Tashiro M, Nakamura A, Kuratani Y, Takada M, Iwamoto S, Oka M, Ando S. Effects of truncations in the N- and C-terminal domains of filensin on filament formation with phakinin in cell-free conditions and cultured cells.
FEBS Open Bio 2023;
13:1990-2004. [PMID:
37615966 PMCID:
PMC10626283 DOI:
10.1002/2211-5463.13700]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Filensin and phakinin are lens fiber cell-specific proteins that constitute the beaded filaments (BFs) that are critical for maintaining lens transparency. In the Shumiya cataract rat, filensin 94 kDa undergoes N- and C-terminal proteolytic processing to give a transient 50 kDa fragment and a final 38 kDa fragment, just before opacification. To characterize the effects of this processing on filensin function, recombinant proteins representing the two filensin fragments, termed Fil(30-416) and Fil(30-369), respectively, were examined. Fil(30-416) lacks the N-terminal 29 amino acids and the C-terminal 248 amino acids. Fil(30-369) lacks the N-terminal 29 residues and the C-terminal 295 residues. In cell-free assembly characterized by electron microscopy, filensin and Fil(30-416) co-polymerized with phakinin and formed rugged, entangled filaments, whereas Fil(30-369) formed only aggregates. In cultured SW-13 and MCF-7 cells expressing fluorescent fusion proteins, filensin and Fil(30-416) co-polymerized with phakinin and formed cytoplasmic sinuous filaments with different widths, while Fil(30-369) gave aggregates. Therefore, while truncation of the N-terminal 29 amino acids did not affect filament formation, truncation of the C-terminal 295 but not the 248 residues resulted in failure of filament formation. These results indicate that the tail B region (residues 370-416) of rat filensin is essential for filament formation with phakinin. Truncation of the tail B region by proteolytic processing in the cataract rat lens might interfere with BF formation and thereby contribute to opacification.
Collapse