1
|
Xu Z, Ke Y, Feng Q, Tuerdimaimaiti A, Zhang D, Dong L, Liu A. Proteomic characteristics of the aqueous humor in Uyghur patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Exp Eye Res 2024; 243:109903. [PMID: 38642601 DOI: 10.1016/j.exer.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Pseudoexfoliation syndrome (PEX) is characterized by the deposition of fibrous pseudoexfoliation material (PEXM) in the eye, and secondary glaucoma associated with this syndrome has a faster and more severe clinical course. The incidence of PEX and pseudoexfoliative glaucoma (PEXG) exhibits ethnic clustering; however, few proteomic studies related to PEX and PEXG have been conducted in Asian populations. Therefore, we aimed to conduct proteomic analysis on the aqueous humor (AH) obtained from Uyghur patients with cataracts, those with PEX and cataracts, and those with PEXG and cataracts to better understand the molecular mechanisms of the disease and identify its potential biomarkers. To this end, AH was collected from patients with cataracts (n = 10, control group), PEX with cataracts (n = 10, PEX group), and PEXG with cataracts (n = 10, PEXG group) during phacoemulsification. Label-free quantitative proteomic techniques combined with bioinformatics were used to identify and analyze differentially expressed proteins (DEPs) in the AH of PEX and PEXG groups. Then, independent AH samples (n = 12, each group) were collected to validate DEPs by enzyme-linked immunosorbent assay (ELISA). The PEX group exhibited 25 DEPs, while the PEXG group showed 44 DEPs, both compared to the control group. Subsequently, we found three newly identified proteins in both PEX and PEXG groups, wherein FRAS1-related extracellular matrix protein 2 (FREM2) and osteoclast-associated receptor (OSCAR) exhibited downregulation, whereas coagulation Factor IX (F9) displayed upregulation. Bioinformatics analysis suggested that extracellular matrix interactions, abnormal blood-derived proteins, and lysosomes were mainly involved in the process of PEX and PEXG, and the PPI network further revealed F9 may serve as a potential biomarker for both PEX and PEXG. In conclusion, this study provides new information for understanding the proteomics of AH in PEX and PEXG.
Collapse
Affiliation(s)
- Zhao Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yin Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Qiang Feng
- Ophthalmology Department of People's Hospital of Hotan District, Xinjiang, China
| | | | - Dandan Zhang
- Ophthalmology Department of People's Hospital of Hotan District, Xinjiang, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Aihua Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
2
|
Meyer KJ, Fingert JH, Anderson MG. Lack of evidence for GWAS signals of exfoliation glaucoma working via monogenic loss-of-function mutation in the nearest gene. Hum Mol Genet 2024:ddae088. [PMID: 38770563 DOI: 10.1093/hmg/ddae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
PURPOSE Exfoliation syndrome (XFS) is a systemic disease of elastin-rich tissues involving a deposition of fibrillar exfoliative material (XFM) in the anterior chamber of the eye, which can promote glaucoma. The purpose of this study was to create mice with CRISPR/Cas9-induced variations in candidate genes identified from human genome-wide association studies (GWAS) and screen them for indices of XFS. METHODS Variants predicted to be deleterious were sought in the Agpat1, Cacna1a, Loxl1, Pomp, Rbms3, Sema6a, and Tlcd5 genes of C57BL/6J mice using CRISPR/Cas9-based gene editing. Strains were phenotyped by slit-lamp, SD-OCT imaging, and fundus exams at 1-5 mos of age. Smaller cohorts of 12-mos-old mice were also studied. RESULTS Deleterious variants were identified in six targets; Pomp was recalcitrant to targeting. Multiple alleles of some targets were isolated, yielding 12 strains. Across all genotypes and ages, 277 mice were assessed by 902 slit-lamp exams, 928 SD-OCT exams, and 358 fundus exams. Homozygosity for Agpat1 or Cacna1a mutations led to early lethality; homozygosity for Loxl1 mutations led to pelvic organ prolapse, preventing aging. Loxl1 homozygotes exhibited a conjunctival phenotype of potential relevance to XFS. Multiple other genotype-specific phenotypes were variously identified. XFM was not observed in any mice. CONCLUSIONS This study did not detect XFM in any of the strains. This may have been due to species-specific differences, background dependence, or insufficient aging. Alternatively, it is possible that the current candidates, selected based on proximity to GWAS signals, are not effectors acting via monogenic loss-of-function mechanisms.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, United States
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
| | - John H Fingert
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, United States
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 601 Hwy 6 W, Iowa City, IA 52246, United States
| |
Collapse
|
3
|
Rong S, Yu X, Wiggs JL. Genetic Basis of Pigment Dispersion Syndrome and Pigmentary Glaucoma: An Update and Functional Insights. Genes (Basel) 2024; 15:142. [PMID: 38397132 PMCID: PMC10887877 DOI: 10.3390/genes15020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Pigment Dispersion Syndrome (PDS) and Pigmentary Glaucoma (PG) comprise a spectrum of ocular disorders characterized by iris pigment dispersion and trabecular meshwork changes, resulting in increased intraocular pressure and potential glaucomatous optic neuropathy. This review summarizes recent progress in PDS/PG genetics including rare pathogenic protein coding alterations (PMEL) and susceptibility loci identified from genome-wide association studies (GSAP and GRM5/TYR). Areas for future research are also identified, especially the development of efficient model systems. While substantial strides have been made in understanding the genetics of PDS/PG, our review identifies key gaps and outlines the future directions necessary for further advancing this important field of ocular genetics.
Collapse
Affiliation(s)
- Shisong Rong
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA;
| | - Xinting Yu
- Department of Medicine, Brigham and Women’s Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA;
| | - Janey L. Wiggs
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02114, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Kapuganti RS, Alone DP. Current understanding of genetics and epigenetics in pseudoexfoliation syndrome and glaucoma. Mol Aspects Med 2023; 94:101214. [PMID: 37729850 DOI: 10.1016/j.mam.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Pseudoexfoliation is a complex, progressive, and systemic age-related disorder. The early stage of deposition of extracellular fibrillar material on ocular and extraocular tissues is termed as pseudoexfoliation syndrome (PEXS). The severe advanced stage is known as pseudoexfoliation glaucoma (PEXG), which involves increased intraocular pressure and optic nerve damage. Through genome-wide association and candidate gene studies, PEX has been associated with numerous genetic risk variants in various gene loci. However, the genetic basis of the disease fails to explain certain features of PEX pathology, such as the progressive nature of the disease, asymmetric ocular manifestation, age-related onset, and only a subset of PEXS individuals developing PEXG. Increasing evidence shows an interplay of genetic and epigenetic factors in the pathology of complex, multifactorial diseases. In this review, we have discussed the genetic basis of the disease and the emerging contribution of epigenetic regulations in PEX pathogenesis, focusing on DNA methylation and non-coding RNAs. Aberrant methylation patterns, histone modifications, and post-transcriptional regulation by microRNAs lead to aberrant gene expression changes. We have reviewed these aberrant epigenetic changes in PEX pathology and their effect on molecular pathways associated with PEX. We have further discussed some possible genetic/epigenetic-based diagnoses and therapeutics for PEX. Although studies to understand the role of epigenetic regulations in PEX are just emerging, epigenetic modifications contribute significantly to PEX pathogenesis and may pave the way for better and targeted therapeutics.
Collapse
Affiliation(s)
- Ramani Shyam Kapuganti
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha, 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha, 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Hedberg-Buenz A, Meyer KJ, van der Heide CJ, Deng W, Lee K, Soukup DA, Kettelson M, Pellack D, Mercer H, Wang K, Garvin MK, Abramoff MD, Anderson MG. Biological Correlations and Confounders for Quantification of Retinal Ganglion Cells by Optical Coherence Tomography Based on Studies of Outbred Mice. Transl Vis Sci Technol 2022; 11:17. [PMID: 36135979 PMCID: PMC9513741 DOI: 10.1167/tvst.11.9.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/02/2022] [Indexed: 01/28/2023] Open
Abstract
Purpose Despite popularity of optical coherence tomography (OCT) in glaucoma studies, it's unclear how well OCT-derived metrics compare to traditional measures of retinal ganglion cell (RGC) abundance. Here, Diversity Outbred (J:DO) mice are used to directly compare ganglion cell complex (GCC) thickness measured by OCT to metrics of retinal anatomy measured ex vivo with retinal wholemounts and optic nerve histology. Methods J:DO mice (n = 48) underwent fundoscopic and OCT examinations, with automated segmentation of GCC thickness. RGC axons were quantified from para-phenylenediamine-stained optic nerve cross-sections and somas from BRN3A-immunolabeled retinal wholemounts, with total inner retinal cellularity assessed by TO-PRO and subsequent hematoxylin staining. Results J:DO tissues lacked overt disease. GCC thickness, RGC abundance, and total cell abundance varied broadly across individuals. GCC thickness correlated significantly to RGC somal density (r = 0.58) and axon number (r = 0.44), but not total cell density. Retinal area and nerve cross-sectional area varied widely. No metrics were significantly influenced by sex. In bilateral comparisons, GCC thickness (r = 0.95), axon (r = 0.72), and total cell density (r = 0.47) correlated significantly within individuals. Conclusions Amongst outbred mice, OCT-derived measurements of GCC thickness correlate significantly to RGC somal and axon abundance. Factors limiting correlation are likely both biological and methodological, including differences in retinal area that distort sampling-based estimates of RGC abundance. Translational Relevance There are significant-but imperfect-correlations between GCC thickness and RGC abundance across genetic contexts in mice, highlighting valid uses and ongoing challenges for meaningful use of OCT-derived metrics.
Collapse
Affiliation(s)
- Adam Hedberg-Buenz
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Kacie J. Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Carly J. van der Heide
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Wenxiang Deng
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Kyungmoo Lee
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Dana A. Soukup
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Monica Kettelson
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Danielle Pellack
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Hannah Mercer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Mona K. Garvin
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Michael D. Abramoff
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Michael G. Anderson
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Kizhina A, Pechorina E, Mikheeva V. Effect of vitamin C supplementation on some leukocyte parameters in American mink (Neovison vison) with abnormal granulogenesis. Tissue Cell 2022; 77:101870. [DOI: 10.1016/j.tice.2022.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
|
7
|
Tan J, Zeng L, Wang Y, Liu G, Huang L, Chen D, Wang X, Fan N, He Y, Liu X. Compound Heterozygous Variants of the CPAMD8 Gene Co-Segregating in Two Chinese Pedigrees With Pigment Dispersion Syndrome/Pigmentary Glaucoma. Front Genet 2022; 13:845081. [PMID: 35957697 PMCID: PMC9358689 DOI: 10.3389/fgene.2022.845081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying the pathogenesis of pigment dispersion syndrome and pigmentary glaucoma remain unclear. In pedigree-based studies, familial aggregation and recurrences in relatives suggest a strong genetic basis for pigmentary glaucoma. In this study, we aimed to identify the genetic background of two Chinese pedigrees with pigmentary glaucoma. All members of these two pedigrees who enrolled in the study underwent a comprehensive ophthalmologic examination, and genomic DNA was extracted from peripheral venous blood samples. Whole-exome sequencing and candidate gene verifications were performed to identify the disease-causing variants; in addition, screening of the CPAMD8 gene was performed on 38 patients of sporadic pigmentary glaucoma. Changes in the structure and function of abnormal proteins caused by gene variants were analyzed with a bioinformatics assessment. Pigmentary glaucoma was identified in a total of five patients from the two pedigrees, as were compound heterozygous variants of the CPAMD8 gene. No signs of pigmentary glaucoma were found in carriers of monoallelic CPAMD8 variant/variants. All four variants were inherited in an autosomal recessive mode. In addition to the 38 patients of sporadic pigmentary glaucoma, 13 variants of the CPAMD8 gene were identified in 11 patients. This study reported a possible association between CPAMD8 variants and pigment dispersion syndrome/pigmentary glaucoma.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Liuzhi Zeng
- Department of Ophthalmology, Chengdu First People’s Hospital, Chengdu, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longxiang Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Defu Chen
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xizhen Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Yu He
- Department of Ophthalmology, Chengdu First People’s Hospital, Chengdu, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, China
- Department of Ophthalmology, Shenzhen People’s Hospital, The 2nd Clinical Medical College, Jinan University, Shenzhen, China
- *Correspondence: Xuyang Liu,
| |
Collapse
|
8
|
Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers (Basel) 2022; 14:cancers14071752. [PMID: 35406524 PMCID: PMC8997128 DOI: 10.3390/cancers14071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Zebrafish (Danio rerio) is an emerging model for studying many diseases, including disorders originating in black pigment cells, melanocytes. In this review of the melanocyte literature, we discuss the current knowledge of melanocyte biology relevant to understanding different forms of albinism and the potential of the zebrafish model system for finding novel mechanisms and treatments. Abstract Melanin is the pigment that protects DNA from ultraviolet (UV) damage by absorbing excess energy. Melanin is produced in a process called melanogenesis. When melanogenesis is altered, diseases such as albinism result. Albinism can result in an increased skin cancer risk. Conversely, black pigment cell (melanocyte) development pathways can be misregulated, causing excessive melanocyte growth that leads to melanoma (cancer of melanocytes). Zebrafish is an emerging model organism used to study pigment disorders due to their high fecundity, visible melanin development in melanophores (melanocytes in mammals) from 24 h post-fertilization, and conserved melanogenesis pathways. Here, we reviewed the conserved developmental pathways in zebrafish melanophores and mammalian melanocytes. Additionally, we summarized the progress made in understanding pigment cell disease and evidence supporting the strong potential for using zebrafish to find novel treatment options for albinism.
Collapse
|
9
|
Primary Human Trabecular Meshwork Model for Pseudoexfoliation. Cells 2021; 10:cells10123448. [PMID: 34943956 PMCID: PMC8700223 DOI: 10.3390/cells10123448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/06/2023] Open
Abstract
The lack of an animal model or an in vitro model limits experimental options for studying temporal molecular events in pseudoexfoliation syndrome (PXF), an age related fibrillopathy causing trabecular meshwork damage and glaucoma. Our goal was to create a workable in vitro model of PXF using primary human TM (HTM) cell lines simulating human disease. Primary HTM cells harvested from healthy donors (n = 3), were exposed to various concentrations (5 ng/mL, 10 ng/mL, 15 ng/mL) of transforming growth factor-beta1 (TGF-β1) for different time points. Morphological change of epithelial–mesenchymal transition (EMT) was analyzed by direct microscopic visualization and immunoblotting for EMT markers. Expression of pro-fibrotic markers were analyzed by quantitative RT-PCR and immunoblotting. Cell viability and death in treated cells was analyzed using FACS and MTT assay. Protein complex and amyloid aggregate formation was analyzed by Immunofluorescence of oligomer11 and amyloid beta fibrils. Effect of these changes with pharmacological inhibitors of canonical and non-canonical TGF pathway was done to analyze the pathway involved. The expression of pro-fibrotic markers was markedly upregulated at 10 ng/mL of TGF-β1 exposure at 48–72 h of exposure with associated EMT changes at the same time point. Protein aggregates were seen maximally at these time points that were found to be localized around the nucleus and in the extracellular matrix (ECM). EMT and pro-fibrotic expression was differentially regulated by different canonical and non-canonical pathways suggesting complex regulatory mechanisms. This in vitro model using HTM cells simulated the main characteristics of human disease in PXF like pro-fibrotic gene expression, EMT, and aggregate formation.
Collapse
|
10
|
Deng W, Hedberg-Buenz A, Soukup DA, Taghizadeh S, Wang K, Anderson MG, Garvin MK. AxonDeep: Automated Optic Nerve Axon Segmentation in Mice With Deep Learning. Transl Vis Sci Technol 2021; 10:22. [PMID: 34932117 PMCID: PMC8709929 DOI: 10.1167/tvst.10.14.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Optic nerve damage is the principal feature of glaucoma and contributes to vision loss in many diseases. In animal models, nerve health has traditionally been assessed by human experts that grade damage qualitatively or manually quantify axons from sampling limited areas from histologic cross sections of nerve. Both approaches are prone to variability and are time consuming. First-generation automated approaches have begun to emerge, but all have significant shortcomings. Here, we seek improvements through use of deep-learning approaches for segmenting and quantifying axons from cross-sections of mouse optic nerve. Methods Two deep-learning approaches were developed and evaluated: (1) a traditional supervised approach using a fully convolutional network trained with only labeled data and (2) a semisupervised approach trained with both labeled and unlabeled data using a generative-adversarial-network framework. Results From comparisons with an independent test set of images with manually marked axon centers and boundaries, both deep-learning approaches outperformed an existing baseline automated approach and similarly to two independent experts. Performance of the semisupervised approach was superior and implemented into AxonDeep. Conclusions AxonDeep performs automated quantification and segmentation of axons from healthy-appearing nerves and those with mild to moderate degrees of damage, similar to that of experts without the variability and constraints associated with manual performance. Translational Relevance Use of deep learning for axon quantification provides rapid, objective, and higher throughput analysis of optic nerve that would otherwise not be possible.
Collapse
Affiliation(s)
- Wenxiang Deng
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA.,Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Adam Hedberg-Buenz
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Dana A Soukup
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Sima Taghizadeh
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Michael G Anderson
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA
| | - Mona K Garvin
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA.,Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
11
|
van der Heide CJ, Meyer KJ, Hedberg-Buenz A, Pellack D, Pomernackas N, Mercer HE, Anderson MG. Quantification and image-derived phenotyping of retinal ganglion cell nuclei in the nee mouse model of congenital glaucoma. Exp Eye Res 2021; 212:108774. [PMID: 34597676 PMCID: PMC8608716 DOI: 10.1016/j.exer.2021.108774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022]
Abstract
The nee mouse model exhibits characteristic features of congenital glaucoma, a common cause of childhood blindness. The current study of nee mice had two components. First, the time course of neurodegeneration in nee retinal flat-mounts was studied over time using a retinal ganglion cell (RGC)-marker, BRN3A; a pan-nuclear marker, TO-PRO-3; and H&E staining. Based on segmentation of nuclei using ImageJ and RetFM-J, this analysis identified a rapid loss of BRN3A+ nuclei from 4 to 15 weeks of age, with the first statistically significant difference in average density compared to age-matched controls detected in 8-week-old cohorts (49% reduction in nee). Consistent with a model of glaucoma, no reductions in BRN3A- nuclei were detected, but the combined analysis indicated that some RGCs lost BRN3A marker expression prior to actual cell loss. These results have a practical application in the design of experiments using nee mice to study mechanisms or potential therapies for congenital glaucoma. The second component of the study pertains to a discovery-based analysis of the large amount of image data with 748,782 segmented retinal nuclei. Using the automatedly collected region of interest feature data captured by ImageJ, we tested whether RGC density of glaucomatous mice was significantly correlated to average nuclear area, perimeter, Feret diameter, or MinFeret diameter. These results pointed to two events influencing nuclear size. For variations in RGC density above approximately 3000 nuclei/mm2 apparent spreading was observed, in which BRN3A- nuclei-regardless of genotype-became slightly larger as RGC density decreased. This same spreading occurred in BRN3A+ nuclei of wild-type mice. For variation in RGC density below 3000 nuclei/mm2, which only occurred in glaucomatous nee mutants, BRN3A+ nuclei became smaller as disease was progressively severe. These observations have relevance to defining RGCs of relatively higher sensitivity to glaucomatous cell death and the nuclear dynamics occurring during their demise.
Collapse
Affiliation(s)
- Carly J van der Heide
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Kacie J Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA; VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 601 Hwy 6 West (151), Iowa City, IA, 52246, USA.
| | - Danielle Pellack
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Nicholas Pomernackas
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Hannah E Mercer
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA; VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 601 Hwy 6 West (151), Iowa City, IA, 52246, USA; Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
| |
Collapse
|
12
|
Zhang M, Sun S, Wang L, Wang X, Chen T, Chen Z, Jiang Y. Zonular defects in loxl1-deficient zebrafish. Clin Exp Ophthalmol 2021; 50:62-73. [PMID: 34585825 DOI: 10.1111/ceo.14017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND To investigate the roles of the lysyl oxidase-like 1 (loxl1) gene in zebrafish eye development and the potency of loxl1 deficiency in mimicking the ocular manifestations of exfoliation syndrome (XFS). METHODS CRISPR/Cas9 technology was used to generate a frameshift coding deletion in zebrafish loxl1. Expression profiles and ocular manifestations of the wildtype, heterozygous mutant (loxl1+/- ) and homozygous mutant (loxl1-/- ) zebrafish were analysed in a range of developmental stages from zebrafish larvae to dissected adult zebrafish eyes. RESULTS The loxl1 deficiency caused zonular bundling disorders in juvenile zebrafish and accumulation of pearl-like particles adhering to the adult zebrafish zonule. The bundles appeared to lack form and were thinner in both loxl1+/- and loxl1-/- zebrafish compared with the wildtype (p < 0.01 for all Bonferroni post-hoc analyses). The zonule of loxl1-/- zebrafish appeared stretched, ragged and torn, with isolated fibres also detected. The particles in loxl1-/- zebrafish were more numerous (counts: 92.33 ± 10.02/100 μm2 vs. 58.33 ± 5.03/100 μm2 , p = 0.006), but smaller in size (diameter: 0.21 ± 0.03 μm vs. 0.43 ± 0.04 μm, p = 0.002) compared with those in loxl1+/- . Transmission electron microscopy revealed thinning or even loss of elastic lamina in loxl1+/- Bruch's membrane (BM) (thickness of elastic lamina: 92.94 ± 18.19 nm in the wildtype vs 35.65 ± 14.76 nm in loxl1+/- , p = 0.003). The breakage of BM was observed in loxl1-/- . CONCLUSIONS The loxl1-/- zebrafish is a promising animal model of XFS zonular pathology.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zexu Chen
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yongxiang Jiang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
13
|
A Comparison of Genomic Advances in Exfoliation Syndrome and Primary Open-Angle Glaucoma. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
van der Heide C, Goar W, Meyer KJ, Alward WLM, Boese EA, Sears NC, Roos BR, Kwon YH, DeLuca AP, Siggs OM, Gonzaga-Jauregui C, Sheffield VC, Wang K, Stone EM, Mullins RF, Anderson MG, Fan BJ, Ritch R, Craig JE, Wiggs JL, Scheetz TE, Fingert JH. Exome-based investigation of the genetic basis of human pigmentary glaucoma. BMC Genomics 2021; 22:477. [PMID: 34174832 PMCID: PMC8235805 DOI: 10.1186/s12864-021-07782-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background Glaucoma is a leading cause of visual disability and blindness. Release of iris pigment within the eye, pigment dispersion syndrome (PDS), can lead to one type of glaucoma known as pigmentary glaucoma. PDS has a genetic component, however, the genes involved with this condition are largely unknown. We sought to discover genes that cause PDS by testing cohorts of patients and controls for mutations using a tiered analysis of exome data. Results Our primary analysis evaluated melanosome-related genes that cause dispersion of iris pigment in mice (TYRP1, GPNMB, LYST, DCT, and MITF). We identified rare mutations, but they were not statistically enriched in PDS patients. Our secondary analyses examined PMEL (previously linked with PDS), MRAP, and 19 other genes. Four MRAP mutations were identified in PDS cases but not in controls (p = 0.016). Immunohistochemical analysis of human donor eyes revealed abundant MRAP protein in the iris, the source of pigment in PDS. However, analysis of MRAP in additional cohorts (415 cases and 1645 controls) did not support an association with PDS. We also did not confirm a link between PMEL and PDS in our cohorts due to lack of reported mutations and similar frequency of the variants in PDS patients as in control subjects. Conclusions We did not detect a statistical enrichment of mutations in melanosome-related genes in human PDS patients and we found conflicting data about the likely pathogenicity of MRAP mutations. PDS may have a complex genetic basis that is not easily unraveled with exome analyses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07782-0.
Collapse
Affiliation(s)
- Carly van der Heide
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wes Goar
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Kacie J Meyer
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wallace L M Alward
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Erin A Boese
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Nathan C Sears
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Ben R Roos
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Young H Kwon
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Adam P DeLuca
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Owen M Siggs
- Department of Ophthalmology, Flinders Medical Centre, Adelaide, South Australia, Australia.,Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | - Val C Sheffield
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Michael G Anderson
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Bao Jian Fan
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Boston, Boston, MA, USA
| | - Robert Ritch
- Einhorn Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Boston, Boston, MA, USA
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA.,Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, 3111B Medical Education and Research Facility, University of Iowa, 375 Newton Road, Iowa City, IA52245, USA. .,Institute for Vision Research, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
Ullate-Agote A, Burgelin I, Debry A, Langrez C, Montange F, Peraldi R, Daraspe J, Kaessmann H, Milinkovitch MC, Tzika AC. Genome mapping of a LYST mutation in corn snakes indicates that vertebrate chromatophore vesicles are lysosome-related organelles. Proc Natl Acad Sci U S A 2020; 117:26307-26317. [PMID: 33020272 PMCID: PMC7584913 DOI: 10.1073/pnas.2003724117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reptiles exhibit a spectacular diversity of skin colors and patterns brought about by the interactions among three chromatophore types: black melanophores with melanin-packed melanosomes, red and yellow xanthophores with pteridine- and/or carotenoid-containing vesicles, and iridophores filled with light-reflecting platelets generating structural colors. Whereas the melanosome, the only color-producing endosome in mammals and birds, has been documented as a lysosome-related organelle, the maturation paths of xanthosomes and iridosomes are unknown. Here, we first use 10x Genomics linked-reads and optical mapping to assemble and annotate a nearly chromosome-quality genome of the corn snake Pantherophis guttatus The assembly is 1.71 Gb long, with an N50 of 16.8 Mb and L50 of 24. Second, we perform mapping-by-sequencing analyses and identify a 3.9-Mb genomic interval where the lavender variant resides. The lavender color morph in corn snakes is characterized by gray, rather than red, blotches on a pink, instead of orange, background. Third, our sequencing analyses reveal a single nucleotide polymorphism introducing a premature stop codon in the lysosomal trafficking regulator gene (LYST) that shortens the corresponding protein by 603 amino acids and removes evolutionary-conserved domains. Fourth, we use light and transmission electron microscopy comparative analyses of wild type versus lavender corn snakes and show that the color-producing endosomes of all chromatophores are substantially affected in the LYST mutant. Our work provides evidence characterizing xanthosomes in xanthophores and iridosomes in iridophores as lysosome-related organelles.
Collapse
Affiliation(s)
- Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ingrid Burgelin
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Adrien Debry
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Carine Langrez
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Florent Montange
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Rodrigue Peraldi
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jean Daraspe
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Henrik Kaessmann
- DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), D-69120 Heidelberg, Germany
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, CH-1211 Geneva, Switzerland;
- SIB Swiss Institute of Bioinformatics, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Abstract
Animal models are powerful tools for studying diseases that affect the eye, such as exfoliation syndrome (XFS). Two types of animal models have been used to investigate the pathophysiology of XFS and glaucoma. One class of models is engineered to have key features of a disease by alteration of their genome (genotype-driven animal models). LOXL1 is the first gene known to increase the risk for developing XFS in humans. Two transgenic mouse models with altered Loxl1 genes have been generated to study XFS. One strain of mice, Loxl1 deficient mice, also known as Loxl1 knockout mice, have had the Loxl1 gene removed from their genomes. Another strain has been engineered to produce excess amounts of the protein produced by the Loxl1 gene, or Loxl1 overexpression. A second class of animal models includes naturally occurring strains of mice that exhibit key clinical features of a disease. Studies of these phenotype-driven animal models may identify genes that cause disease and may also provide a valuable resource for investigating pathogenesis. One strain of mice, B6-Lyst, has several key features of human XFS, including ocular production of exfoliation-like material, and stereotypical iris abnormalities. Studies of this range of mice and other public mouse genetic resources have provided some important insights into the biology of XFS and may be useful for future studies to test the efficacy of drug therapies.
Collapse
|
17
|
Moore BA, Flenniken AM, Clary D, Moshiri AS, Nutter LMJ, Berberovic Z, Owen C, Newbigging S, Adissu H, Eskandarian M, McKerlie C, Thomasy SM, Lloyd KCK, Murphy CJ, Moshiri A. Genome-wide screening of mouse knockouts reveals novel genes required for normal integumentary and oculocutaneous structure and function. Sci Rep 2019; 9:11211. [PMID: 31371754 PMCID: PMC6672016 DOI: 10.1038/s41598-019-47286-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Oculocutaneous syndromes are often due to mutations in single genes. In some cases, mouse models for these diseases exist in spontaneously occurring mutations, or in mice resulting from forward mutatagenesis screens. Here we present novel genes that may be causative for oculocutaneous disease in humans, discovered as part of a genome-wide screen of knockout-mice in a targeted single-gene deletion project. The International Mouse Phenotyping Consortium (IMPC) database (data release 10.0) was interrogated for all mouse strains with integument abnormalities, which were then cross-referenced individually to identify knockouts with concomitant ocular abnormalities attributed to the same targeted gene deletion. The search yielded 307 knockout strains from unique genes with integument abnormalities, 226 of which have not been previously associated with oculocutaneous conditions. Of the 307 knockout strains with integument abnormalities, 52 were determined to have ocular changes attributed to the targeted deletion, 35 of which represent novel oculocutaneous genes. Some examples of various integument abnormalities are shown, as well as two examples of knockout strains with oculocutaneous phenotypes. Each of the novel genes provided here are potentially relevant to the pathophysiology of human integumentary, or oculocutaneous conditions, such as albinism, phakomatoses, or other multi-system syndromes. The novel genes reported here may implicate molecular pathways relevant to these human diseases and may contribute to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Bret A Moore
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Dave Clary
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California Davis, Davis, CA, United States
| | - Ata S Moshiri
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Celeste Owen
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Hibret Adissu
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Mohammad Eskandarian
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada
| | | | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States.,Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - K C Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California Davis, Davis, CA, United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States.,Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA, United States.
| |
Collapse
|
18
|
Lahola-Chomiak AA, Footz T, Nguyen-Phuoc K, Neil GJ, Fan B, Allen KF, Greenfield DS, Parrish RK, Linkroum K, Pasquale LR, Leonhardt RM, Ritch R, Javadiyan S, Craig JE, Allison WT, Lehmann OJ, Walter MA, Wiggs JL. Non-Synonymous variants in premelanosome protein (PMEL) cause ocular pigment dispersion and pigmentary glaucoma. Hum Mol Genet 2019; 28:1298-1311. [PMID: 30561643 DOI: 10.1093/hmg/ddy429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 01/25/2023] Open
Abstract
Pigmentary glaucoma (PG) is a common glaucoma subtype that results from release of pigment from the iris, called pigment dispersion syndrome (PDS), and its deposition throughout the anterior chamber of the eye. Although PG has a substantial heritable component, no causative genes have yet been identified. We used whole exome sequencing of two independent pedigrees to identify two premelanosome protein (PMEL) variants associated with heritable PDS/PG. PMEL encodes a key component of the melanosome, the organelle essential for melanin synthesis, storage and transport. Targeted screening of PMEL in three independent cohorts (n = 394) identified seven additional PDS/PG-associated non-synonymous variants. Five of the nine variants exhibited defective processing of the PMEL protein. In addition, analysis of PDS/PG-associated PMEL variants expressed in HeLa cells revealed structural changes to pseudomelanosomes indicating altered amyloid fibril formation in five of the nine variants. Introduction of 11-base pair deletions to the homologous pmela in zebrafish by the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 method caused profound pigmentation defects and enlarged anterior segments in the eye, further supporting PMEL's role in ocular pigmentation and function. Taken together, these data support a model in which missense PMEL variants represent dominant negative mutations that impair the ability of PMEL to form functional amyloid fibrils. While PMEL mutations have previously been shown to cause pigmentation and ocular defects in animals, this research is the first report of mutations in PMEL causing human disease.
Collapse
Affiliation(s)
| | - Tim Footz
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
| | - Kim Nguyen-Phuoc
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
| | - Gavin J Neil
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - Baojian Fan
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Keri F Allen
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - David S Greenfield
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Palm Beach Gardens, FL, USA
| | - Richard K Parrish
- Anne Bates Leach Eye Hospital, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Linkroum
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Louis R Pasquale
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ralf M Leonhardt
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Shari Javadiyan
- Department of Ophthalmology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - W T Allison
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - Ordan J Lehmann
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton AB, Canada
| | - Michael A Walter
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
| | - Janey L Wiggs
- Ocular Genomics Institute and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Yuan Y, Schlötzer-Schrehardt U, Ritch R, Call M, Chu FB, Dong F, Rice T, Zhang J, Kao WWY. Transient expression of Wnt5a elicits ocular features of pseudoexfoliation syndrome in mice. PLoS One 2019; 14:e0212569. [PMID: 30840655 PMCID: PMC6402630 DOI: 10.1371/journal.pone.0212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Pseudoexfoliation (PEX) syndrome is an age-related systemic disease with ocular manifestations. The development of animal models is critical in order to elucidate the cause of the disease and to test potential treatment regimens. The purpose of this study is to report phenotypes found in mouse eyes injected with Adenovirus coding Wnt5a. Some of the phenotypes resemble those found in PEX patients while others are different. METHODS Recombinant Adenovirus coding Wnt5a or green fluorescent protein (GFP) were injected into mouse eyes. Two months after the injection, eyes were examined for PEX phenotypes using slit lamp, fluorescence stereomicroscope, histological staining, immunostaining and transmission electron microscope. RESULT Certain ocular features of PEX syndrome were found in mouse eyes injected with recombinant Adenovirus coding Wnt5a. These features include accumulation of exfoliation-like extracellular material on surfaces of anterior segment structures and its dispersion in the anterior chamber, saw-tooth appearance and disrupted basement membrane of the posterior iris pigment epithelium, iris stromal atrophy and disorganized ciliary zonules. Ultrastructure analysis of the exfoliation material revealed that the microfibril structure found in this model was different from those of PEX patients. CONCLUSION These features, resembling signs of ocular PEX syndrome in patients, suggest that new information obtained from this study will be helpful for developing better mouse models for PEX syndrome.
Collapse
Affiliation(s)
- Yong Yuan
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, United States of America
| | - Mindy Call
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Fred B. Chu
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati Eye Institute, Cincinnati, Ohio, United States of America
| | - Fei Dong
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Taylor Rice
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jianhua Zhang
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Winston W.-Y. Kao
- Crawley Vision Research Laboratory, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
20
|
Kiyoi T, Liu S, Sahid MNA, Shudou M, Ogasawara M, Mogi M, Maeyama K. Morphological and functional analysis of beige (Chèdiak-Higashi syndrome) mouse mast cells with giant granules. Int Immunopharmacol 2019; 69:202-212. [PMID: 30738290 DOI: 10.1016/j.intimp.2019.01.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 12/29/2022]
Abstract
Chèdiak-Higashi syndrome is a rare autosomal recessive disease that causes hypopigmentation, recurrent infections, mild coagulation defects and neurological problems. Beige mice carry a mutation in the lysosome trafficking regulator (LYST) gene and display some of the key characteristics of human Chèdiak-Higashi syndrome, in particular, a high susceptibility to infection due to aberrant natural killer (NK) cell and polymorphonuclear leucocyte function. Morphological analysis of beige mice reveals the presence of enlarged lysosomes in a variety of cell types, including leucocytes, hepatocytes, fibroblasts and renal tubule cells. To examine the process of granule maturation and degranulation in beige mice mast cells, morphological studies have been conducted using a combination of electrophysiological techniques; however, few functional studies have been conducted with mast cells, such as mediator release. The aim of the present study was to determine the morphological and functional characteristics of skin and peritoneal mast cells and bone marrow-derived mast cells of homozygous (bg/bg) and heterozygous (bg/+) beige mice and wild-type (+/+) mice. The histamine concentration was lower in the peritoneal and bone marrow-derived mast cells of bg/bg mice compared with those of bg/+ and +/+ mice, but the histamine release response was potentiated. In vivo studies of passive cutaneous anaphylaxis showed no differences between bg/bg mice and either bg/+ or +/+ mice. Although bg/bg mast cells with enlarged granules display specific exocytotic processes in vitro, the consequences of mast cell activation in beige mice were similar to those of wild-type mice in vivo.
Collapse
Affiliation(s)
- Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Pharmacology, Ehime University Graduate School of Medicine Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shuang Liu
- Department of Pharmacology, Ehime University Graduate School of Medicine Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Muhammad Novrizal Abdi Sahid
- Department of Pharmacology, Ehime University Graduate School of Medicine Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masachika Shudou
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masahito Ogasawara
- Department of Pathogenesis and Control of Oral Diseases, Division of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Kazutaka Maeyama
- Department of Pharmacology, Ehime University Graduate School of Medicine Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
21
|
Dutca LM, Rudd D, Robles V, Galor A, Garvin MK, Anderson MG. Effects of sustained daily latanoprost application on anterior chamber anatomy and physiology in mice. Sci Rep 2018; 8:13088. [PMID: 30166564 PMCID: PMC6117323 DOI: 10.1038/s41598-018-31280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/13/2018] [Indexed: 12/04/2022] Open
Abstract
Latanoprost is a common glaucoma medication. Here, we study longitudinal effects of sustained latanoprost treatment on intraocular pressure (IOP) in C57BL/6J mice, as well as two potential side-effects, changes in iris pigmentation and central corneal thickness (CCT). Male C57BL/6J mice were treated daily for 16 weeks with latanoprost. Control mice were treated on the same schedule with the preservative used with latanoprost, benzalkonium chloride (BAK), or handled, without ocular treatments. IOP and CCT were studied at pre-treatment, 2 "early" time points, and 2 "late" time points; slit-lamp analysis performed at a late time point; and expression of corneal and iridial candidate genes analyzed at the end of the experiment. Latanoprost lowered IOP short, but not long-term. Sustained application of BAK consistently resulted in significant corneal thinning, whereas sustained treatment with latanoprost resulted in smaller and less consistent changes. Neither treatment affected iris pigmentation, corneal matrix metalloprotease expression or iridial pigment-related genes expression. In summary, latanoprost initially lowered IOP in C57BL/6J mice, but became less effective with sustained treatment, likely due to physiological adaptation. These results identify a new resource for studying changes in responsiveness associated with long-term treatment with latanoprost and highlight detrimental effects of commonly used preservative BAK.
Collapse
Affiliation(s)
- Laura M Dutca
- Center for Prevention and Treatment of Visual Loss Iowa City Veterans Administration Medical Center, Iowa City, IA, USA
- Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, IA, USA
| | - Danielle Rudd
- Center for Prevention and Treatment of Visual Loss Iowa City Veterans Administration Medical Center, Iowa City, IA, USA
| | - Victor Robles
- Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center and Bascom Palmer Institute, University of Miami, Miami, FL, USA
| | - Mona K Garvin
- Center for Prevention and Treatment of Visual Loss Iowa City Veterans Administration Medical Center, Iowa City, IA, USA
- Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Michael G Anderson
- Center for Prevention and Treatment of Visual Loss Iowa City Veterans Administration Medical Center, Iowa City, IA, USA.
- Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, IA, USA.
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
22
|
Abstract
Exfoliation syndrome (XFS) produces deleterious ocular aging and has protean systemic manifestations. Local ocular production of TGFβ1 is of central importance in XFS. TGFβ1 appears to induce the expression of LOXL1 and the production of other extracellular matrix components which are known to be present in exfoliation material. Furthermore, results from several studies find that the aqueous humor of exfoliation glaucoma patients exhibits a decreased antioxidant defense and increased oxidative stress systems. Finally, studies show that the levels of interleukin-6 and interleukin-8 in the aqueous humor of XFS patients were 3-fold higher than in controls. Overall TGFβ1, as well as a prooxidative and proinflammatory environment seems to play an important role in XFS.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
23
|
Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms. J Ophthalmol 2018; 2018:5926906. [PMID: 29780638 PMCID: PMC5892222 DOI: 10.1155/2018/5926906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.
Collapse
|
24
|
Fingert JH, Miller K, Hedberg-Buenz A, Roos BR, Lewis CJ, Mullins RF, Anderson MG. Transgenic TBK1 mice have features of normal tension glaucoma. Hum Mol Genet 2017; 26:124-132. [PMID: 28025332 PMCID: PMC6075615 DOI: 10.1093/hmg/ddw372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 01/20/2023] Open
Abstract
Duplication of the TBK1 gene is associated with 1-2% of normal tension glaucoma, a common cause of vision loss and blindness that occurs without grossly abnormal intraocular pressure. We generated a transgenic mouse that has one copy of the human TBK1 gene (native promoter and gene structure) incorporated into the mouse genome (Tg-TBK1). Expression of the TBK1 transgene in the retinae of these mice was demonstrated by real-time PCR. Using immunohistochemistry TBK1 protein was predominantly localized to the ganglion cell layer of the retina, the cell type most affected by glaucoma. More intense TBK1 labelling was detected in the retinal ganglion cells (RGCs) of Tg-TBK1 mice than in wild-type littermates. Tg-TBK1 mice exhibit the cardinal sign of glaucoma, a progressive loss of RGCs. Hemizygous Tg-TBK1 mice (with one TBK1 transgene per genome) had a 13% loss of RGCs by 18 months of age (P = 1.5 × 10-8). Homozygous Tg-TBK1 mice had 7.6% fewer RGCs than hemizygous Tg-TBK1 mice and 20% fewer RGCs than wild-type mice (P = 1.9 × 10-5) at 6 months of age. No difference in intraocular pressures was detected between Tg-TBK1 mice and wild-type littermates as they aged (P > 0.05). Tg-TBK1 mice with extra doses of the TBK1 gene recapitulate the phenotype of normal tension glaucoma in human patients with a TBK1 gene duplication. Together, these studies confirm the pathogenicity of the TBK1 gene duplication in human glaucoma and suggest that excess production of TBK1 kinase may have a role in the pathology of glaucoma.
Collapse
Affiliation(s)
- John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Kathy Miller
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Adam Hedberg-Buenz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA and
| | - Ben R. Roos
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Carly J. Lewis
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA and
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Michael G. Anderson
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA and
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
25
|
Westphal A, Cheng W, Yu J, Grassl G, Krautkrämer M, Holst O, Föger N, Lee KH. Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor-mediated inflammatory responses. J Exp Med 2016; 214:227-244. [PMID: 27881733 PMCID: PMC5206490 DOI: 10.1084/jem.20141461] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 01/28/2023] Open
Abstract
Westphal et al. demonstrate a role of lysosomal trafficking regulator Lyst that couples the regulation of endolysosomal trafficking to inflammatory responses by the control of toll-like receptor–mediated endosomal TRIF signaling pathways. Subcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)– and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain–containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7+ endosomal/phagosomal compartment. This specific Rab7+ compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms.
Collapse
Affiliation(s)
- Andreas Westphal
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Weijia Cheng
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Jinbo Yu
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Guntram Grassl
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Martina Krautkrämer
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany
| | - Niko Föger
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Kyeong-Hee Lee
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
26
|
Pasquale LR, Borrás T, Fingert JH, Wiggs JL, Ritch R. Exfoliation syndrome: assembling the puzzle pieces. Acta Ophthalmol 2016; 94:e505-12. [PMID: 26648185 DOI: 10.1111/aos.12918] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE To summarize various topics and the cutting edge approaches to refine XFS pathogenesis that were discussed at the 21st annual Glaucoma Foundation Think Tank meeting in New York City, Sept. 19-20, 2014. METHODS The highlights of three categories of talks on cutting edge research in the field were summarized. RESULTS Exfoliation syndrome (XFS) is a systemic disorder with a substantial ocular burden, including high rates of cataract, cataract surgery complications, glaucoma and retinal vein occlusion. New information about XFS is akin to puzzle pieces that do not quite join together to reveal a clear picture regarding how exfoliation material (XFM) forms. CONCLUSION Meeting participants concluded that it is unclear how the mild homocysteinemia seen in XFS might contribute to the disarrayed extracellular aggregates characteristic of this syndrome. Lysyl oxidase-like 1 (LOXL1) variants are unequivocally genetic risk factors for XFS but exactly how these variants contribute to the assembly of exfoliation material (XFM) remains unclear. Variants in a new genomic region, CACNA1A associated with XFS, may alter calcium concentrations at the cell surface and facilitate XFM formation but much more work is needed before we can place this new finding in proper context. It is hoped that various animal model and ex vivo systems will emerge that will allow for proper assembly of the puzzle pieces into a coherent picture of XFS pathogenesis. A clear understanding of XFS pathogenesis may lead to 'upstream solutions' to reduce the ocular morbidity produced by XFS.
Collapse
Affiliation(s)
- Louis R. Pasquale
- Department of Ophthalmology; Mass Eye & Ear Infirmary; Harvard Medical School; Boston Massachusetts USA
- Department of Medicine; Harvard Medical School; Brigham and Women's Hospital; Boston Massachusetts USA
| | - Terete Borrás
- Department of Ophthalmology; University of North Carolina; Chapel Hill North Carolina USA
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences; University of Iowa; Iowa City Iowa USA
| | - Janey L. Wiggs
- Department of Ophthalmology; Mass Eye & Ear Infirmary; Harvard Medical School; Boston Massachusetts USA
| | - Robert Ritch
- Einhorn Clinical Research Center; New York Eye and Ear Infirmary of Mount Sinai; New York City New York USA
| |
Collapse
|
27
|
Want A, Gillespie SR, Wang Z, Gordon R, Iomini C, Ritch R, Wolosin JM, Bernstein AM. Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients. PLoS One 2016; 11:e0157404. [PMID: 27391778 PMCID: PMC4938507 DOI: 10.1371/journal.pone.0157404] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/27/2016] [Indexed: 12/31/2022] Open
Abstract
Purpose To test the hypothesis that autophagy dysfunction is involved in exfoliation syndrome (XFS), a systemic disorder of extracellular elastic matrices that causes a distinct form of human glaucoma. Methods Fibroblasts derived from tenon tissue discards (TFs) from filtration surgery to relieve intraocular pressure in XFS patients were compared against age-matched TFs derived from surgery in primary open-angle glaucoma (POAG) patients or from strabismus surgery. Differential interference contrast light, and electron microscopy were used to examine structural cell features. Immunocytochemistry was used to visualize LOXL1 and Fibulin-5, lysosomes, endosomes, Golgi, and microtubules. Light scatter, Cyto-IDTM and JC1 flow cytometry were used to measure relative cell size, autophagic flux rate and mitochondrial membrane potential (MMPT), respectively. Enhanced autophagy was induced by serum withdrawal. Results In culture, XFS-TFs were 1.38-fold larger (by light scatter ratio, p = 0.05), proliferated 42% slower (p = 0.026), and were morphologically distinct in 2D and 3D culture compared to their POAG counterparts. In extended 3D cultures, XFS-TFs accumulated 8–10 times more Fibulin-5 than the POAG-TFs, and upon serum withdrawal, there were marked deficiencies in relocation of endosomes and lysosomes to the perinuclear area. Correspondingly, the XFS-TFs displayed significant accumulation of the autophagasome marker LC3 II (3.9 fold increase compared to POAG levels, p = 0.0001) and autophagic flux rate as measured by Cyto-ID dye was 53% lower in XFS-TFs than in POAG-TFs (p = 0.01), indicating reduced clearance of autophagasomes. Finally the percent of cells with diminished MMPT was 3–8 times larger in the XFS-TFs than in POAG-TFs (p = 0.02). Conclusions Our results provide for the first time a link between XFS pathology to autophagy dysfunction, a major contributor to multiple age related diseases systemically throughout the body, in the brain and in the retina. A diminished capacity for degradation of denatured protein and aging cellular organelles may underpin the development of extracellular protein aggregates in XFS.
Collapse
Affiliation(s)
- Andrew Want
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Stephanie R. Gillespie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Zheng Wang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Ronald Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Carlo Iomini
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, 10003, United States of America
| | - J. Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- * E-mail: (AMB); (JMW)
| | - Audrey M. Bernstein
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States of America
- * E-mail: (AMB); (JMW)
| |
Collapse
|
28
|
Ji X, Chang B, Naggert JK, Nishina PM. Lysosomal Trafficking Regulator (LYST). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:745-50. [PMID: 26427484 DOI: 10.1007/978-3-319-17121-0_99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regulation of vesicle trafficking to lysosomes and lysosome-related organelles (LROs) as well as regulation of the size of these organelles are critical to maintain their functions. Disruption of the lysosomal trafficking regulator (LYST) results in Chediak-Higashi syndrome (CHS), a rare autosomal recessive disorder characterized by oculocutaneous albinism, prolonged bleeding, severe immunodeficiency, recurrent bacterial infection, neurologic dysfunction and hemophagocytic lympohistiocytosis (HLH). The classic diagnostic feature of the syndrome is enlarged LROs in all cell types, including lysosomes, melanosomes, cytolytic granules and platelet dense bodies. The most striking CHS ocular pathology observed is an enlargement of melanosomes in the retinal pigment epithelium (RPE), which leads to aberrant distribution of eye pigmentation, and results in photophobia and decreased visual acuity. Understanding the molecular function of LYST and identification of its interacting partners may provide therapeutic targets for CHS and other diseases associated with the regulation of LRO size and/or vesicle trafficking, such as asthma, urticaria and Leishmania amazonensis infections.
Collapse
Affiliation(s)
- Xiaojie Ji
- The Jackson Laboratory, 04609, Bar Harbor, ME, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, 600 Main Street, Orono, USA.
| | - Bo Chang
- The Jackson Laboratory, 04609, Bar Harbor, ME, USA.
| | | | | |
Collapse
|
29
|
Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Exp Eye Res 2015; 141:42-56. [PMID: 26116903 DOI: 10.1016/j.exer.2015.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.
Collapse
|
30
|
Abstract
At present, no animal models fully embody exfoliation syndrome or exfoliation glaucoma. Both genetic and environmental factors appear critical for disease manifestation, and both must be considered when generating animal models. Because mice provide a powerful mammalian platform for modeling complex disease, this paper focuses on mouse models of exfoliation syndrome and exfoliation glaucoma.
Collapse
|
31
|
Swaminathan S, Lu H, Williams RW, Lu L, Jablonski MM. Genetic modulation of the iris transillumination defect: a systems genetics analysis using the expanded family of BXD glaucoma strains. Pigment Cell Melanoma Res 2013; 26:487-98. [PMID: 23582180 PMCID: PMC3752936 DOI: 10.1111/pcmr.12106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
We investigated the contributions of Tyrp1 and Gpnmb to the iris transillumination defect (TID) in five age cohorts of BXD mice. Using systems genetics, we also evaluated the role of other known pigmentation genes (PGs). Mapping studies indicate that Tyrp1 contributes to the phenotype at all ages, yet the TID maps to Gpnmb only in the oldest cohort. Composite interval mapping reveals secondary loci viz. Oca2, Myo5a, Prkcz, and Zbtb20 that modulate the phenotype in the age groups up to 10–13 months. The contributions of Tyrp1 and Gpnmb were highly significant in all age cohorts. Moreover, in young mice, all six gene candidates had substantial interactions in our model. Our model accounted for 71–88% of the explained variance of the TID phenotype across the age bins. These results demonstrate that along with Tyrp1 and Gpnmb, Oca2, Myo5a, Prkcz, and Zbtb20 modulate the TID in an age-dependent manner.
Collapse
Affiliation(s)
- Shankar Swaminathan
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
32
|
Winkler PA, Bartoe JT, Quinones CR, Venta PJ, Petersen-Jones SM. Exclusion of eleven candidate genes for ocular melanosis in Cairn terriers. J Negat Results Biomed 2013; 12:6. [PMID: 23448350 PMCID: PMC3599239 DOI: 10.1186/1477-5751-12-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 02/04/2013] [Indexed: 11/16/2022] Open
Abstract
Background Ocular melanosis of Cairn terrier dogs is an inherited defect characterized by progressive pigmentation of both eyes which can result in glaucoma and blindness. Pedigree analysis suggests the trait has an autosomal dominant mode of inheritance. We selected 11 potential candidate genes and used an exclusion analysis approach to investigate the likelihood that one of the candidate gene loci contained the Cairn terrier-ocular melanosis locus. Results Two polymorphic loci were identified within or close to each candidate gene. Genotyping of at least 10 ocular melanosis Cairn terriers for each marker showed that there was no single shared allele for either of the two polymorphic markers identified in ASIP, COMT, GPNMB, GSK3B, LYST, MC1R, MITF, SILV, TYR, TYRP1,and TYRP2. This is strong evidence to exclude each locus as the site of the ocular melanosis mutation (probability of a false exclusion calculated for each gene ranged from 1.59 × 10-4 to 1 × 10-9). Conclusions None of the 11 potential candidate genes selected are likely to be the gene locus for ocular melanosis in Cairn terriers.
Collapse
Affiliation(s)
- Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
33
|
The genetics of pigment dispersion syndrome and pigmentary glaucoma. Surv Ophthalmol 2012; 58:164-75. [PMID: 23218808 DOI: 10.1016/j.survophthal.2012.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022]
Abstract
We review the inheritance patterns and recent genetic advances in the study of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). Both conditions may result from combinations of mutations in more than one gene or from common variants in many genes, each contributing small effects. We discuss the currently known genetic loci that may be related with PDS/PG in humans, the role of animal models in expanding our understanding of the genetic basis of PDS, the genetic factors underlying the risk for conversion from PDS to PG and the relationship between genetic and environmental--as well as anatomical--risk factors.
Collapse
|
34
|
Elhawy E, Kamthan G, Dong CQ, Danias J. Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum Genomics 2012; 6:22. [PMID: 23157966 PMCID: PMC3500235 DOI: 10.1186/1479-7364-6-22] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 12/30/2022] Open
Abstract
Pseudoexfoliation syndrome (PXS) is a systemic condition with eye manifestations. In the eye, pseudoexfoliation material deposits on various structures of the anterior segment. The nature of this material is mostly fibrillar with fibers made up of microfibrils and coated with amorphous material. The composition of these fibrils is diverse and includes basement membrane components as well as enzymes involved in extracellular matrix maintenance. Pseudoexfoliation is the most common cause of secondary open-angle glaucoma (pseudoexfoliation glaucoma, PXG) worldwide. The goal of this review is to summarize our knowledge on the genetics of this systemic disorder and its resultant ocular manifestations. PXS familial aggregation suggests genetic inheritance. PXS has been strongly associated with single nucleotide polymorphisms (SNPs) of the lysyl oxidase-like 1 (LOXL1) gene on chromosome 15q24.1. Two of these SNPs confer a higher than 99% population attributable risk for PXS and PXG in the Nordic population; however, they carry different risks in different populations. The high risk haplotypes also vary among different populations. LOXL1 is one of group of the enzymes involved in the cross-linking of collagen and elastin in the extracellular matrix. Its function in connective tissue maintenance has been confirmed in mice; however, its actual role in PXS remains unclear. Contactin-associated protein-like 2 also has a strong genetic association with PXS in a German cohort and is an attractive candidate molecule. It encodes for a protein involved in potassium channel trafficking. Other candidate genes linked to PXS include lysosomal trafficking regulator, clusterin, adenosine receptors, matrix metalloproteinase-1 (MMP1), and glutathione transferase. These genes may be modifying genes for development of PXS and PXG.
Collapse
Affiliation(s)
- Eman Elhawy
- Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
35
|
Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome. Blood 2011; 118:4620-9. [PMID: 21878672 DOI: 10.1182/blood-2011-05-356113] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Perforin-mediated cytotoxicity is important for controlling viral infections, but also for limiting immune reactions. Failure of this cytotoxic pathway leads to hemophagocytic lymphohistiocytosis (HLH), a life-threatening disorder of uncontrolled T-cell and macrophage activation. We studied susceptibility to HLH in 2 mouse strains (souris and beige(J)) and a cohort of patients with partial defects in perforin secretion resulting from different mutations in the LYST gene. Although both strains lacked NK-cell cytotoxicity, only souris mice developed all clinical and histopathologic signs of HLH after infection with lymphocytic choriomeningitis virus. The 2 strains showed subtle differences in CTL cytotoxicity in vitro that had a large impact on virus control in vivo. Whereas beige(J) CTLs eliminated lymphocytic choriomeningitis virus infection, souris CTLs failed to control the virus, which was associated with the development of HLH. In LYST-mutant patients with Chediak-Higashi syndrome, CTL cytotoxicity was reduced in patients with early-onset HLH, whereas it was retained in patients who later or never developed HLH. Thus, the risk of HLH development is set by a threshold that is determined by subtle differences in CTL cytotoxicity. Differences in the cytotoxic capacity of CTLs may be predictive for the risk of Chediak-Higashi syndrome patients to develop HLH.
Collapse
|
36
|
Zode GS, Kuehn MH, Nishimura DY, Searby CC, Mohan K, Grozdanic SD, Bugge K, Anderson MG, Clark AF, Stone EM, Sheffield VC. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest 2011; 121:3542-53. [PMID: 21821918 DOI: 10.1172/jci58183] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/01/2011] [Indexed: 12/11/2022] Open
Abstract
Mutations in myocilin (MYOC) are the most common genetic cause of primary open angle glaucoma (POAG), but the mechanisms underlying MYOC-associated glaucoma are not fully understood. Here, we report the development of a transgenic mouse model of POAG caused by the Y437H MYOC mutation; the mice are referred to herein as Tg-MYOC(Y437H) mice. Analysis of adult Tg-MYOC(Y437H) mice, which we showed express human MYOC containing the Y437H mutation within relevant eye tissues, revealed that they display glaucoma phenotypes (i.e., elevated intraocular pressure [IOP], retinal ganglion cell death, and axonal degeneration) closely resembling those seen in patients with POAG caused by the Y437H MYOC mutation. Mutant myocilin was not secreted into the aqueous humor but accumulated in the ER of the trabecular meshwork (TM), thereby inducing ER stress in the TM of Tg-MYOC(Y437H) mice. Furthermore, chronic and persistent ER stress was found to be associated with TM cell death and elevation of IOP in Tg-MYOC(Y437H) mice. Reduction of ER stress with a chemical chaperone, phenylbutyric acid (PBA), prevented glaucoma phenotypes in Tg-MYOC(Y437H) mice by promoting the secretion of mutant myocilin in the aqueous humor and by decreasing intracellular accumulation of myocilin in the ER, thus preventing TM cell death. These results demonstrate that ER stress is linked to the pathogenesis of POAG and may be a target for treatment in human patients.
Collapse
Affiliation(s)
- Gulab S Zode
- Howard Hughes Medical Institute, Department of Pediatrics, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stauss HM, Rarick KR, Leick KM, Burkle JW, Rotella DL, Anderson MG. Noninvasive assessment of vascular structure and function in conscious rats based on in vivo imaging of the albino iris. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1333-43. [PMID: 21389331 DOI: 10.1152/ajpregu.00561.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental techniques allowing longitudinal studies of vascular disease progression or treatment effects are not readily available for most animal models. Thus, most existing studies are destined to either study individual time points or use large cohorts of animals. Here we describe a noninvasive technique for studying vascular disease that is based on in vivo imaging of the long posterior ciliary artery (LPCA) in the iris of albino rats. Using a slit-lamp biomicroscope, images of the LPCA were taken weekly in conscious normotensive Wistar Kyoto rats (WKY, n = 10) and spontaneously hypertensive rats (SHR, n = 10) for 10 wk. Using imaging software, we found that lumen diameter was significantly smaller and the wall-to-lumen (W/L) ratio larger in SHR than in WKY. Wall thickness was not different. Blood pressure correlated with the W/L ratio. Histology of the abdominal aorta also revealed a smaller lumen diameter and greater W/L ratio in SHR compared with WKY. Corneal application of the muscarinic receptor agonist pilocarpine elicited a dose-dependent vasodilation of the LPCA that could be antagonized by inhibition of nitric oxide synthase, suggesting that the pilocarpine response is mainly mediated by endothelium-derived nitric oxide. Consistent with endothelial dysfunction in SHR, pilocarpine-induced vasodilation was greater in WKY rats than in SHR. These findings indicate that in vivo imaging of the LPCA allows assessment of several structural and functional vascular parameters in conscious rats and that the LPCA responds to disease insults and pharmacologic treatments in a fashion that will make it a useful model for further studies.
Collapse
Affiliation(s)
- Harald M Stauss
- Department of Health and Human Physiology, The University of Iowa, Iowa City, 52242, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Trantow CM, Cuffy TL, Fingert JH, Kuehn MH, Anderson MG. Microarray analysis of iris gene expression in mice with mutations influencing pigmentation. Invest Ophthalmol Vis Sci 2011; 52:237-48. [PMID: 20739468 DOI: 10.1167/iovs.10-5479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Several ocular diseases involve the iris, notably including oculocutaneous albinism, pigment dispersion syndrome, and exfoliation syndrome. To screen for candidate genes that may contribute to the pathogenesis of these diseases, genome-wide iris gene expression patterns were comparatively analyzed from mouse models of these conditions. METHODS Iris samples from albino mice with a Tyr mutation, pigment dispersion-prone mice with Tyrp1 and Gpnmb mutations, and mice resembling exfoliation syndrome with a Lyst mutation were compared with samples from wild-type mice. All mice were strain (C57BL/6J), age (60 days old), and sex (female) matched. Microarrays were used to compare transcriptional profiles, and differentially expressed transcripts were described by functional annotation clustering using DAVID Bioinformatics Resources. Quantitative real-time PCR was performed to validate a subset of identified changes. RESULTS Compared with wild-type C57BL/6J mice, each disease context exhibited a large number of statistically significant changes in gene expression, including 685 transcripts differentially expressed in albino irides, 403 in pigment dispersion-prone irides, and 460 in exfoliative-like irides. CONCLUSIONS Functional annotation clusterings were particularly striking among the overrepresented genes, with albino and pigment dispersion-prone irides both exhibiting overall evidence of crystallin-mediated stress responses. Exfoliative-like irides from mice with a Lyst mutation showed overall evidence of involvement of genes that influence immune system processes, lytic vacuoles, and lysosomes. These findings have several biologically relevant implications, particularly with respect to secondary forms of glaucoma, and represent a useful resource as a hypothesis-generating dataset.
Collapse
Affiliation(s)
- Colleen M Trantow
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
39
|
Trantow CM, Hedberg-Buenz A, Iwashita S, Moore SA, Anderson MG. Elevated oxidative membrane damage associated with genetic modifiers of Lyst-mutant phenotypes. PLoS Genet 2010; 6:e1001008. [PMID: 20617205 PMCID: PMC2895641 DOI: 10.1371/journal.pgen.1001008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 05/27/2010] [Indexed: 01/16/2023] Open
Abstract
LYST is a large cytosolic protein that influences the biogenesis of lysosome-related organelles, and mutation of the encoding gene, LYST, can cause Chediak-Higashi syndrome. Recently, Lyst-mutant mice were recognized to also exhibit an iris disease resembling exfoliation syndrome, a common cause of glaucoma in humans. Here, Lyst-mutant iris phenotypes were used in a search for genes that influence Lyst pathways. In a candidate gene–driven approach, albino Lyst-mutant mice homozygous for a mutation in Tyr, whose product is key to melanin synthesis within melanosomes, exhibited complete rescue of Lyst-mutant iris phenotypes. In a genetic background–driven approach using a DBA/2J strain of congenic mice, an interval containing Tyrp1 enhanced Lyst-dependent iris phenotypes. Thus, both experimental approaches implicated the melanosome, an organelle that is a potential source of oxidative stress, as contributing to the disease phenotype. Confirming an association with oxidative damage, Lyst mutation resulted in genetic context–sensitive changes in iris lipid hydroperoxide levels, being lowest in albino and highest in DBA/2J mice. Surprisingly, the DBA/2J genetic background also exposed a late-onset neurodegenerative phenotype involving cerebellar Purkinje-cell degeneration. These results identify an association between oxidative damage to lipid membranes and the severity of Lyst-mutant phenotypes, revealing a new mechanism that contributes to pathophysiology involving LYST. LYST is a poorly understood protein involved in hereditary disease. Mutations in the encoding gene cause Chediak-Higashi syndrome, a rare lethal disease affecting multiple tissues of the body. Mutations in Lyst also recapitulate features of exfoliation syndrome, a common disease affecting the anterior chamber of the eye. Unfortunately, the Lyst gene is quite large, rendering it difficult to study by many molecular and cellular approaches. Here, we use a genetic approach in mice to identify additional genetic pathways which might modify, or prevent, the ill consequences associated with Lyst mutation. Our experiments demonstrate that Lyst mutation results in elevated levels of oxidative damage to lipid membranes. These results identify a previously unrecognized consequence of Lyst mutation and a modifiable pathway of potential clinical relevance in humans. Ultimately, knowledge of these events will contribute to the design of new therapeutic strategies allowing a similar alleviation of disease in humans.
Collapse
Affiliation(s)
- Colleen M. Trantow
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sachiyo Iwashita
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Steven A. Moore
- Department of Pathology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
40
|
Liu F, Wollstein A, Hysi PG, Ankra-Badu GA, Spector TD, Park D, Zhu G, Larsson M, Duffy DL, Montgomery GW, Mackey DA, Walsh S, Lao O, Hofman A, Rivadeneira F, Vingerling JR, Uitterlinden AG, Martin NG, Hammond CJ, Kayser M. Digital quantification of human eye color highlights genetic association of three new loci. PLoS Genet 2010; 6:e1000934. [PMID: 20463881 PMCID: PMC2865509 DOI: 10.1371/journal.pgen.1000934] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/01/2010] [Indexed: 01/23/2023] Open
Abstract
Previous studies have successfully identified genetic variants in several genes associated with human iris (eye) color; however, they all used simplified categorical trait information. Here, we quantified continuous eye color variation into hue and saturation values using high-resolution digital full-eye photographs and conducted a genome-wide association study on 5,951 Dutch Europeans from the Rotterdam Study. Three new regions, 1q42.3, 17q25.3, and 21q22.13, were highlighted meeting the criterion for genome-wide statistically significant association. The latter two loci were replicated in 2,261 individuals from the UK and in 1,282 from Australia. The LYST gene at 1q42.3 and the DSCR9 gene at 21q22.13 serve as promising functional candidates. A model for predicting quantitative eye colors explained over 50% of trait variance in the Rotterdam Study. Over all our data exemplify that fine phenotyping is a useful strategy for finding genes involved in human complex traits. We measured human eye color to hue and saturation values from high-resolution, digital, full-eye photographs of several thousand Dutch Europeans. This quantitative approach, which is extremely cost-effective, portable, and time efficient, revealed that human eye color varies along more dimensions than the one represented by the blue-green-brown categories studied previously. Our work represents the first genome-wide study of quantitative human eye color. We clearly identified 3 new loci, LYST, 17q25.3, TTC3/DSCR9, in contributing to the natural and subtle eye color variation along multiple dimensions, providing new leads towards a more detailed understanding of the genetic basis of human eye color. Our quantitative prediction model explained over 50% of eye color variance, representing the highest accuracy achieved so far in genomic prediction of human complex and quantitative traits, with relevance for future forensic applications.
Collapse
Affiliation(s)
- Fan Liu
- Department of Forensic Molecular Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andreas Wollstein
- Department of Forensic Molecular Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Georgina A. Ankra-Badu
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Daniel Park
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Gu Zhu
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Mats Larsson
- Queensland Institute of Medical Research, Brisbane, Australia
| | - David L. Duffy
- Queensland Institute of Medical Research, Brisbane, Australia
| | | | - David A. Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Susan Walsh
- Department of Forensic Molecular Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Oscar Lao
- Department of Forensic Molecular Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johannes R. Vingerling
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Christopher J. Hammond
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|