | - Virginia L. Calder
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.); (M.E.)
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
4
|
Pleyer U, Neri P, Deuter C. New pharmacotherapy options for noninfectious posterior uveitis. Int Ophthalmol 2021; 41:2265-2281. [PMID: 33634341 PMCID: PMC8172489 DOI: 10.1007/s10792-021-01763-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Noninfectious inflammation of the posterior eye segment represents an important cause of visual impairment. It often affects relatively young people and causes a significant personal and social impact. Although steroids and nonbiologic- Disease-Modifying Antirheumatic Drugs (nbDMARDs) are effective both in acute and long- lasting diseases, however they are increasingly being replaced by biologic (DMARDs). bDMARD. This article therefore aims to identify recent advances in the therapy of noninfectious posterior segment uveitis. METHODS A Medline-search was conducted using the terms: nbDMARD, bDMARD, posterior uveitis, intermediate uveitis, treatment, corticosteroid. In addition, clinical studies were included as registered at ClinicalTrials.gov. RESULTS Currently two major lines of treatments can be identified: (1) the intraocular application of anti-inflammatory agents and (2) the introduction of new agents, e.g., (bDMARDs) and small-molecule-inhibitors. Whereas intravitreal treatments have the advantage to avoid systemic side effects, new systemic agents are progressively earning credit on the basis of their therapeutic effects. CONCLUSION Even when current treatment strategies are still hampered by the limited number of randomized controlled trials, promising progress and continuous efforts are seen.
Collapse
Affiliation(s)
- Uwe Pleyer
- Department of Ophthalmology, Charité – Universitätsmedizin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Piergiorgio Neri
- Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH USA
| | - Christoph Deuter
- Centre for Ophthalmology, University Hospital, 72076 Tuebingen, Germany
| |
Collapse
|
5
|
Chen YH, Eskandarpour M, Zhang X, Galatowicz G, Greenwood J, Lightman S, Calder V. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis. J Neuroinflammation 2021; 18:49. [PMID: 33602234 PMCID: PMC7893745 DOI: 10.1186/s12974-021-02080-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background The integrin VLA-4 (α4β1) plays an important role in leukocyte trafficking. This study investigated the efficacy of a novel topical α4β1 integrin inhibitor (GW559090, GW) in a mouse model for non-infectious posterior uveitis (experimental autoimmune uveitis; EAU) and its effect on intraocular leukocyte subsets. Methods Mice (female; B10.RIII or C57Bl/6; aged 6–8 weeks) were immunized with specific interphotoreceptor retinoid-binding protein (IRBP) peptides to induce EAU. Topically administered GW (3, 10, and 30 mg/ml) were given twice daily either therapeutically once disease was evident, or prophylactically, and compared with vehicle-treated (Veh) and 0.1% dexamethasone-treated (Dex) controls. Mice were sacrificed at peak disease. The retinal T cell subsets were investigated by immunohistochemistry and immunofluorescence staining. The immune cells within the retina, blood, and draining lymph nodes (dLNs) were phenotyped by flow cytometry. The effect of GW559090 on non-adherent, adherent, and migrated CD4+ T cell subsets across a central nervous system (CNS) endothelium was further assayed in vitro and quantitated by flow cytometry. Results There was a significant reduction in clinical and histological scores in GW10- and Dex-treated groups as compared to controls either administered therapeutically or prophylactically. There were fewer CD45+ leukocytes infiltrating the retinae and vitreous fluids in the treated GW10 group (P < 0.05). Immunofluorescence staining and flow cytometry data identified decreased levels of retinal Th17 cells (P ≤ 0.001) in the GW10-treated eyes, leaving systemic T cell subsets unaffected. In addition, fewer Ly6C+ inflammatory monocyte/macrophages (P = 0.002) and dendritic cells (P = 0.017) crossed the BRB following GW10 treatment. In vitro migration assays confirmed that Th17 cells were selectively suppressed by GW559090 in adhering to endothelial monolayers. Conclusions This α4β1 integrin inhibitor may exert a modulatory effect in EAU progression by selectively blocking Th17 cell migration across the blood-retinal barrier without affecting systemic CD4+ T cell subsets. Local α4β1 integrin-directed inhibition could be clinically relevant in treating a Th17-dominant form of uveitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02080-8.
Collapse
Affiliation(s)
- Yi Hsing Chen
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Malihe Eskandarpour
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Xiaozhe Zhang
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Grazyna Galatowicz
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - John Greenwood
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital and UCL Biomedical Research Centre, London, UK
| | - Sue Lightman
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, London, UK
| | - Virginia Calder
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK. .,Moorfields Eye Hospital and UCL Biomedical Research Centre, London, UK.
| |
Collapse
|
6
|
Chawla R, Nath M, Moksha L, Nag TC, Velpandian T. An experimental study to evaluate safety/toxicity of intravitreal natalizumab. Indian J Ophthalmol 2018; 66:1441-1445. [PMID: 30249830 PMCID: PMC6173036 DOI: 10.4103/ijo.ijo_425_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose: The purpose of this prospective experimental study was to evaluate the safety/toxicity of α4β1 integrin blockade in rabbit retina using its monoclonal antibody (Natalizumab). Methods: Twelve New Zealand albino rabbits were divided into three groups (n = 4). Unilateral intravitreal injections of three different concentrations of natalizumab were performed in every rabbit of each group (Group A: 0.625 mg, Group B: 1.25 mg, and Group C: 2.5 mg). Baseline electroretinogram (ERG) and fundus photography were performed prior to injection. At days 1, 7, and 21 postinjection, ERG and fundus photography of each eye were performed. At last follow-up, Group C animals with highest drug concentration were sacrificed and the enucleated eyes were evaluated for retinal toxicity using transmission electron microscopy (TEM). Results: No difference in ERG responses was observed in eyes injected with low and intermediate concentration of natalizumab between day 0 and day 21. Furthermore, rabbits injected intravitreally with highest dose showed reduction in amplitude of “a” wave (P = 0.0017) and a reduction in amplitude of “b” wave of ERG at day 21 (P = 0.0117). TEM revealed changes in the outer plexiform layer and inner nuclear layer, suggestive of toxicity primarily to the photoreceptor synaptic terminals and bipolar cells. Conclusion: Low-dose (0.625 mg) and intermediate-dose (1.25 mg) intravitreal injection of natalizumab appears safe for rabbit retina. However, functional and anatomical changes were observed in rabbit retina following a high-dose (2.5 mg) intravitreal injection of a monoclonal antibody blocking α4β1 integrin.
Collapse
Affiliation(s)
- Rohan Chawla
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, New Delhi, India
| | - Madhu Nath
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, New Delhi, India
| | - Laxmi Moksha
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, New Delhi, India
| |
Collapse
|
7
|
Pleyer U, Algharably EAH, Feist E, Kreutz R. Small molecules as therapy for uveitis: a selected perspective of new and developing agents. Expert Opin Pharmacother 2017; 18:1311-1323. [PMID: 28750572 DOI: 10.1080/14656566.2017.1361408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intraocular inflammation (uveitis) remains a significant burden of legal blindness. Because of its immune mediated and chronic recurrent nature, common therapy includes corticosteroids, disease-modifying anti-rheumatic drugs and more recently biologics as immune modulatory agents. The purpose of this article is to identify the role of new treatment approaches focusing on small molecules as therapeutic option in uveitis. Areas covered: A MEDLINE database search was conducted through February 2017 using the terms 'uveitis' and 'small molecule'. To provide ongoing and future perspectives in treatment options, also clinical trials as registered at ClinicalTrials.gov were included. Both, results from experimental as well as clinical research in this field were included. Since this field is rapidly evolving, a selection of promising agents had to be made. Expert opinion: Small molecules may interfere at different steps of the inflammatory cascade and appear as an interesting option in the treatment algorithm of uveitis. Because of their highly targeted molecular effects and their favorable bioavailability with the potential of topical application small molecules hold great promise. Nevertheless, a careful evaluation of these agents has to be made, since current experience is almost exclusively based on experimental uveitis models and few registered trials.
Collapse
Affiliation(s)
- Uwe Pleyer
- a Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Department of Ophthalmology , Campus Virchow Klinikum, Berlin , Germany
| | - Engi Abdel-Hady Algharably
- b Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Institute of Clinical Pharmacology and Toxicology , Berlin , Germany.,c Department of Clinical Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Eugen Feist
- d Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Department of Rheumatology and Clinical Immunology , Berlin , Germany
| | - Reinhold Kreutz
- b Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Institute of Clinical Pharmacology and Toxicology , Berlin , Germany
| |
Collapse
|
8
|
Bansal S, Barathi VA, Iwata D, Agrawal R. Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian J Ophthalmol 2016; 63:211-8. [PMID: 25971165 PMCID: PMC4448233 DOI: 10.4103/0301-4738.156914] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the past several decades, animal models of autoimmune uveitis directed at eye-specific antigens (Ags) have been developed. These have allowed researchers to understand the basic mechanisms that lead to these diseases and also recently helped the researchers in translational research for therapeutic interventions. Experimental autoimmune uveitis (EAU) is an animal disease model of human endogenous uveitis and can be induced in susceptible animals by immunization with retinal Ags. Ever since the first description of EAU in mice in 1988, several animal models of uveitis has been described by researchers. Disease-specific model for cytomegalovirus retinitis and tubercular uveitis has evolved our understanding of these complex entities. Endotoxin induced uveitis is another useful model for anterior uveitis, which is not an autoimmune process and is triggered by injection of bacterial endotoxin (lipopolysaccharides) resulting in a rapid short lasting uveitis. The current article will give an insight into the various EAU animal models and their current implications in translational research. The article will also highlight the different grading systems for EAU in the animal model.
Collapse
Affiliation(s)
| | | | | | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Singapore Eye Research Institute, Singapore; Institute of Ophthalmology, University College London, London,
| |
Collapse
|
9
|
Prete M, Dammacco R, Fatone MC, Racanelli V. Autoimmune uveitis: clinical, pathogenetic, and therapeutic features. Clin Exp Med 2015; 16:125-36. [PMID: 25820692 DOI: 10.1007/s10238-015-0345-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/07/2015] [Indexed: 01/18/2023]
Abstract
Autoimmune uveitis (AU), an inflammatory non-infectious process of the vascular layer of the eye, can lead to visual impairment and, in the absence of a timely diagnosis and suitable therapy, can even result in total blindness. The majority of AU cases are idiopathic, whereas fewer than 20 % are associated with systemic diseases. The clinical severity of AU depends on whether the anterior, intermediate, or posterior part of the uvea is involved and may range from almost asymptomatic to rapidly sight-threatening forms. Race, genetic background, and environmental factors can also influence the clinical picture. The pathogenetic mechanism of AU is still poorly defined, given its remarkable heterogeneity and the many discrepancies between experimental and human uveitis. Even so, the onset of AU is thought to be related to an aberrant T cell-mediated immune response, triggered by inflammation and directed against retinal or cross-reactive antigens. B cells may also play a role in uveal antigen presentation and in the subsequent activation of T cells. The management of AU remains a challenge for clinicians, especially because of the paucity of randomized clinical trials that have systematically evaluated the effectiveness of different drugs. In addition to topical treatment, several different therapeutic options are available, although a standardized regimen is thus far lacking. Current guidelines recommend corticosteroids as the first-line therapy for patients with active AU. Immunosuppressive drugs may be subsequently required to treat steroid-resistant AU and for steroid-sparing purposes. The recent introduction of biological agents, such as those targeting tumor necrosis factor-α, is expected to remarkably increase the percentages of responders and to prevent irreversible sight impairment. This paper reviews the clinical features of AU and its crucial pathogenetic targets in relation to the current therapeutic perspectives. Also, the largest clinical trials conducted in the last 12 years for the treatment of AU are summarized and critically discussed.
Collapse
Affiliation(s)
- Marcella Prete
- Internal Medicine Unit, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Rosanna Dammacco
- Department of Otorhinolaryngology and Ophthalmology, University of Bari Medical School, Bari, Italy
| | - Maria Celeste Fatone
- Internal Medicine Unit, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Vito Racanelli
- Internal Medicine Unit, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
10
|
Ishida W, Harada Y, Fukuda K, Taguchi O, Yagita H, Fukushima A. Inhibition of very late antigen-4 and leukocyte function-associated antigen-1 in experimental autoimmune uveoretinitis. Clin Immunol 2014; 153:136-44. [PMID: 24787891 DOI: 10.1016/j.clim.2014.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/20/2014] [Accepted: 04/15/2014] [Indexed: 02/05/2023]
Abstract
B10.RIII mice were immunized with interphotoreceptor retinoid binding protein peptide to induce uveitis. Mice were injected intraperitoneally with anti-very late antigen-4 (VLA-4), anti-leukocyte function-associated antigen-1 (LFA-1), or a control Ab every other day from Day 5 to Day 13 post-immunization. The eyes and spleens were harvested on Day 14 or 28. The eyes were used for histologic/cytokine mRNA expression analyses. The spleens were used for Ag-recall cytokine production assays and intracellular cytokine assays. Treatment with both Abs led to a profoundly significant reduction in severity of uveitis and cytokine mRNA expression in the eye. However, cytokine production by splenocytes was significantly upregulated. Discontinuation of Ab treatment led to an increase in uveitis severity and cytokine mRNA expression in the eye, but led to a decrease in cytokine production and intracellular IFN-γ(+) and IL-17A(+)cytokine profile by splenocytes. Thus, blockade of these molecules using specific Abs may be a therapeutic option for patients with uveitis; however, such treatment must be continued.
Collapse
Affiliation(s)
- Waka Ishida
- Department of Ophthalmology, Kochi Medical School, Nankoku City, Kochi 783-8505, Japan
| | - Yosuke Harada
- Department of Ophthalmology, Kochi Medical School, Nankoku City, Kochi 783-8505, Japan
| | - Ken Fukuda
- Department of Ophthalmology, Kochi Medical School, Nankoku City, Kochi 783-8505, Japan
| | - Osamu Taguchi
- Department of Ophthalmology, Kochi Medical School, Nankoku City, Kochi 783-8505, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Atsuki Fukushima
- Department of Ophthalmology, Kochi Medical School, Nankoku City, Kochi 783-8505, Japan.
| |
Collapse
|
11
|
Vaquer G, Rivière F, Mavris M, Bignami F, Llinares-Garcia J, Westermark K, Sepodes B. Animal models for metabolic, neuromuscular and ophthalmological rare diseases. Nat Rev Drug Discov 2013; 12:287-305. [PMID: 23493083 DOI: 10.1038/nrd3831] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animal models are important tools in the discovery and development of treatments for rare diseases, particularly given the small populations of patients in which to evaluate therapeutic candidates. Here, we provide a compilation of mammalian animal models for metabolic, neuromuscular and ophthalmological orphan-designated conditions based on information gathered by the European Medicines Agency's Committee for Orphan Medicinal Products (COMP) since its establishment in 2000, as well as from a review of the literature. We discuss the predictive value of the models and their advantages and limitations with the aim of highlighting those that are appropriate for the preclinical evaluation of novel therapies, thereby facilitating further drug development for rare diseases.
Collapse
Affiliation(s)
- Guillaume Vaquer
- Human Medicines Special Areas, Human Medicines Development and Evaluation, European Medicines Agency, London E14 4HB, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Bharadwaj AS, Appukuttan B, Wilmarth PA, Pan Y, Stempel AJ, Chipps TJ, Benedetti EE, Zamora DO, Choi D, David LL, Smith JR. Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 2013; 32:102-80. [PMID: 22982179 PMCID: PMC3679193 DOI: 10.1016/j.preteyeres.2012.08.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022]
Abstract
Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.
Collapse
Affiliation(s)
| | | | - Phillip A. Wilmarth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Yuzhen Pan
- Casey Eye Institute, Oregon Health & Science University
| | | | | | | | | | - Dongseok Choi
- Department of Public Health and Preventive Medicine, Oregon Health & Science University
| | - Larry L. David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Justine R. Smith
- Casey Eye Institute, Oregon Health & Science University
- Department of Cell & Developmental Biology, Oregon Health & Science University
| |
Collapse
|
13
|
Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye. Prog Retin Eye Res 2012; 33:10-27. [PMID: 23108335 DOI: 10.1016/j.preteyeres.2012.10.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Uveitis is a sight-threatening disease caused by autoimmune or infection-related immune responses. Studies in experimental autoimmune uveitis and in human diseases imply that activated CD4(+) T cells, Th1 and Th17 cells, play an effector role in ocular inflammation. The eye has a unique regional immune system to protect vision-related cells and tissues from these effector T cells. The immunological balance between the pathogenic CD4(+) T cells and regional immune system in the eye contributes to the maintenance of ocular homeostasis and good vision. Current studies have demonstrated that ocular parenchymal cells at the inner surface of the blood-ocular barrier, i.e. corneal endothelial (CE) cells, iris pigment epithelial (PE) cells, ciliary body PE cells, and retinal PE cells, contribute to the regional immune system of the eye. Murine ocular resident cells directly suppress activation of bystander T cells and production of inflammatory cytokines. The ocular resident cells possess distinct properties of immunoregulation that are related to disparate anatomical location. CE cells and iris PE cells, which are located at the anterior segment of the eye and face the aqueous humor, suppress activation of T cells via cell-to-cell contact mechanisms, whereas retinal PE cells suppress the activation of T cells via soluble factors. In addition to direct immune suppression, the ocular resident cells have another unique immunosuppressive property, the induction of CD25(+)Foxp3(+) Treg cells that also suppress the activation of bystander T cells. Iris PE cells convert CD8(+) T cells into Treg cells, while retinal PE cells convert CD4(+) T cells greatly and CD8(+) T cells moderately into Treg cells. CE cells also convert both CD4(+) T cells and CD8(+) T cells into Treg cells. The immunomodulation by ocular resident cells is mediated by various soluble or membrane-bound molecules that include TGF-β TSP-1, B7-2 (CD86), CTLA-2α, PD-L1 (B7-H1), galectin 1, pigment epithelial-derived factor PEDF), GIRTL, and retinoic acid. Human retinal PE cells also possess similar immune properties to induce Treg cells. Although there are many issues to be answered, human Treg cells induced by ocular resident cells such as retinal PE cells and related immunosuppressive molecules can be applied as immune therapy for refractive autoimmune uveitis in humans in the future.
Collapse
Affiliation(s)
- Manabu Mochizuki
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
14
|
Makhoul M, Dewispelaere R, Relvas LJ, Elmaleh V, Caspers L, Bruyns C, Willermain F. Characterization of retinal expression of vascular cell adhesion molecule (VCAM-1) during experimental autoimmune uveitis. Exp Eye Res 2012; 101:27-35. [PMID: 22749846 DOI: 10.1016/j.exer.2012.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 01/02/2023]
Abstract
Leukocyte adhesion to the blood retinal barrier is a critical step in the pathogenesis of non-infectious uveitis and is mediated in part through the induction of adhesion molecules on retinal cells. Here, we have investigated the retinal expression of Vascular Cell Adhesion Molecule 1 (VCAM-1) in mouse experimental models of non-infectious uveitis. For each eyes, a histological score was given, and the expression of VCAM-1 analyzed by immunohistology. Co-labellings for GFAP, endoglin, aquaporin 4 and recoverin were also performed in order to determine which cell type expressed VCAM-1. In low grade uveitis, obtained after adoptive transfer of semi-purified autoreactive lymphocytes, VCAM-1 was only punctually expressed in the internal limiting membrane and epithelial cells of the ciliary body. Using the same adoptive transfer protocol, we found that, in correlation with disease severity, the staining extended to all internal limiting membranes, vasculitis lesions, Müller cell extensions, outer limiting membranes and RPE cells. VCAM-1 expression in the inner limiting membrane and Müller cell extensions co-stained with GFAP expression. In vasculitis lesions, VCAM-1 co-localized with either GFAP and endoglin expression. The labeling in the outer limiting membrane, did not exactly co-stained with AQ4 (Müller cells marker) or recoverin (photoreceptor marker) and the nature of this expression remained unexplained. Finally, VCAM-1 expression was also analyzed in classical experimental autoimmune uveitis eyes, and a similar pattern of expression was found. In conclusion VCAM-1 is expressed on all blood retinal barrier cells during experimental non-infectious uveitis and might thus play an important role in inflammatory cell recruitment during disease development.
Collapse
Affiliation(s)
- M Makhoul
- I.R.I.B.H.M (Institute of Interdisciplinary Research), Université Libre de Bruxelles Campus Erasme, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
15
|
Oh HM, Yu CR, Lee Y, Chan CC, Maminishkis A, Egwuagu CE. Autoreactive memory CD4+ T lymphocytes that mediate chronic uveitis reside in the bone marrow through STAT3-dependent mechanisms. THE JOURNAL OF IMMUNOLOGY 2011; 187:3338-46. [PMID: 21832158 DOI: 10.4049/jimmunol.1004019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Organ-specific autoimmune diseases are usually characterized by repeated cycles of remission and recurrent inflammation. However, where the autoreactive memory T cells reside in between episodes of recurrent inflammation is largely unknown. In this study, we have established a mouse model of chronic uveitis characterized by progressive photoreceptor cell loss, retinal degeneration, focal retinitis, retinal vasculitis, multifocal choroiditis, and choroidal neovascularization, providing for the first time to our knowledge a useful model for studying long-term pathological consequences of chronic inflammation of the neuroretina. We show that several months after inception of acute uveitis, autoreactive memory T cells specific to retinal autoantigen, interphotoreceptor retinoid-binding protein (IRBP), relocated to bone marrow (BM). The IRBP-specific memory T cells (IL-7Rα(High)Ly6C(High)CD4(+)) resided in BM in resting state but upon restimulation converted to IL-17/IFN-γ-expressing effectors (IL-7Rα(Low)Ly6C(Low)CD4(+)) that mediated uveitis. We further show that T cells from STAT3-deficient (CD4-STAT3KO) mice are defective in α4β1 and osteopontin expression, defects that correlated with inability of IRBP-specific memory CD4-STAT3KO T cells to traffic into BM. We adoptively transferred uveitis to naive mice using BM cells from wild-type mice with chronic uveitis but not BM cells from CD4-STAT3KO, providing direct evidence that memory T cells that mediate uveitis reside in BM and that STAT3-dependent mechanism may be required for migration into and retention of memory T cells in BM. Identifying BM as a survival niche for T cells that cause uveitis suggests that BM stromal cells that provide survival signals to autoreactive memory T cells and STAT3-dependent mechanisms that mediate their relocation into BM are attractive therapeutic targets that can be exploited to selectively deplete memory T cells that drive chronic inflammation.
Collapse
Affiliation(s)
- Hyun-Mee Oh
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
16
|
Commodaro AG, Bueno V, Belfort R, Rizzo LV. Autoimmune uveitis: The associated proinflammatory molecules and the search for immunoregulation. Autoimmun Rev 2011; 10:205-9. [DOI: 10.1016/j.autrev.2010.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/02/2010] [Indexed: 01/06/2023]
|
17
|
Abstract
Autoimmune and inflammatory uveitis are a group of potentially blinding intraocular inflammatory diseases that arise without a known infectious trigger and are often associated with immunological responses to unique retinal proteins. In the United States, about 10% of the cases of severe visual handicap are attributed to this group of disorders. As I discuss here, experimental models of ocular autoimmunity targeting retinal proteins have brought about a better understanding of the basic immunological mechanisms involved in the pathogenesis of uveitis and are serving as templates for the development of novel therapies.
Collapse
Affiliation(s)
- Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
18
|
Commodaro AG, Moraes LDDVD, Tambourgi DV, Belfort Jr. R, Sant’Anna OA, Rizzo LV. Autoimmune uveitis: study of treatment therapies. EINSTEIN-SAO PAULO 2010; 8:117-21. [DOI: 10.1590/s1679-45082010rb1416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Experimental autoimmune uveitis is an organ-specific T-cell mediated autoimmune disease characterized by inflammation and consequent destruction of the neural retina and adjacent tissues. Inflammation in experimental autoimmune uveitis may be induced in rodents by immunization with retinal antigens, such as interphotoreceptor retinoid-binding protein. We present a review of experimental studies that correlate primary immunobiological functions with this chronic disease and the possible use of molecules for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Luiz Vicente Rizzo
- Instituto Israelita de Ensino e Pesquisa Albert Einstein – IIEPAE, Brazil
| |
Collapse
|
19
|
Liu X, Lee YS, Yu CR, Egwuagu CE. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. THE JOURNAL OF IMMUNOLOGY 2008; 180:6070-6. [PMID: 18424728 DOI: 10.4049/jimmunol.180.9.6070] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th17 cells are implicated in CNS autoimmune diseases. We show that mice with targeted-deletion of Stat3 in CD4(+) T cells (CD4(Stat3)(-/-)) do not develop experimental autoimmune uveoretinitis (EAU) or experimental autoimmune encephalomyelitis. Defective Th17 differentiation noted in CD4(Stat3)(-/-) mice is compensated by exaggerated increases in Foxp3-, IL-10-, IL-4-, and IFN-gamma-expressing T cells, suggesting critical roles of STAT3 in shaping Ag-specific CD4(+) T cell repertoire. In mice with EAU, a high percentage of IL-17-expressing T cells in their peripheral lymphoid organs also secrete IFN-gamma while these double-expressors are absent in CD4(Stat3)(-/-) and wild-type mice without EAU, raising the intriguing possibility that uveitis maybe mediated by Th17 and IL-17-expressing Th1 cells. Resistance of Stat3-deficient mice to EAU derives in part from an inability of uveitogenic Th17 and Th1 cells to enter eyes or brain of the CD4(Stat3)(-/-) mouse because of the reduction in the expression of activated alpha4/beta1 integrins on CD4(Stat3)(-/-) T cells. Adoptive transfer of activated interphotoreceptor retinoid-binding protein-specific uveitogenic T cells induced in CD4(Stat3)(-/-) mice a severe EAU characterized by development of retinal folds, infiltration of inflammatory cells into the retina, and destruction of retinal architecture, underscoring our contention that the loss of STAT3 in CD4(+) T cells results in an intrinsic developmental defect that renders CD4(Stat3)(-/-) resistant to CNS inflammatory diseases. STAT3 requirement for IL-17 production by Th17, generation of double positive T cells expressing IL-17 and IFN-gamma, and for T cell trafficking into CNS tissues suggests that STAT3 may be a therapeutic target for modulating uveitis, sceritis, or multiple sclerosis.
Collapse
Affiliation(s)
- Xuebin Liu
- Section of Molecular Immunology, Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Haq E, Rohrer B, Nath N, Crosson CE, Singh I. S-nitrosoglutathione Prevents Interphotoreceptor Retinoid-Binding Protein (IRBP161–180)-Induced Experimental Autoimmune Uveitis. J Ocul Pharmacol Ther 2007; 23:221-31. [PMID: 17593005 DOI: 10.1089/jop.2007.0023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Experimental autoimmune uveitis (EAU), an animal model of human uveitis, is an organ-specific autoimmune disease mediated by various inflammatory cytokines. In particular, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and interferon (IFN)-gamma are known to play a role in its pathogenesis. S-nitrosothiol S-nitrosoglutathione (GSNO), a slow nitric oxide (NO) donor, was reported to have beneficial effects in inflammatory disease in ischemia-reperfusion injury. The efficacy of GSNO treatment on interphotoreceptor retinoid-binding protein (IRBP)-induced EAU was investigated, using functional, histologic, and immunologic readouts. METHODS Mice were immunized with a single injection of IRBP(161180) peptide to induce EAU, followed by a daily treatment with GSNO (1 mg/kg). Electroretinogram (ERG) analysis, histopathology, and immunologic responses to IRBP were analyzed. The effects of GSNO treatment on the antigen-specific T-cell recall responses and their cytokine production were determined. RESULTS A single immunization of IRBP(161180) peptide led to significant structural damage of the retina and concomitant elimination of ERGs. Daily oral GSNO treatment from days 1-14 following immunization was found to be effective against IRBP-induced EAU. Histopathologic and ERG analysis both demonstrated significant retinal protection in GSNO-treated mice. The GSNO treatment of EAU animals significantly attenuated the levels of TNF-alpha, IL-1beta, IFN-gamma, and IL-10 in retinas, as measured by quantitative real-time polymerase chain reaction analysis. The splenocytes isolated from EAU- and GSNO-treated mice had lower antigen-specific T-cell proliferation in response to IRBP protein, and their cytokine production was inhibited. CONCLUSIONS The oral administration of GSNO significantly suppressed the levels of inflammatory mediators in the retinas of EAU mice. This suppression was associated with the maintenance of normal retinal histology and function. These results clearly demonstrated the therapeutic potential of GSNO in EAU, and provide new insights for the treatment of human uveitis.
Collapse
Affiliation(s)
- Ehtishamul Haq
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
21
|
Hafezi-Moghadam A, Noda K, Almulki L, Iliaki EF, Poulaki V, Thomas KL, Nakazawa T, Hisatomi T, Miller JW, Gragoudas ES. VLA-4 blockade suppresses endotoxin-induced uveitis: in vivo evidence for functional integrin up-regulation. FASEB J 2007; 21:464-74. [PMID: 17202250 DOI: 10.1096/fj.06-6390com] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leukocyte adhesion to the vascular wall is a critical early step in the pathogenesis of inflammatory diseases and is mediated in part by the leukocyte integrin, VLA-4, which binds to endothelial vascular cell adhesion molecule (VCAM) -1. Here, we investigate VLA-4's role in endotoxin-induced uveitis (EIU). At various time points (6-48 h) after EIU induction, the severity of the inflammation was evaluated by quantifying cell and protein content in the aqueous fluid, firm leukocyte adhesion in the retinal vessels, and the number of extravasated leukocytes into the vitreous. Functional activation of VLA-4 in vivo was investigated in our previously introduced autoperfused micro flow chamber assay. Firm adhesion of EIU leukocytes to immobilized VCAM-1 under physiological blood flow conditions was significantly increased compared with normal controls (P<0.05), suggesting an important role for VLA-4 in EIU. VLA-4 blockade in vivo significantly suppressed all uveitis-related inflammatory parameters studied, decreasing the clinical score by 45% (P<0.01), protein content in the aqueous fluid by 21% (P<0.01), retinal leukostasis by 68% (P<0.01), and leukocyte accumulation in the vitreous by 75% (P<0.01). Our data provide novel evidence for functional up-regulation of VLA-4 during EIU and suggest VLA-4 blockade as a promising therapeutic strategy for treatment of acute inflammatory eye diseases.
Collapse
Affiliation(s)
- A Hafezi-Moghadam
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Orthokeratology (OK) is a clinical technique that uses specially designed rigid contact lenses to reshape the cornea to temporarily reduce or eliminate refractive error. This article reviews the history of traditional daily-wear OK (1960s to 1980s) and discusses the reasons for the recent resurgence in interest in the new modality of overnight OK, using reverse-geometry lens designs (1990s to the present). The clinical efficacy of the current procedure is examined and outcomes from clinical studies in terms of refractive error change and unaided visual acuity are summarised. Onset of the effects of overnight OK lens wear is rapid, with most change after the first night of lens wear and stability of refractive change after seven to 10 days. Mean reductions in myopic refractive error of between 1.75 and 3.33 D and individual reductions of up to 5.00 D have been reported. There appear to be slight reductions or minimal changes in astigmatism with the use of reverse-geometry lenses and most patients are reported to achieve 6/6 unaided vision or better. The induction of higher order aberrations, in particular, spherical aberration, has been reported and this may affect subjective vision under conditions of low contrast and pupil dilation. Patient satisfaction with overnight OK has been reported as similar to or better than with other popular modalities of contact lens wear. Available evidence suggests that the corneal changes induced by overnight OK are fully reversible. The refractive effect in OK is achieved by central epithelial thinning and this has raised concerns about compromise of the epithelial barrier to microbial infection. Recent reports of microbial keratitis in the modality are reviewed and the overall safety of the procedure is examined critically. Recent research on stromal contributions to the OK effect, particularly relating to overnight oedema, is summarised. Emerging issues in OK, including myopic control, correction of other refractive errors and permanency of the OK effect, are discussed.
Collapse
Affiliation(s)
- Helen A Swarbrick
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
| |
Collapse
|
23
|
Toscano MA, Commodaro AG, Ilarregui JM, Bianco GA, Liberman A, Serra HM, Hirabayashi J, Rizzo LV, Rabinovich GA. Galectin-1 Suppresses Autoimmune Retinal Disease by Promoting Concomitant Th2- and T Regulatory-Mediated Anti-Inflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2006; 176:6323-32. [PMID: 16670344 DOI: 10.4049/jimmunol.176.10.6323] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intraocular inflammatory diseases are a common cause of severe visual impairment and blindness. In this study, we investigated the immunoregulatory role of galectin-1 (Gal-1), an endogenous lectin found at sites of T cell activation and immune privilege, in experimental autoimmune uveitis (EAU), a Th1-mediated model of retinal disease. Treatment with rGal-1 either early or late during the course of interphotoreceptor retinoid-binding protein-induced EAU was sufficient to suppress ocular pathology, inhibit leukocyte infiltration, and counteract pathogenic Th1 cells. Administration of rGal-1 at the early or late phases of EAU ameliorated disease by skewing the uveitogenic response toward nonpathogenic Th2 or T regulatory-mediated anti-inflammatory responses. Consistently, adoptive transfer of CD4(+) regulatory T cells obtained from rGal-1-treated mice prevented the development of active EAU in syngeneic recipients. In addition, increased levels of apoptosis were detected in lymph nodes from mice treated with rGal-1 during the efferent phase of the disease. Our results underscore the ability of Gal-1 to counteract Th1-mediated responses through different, but potentially overlapping anti-inflammatory mechanisms and suggest a possible therapeutic use of this protein for the treatment of human uveitic diseases of autoimmune etiology.
Collapse
Affiliation(s)
- Marta A Toscano
- Division of Immunogenetics, Hospital de Clínicas José de San Martín, Faculty of Medicine, University of Buenos Aires, Avenida Córdoba 2351, City of Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|