1
|
Darbinian N, Darbinyan A, Sinard J, Tatevosian G, Merabova N, D’Amico F, Khader T, Bajwa A, Martirosyan D, Gawlinski AK, Pursnani R, Zhao H, Amini S, Morrison M, Goetzl L, Selzer ME. Molecular Markers in Maternal Blood Exosomes Allow Early Detection of Fetal Alcohol Spectrum Disorders. Int J Mol Sci 2022; 24:ijms24010135. [PMID: 36613580 PMCID: PMC9820501 DOI: 10.3390/ijms24010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Prenatal alcohol exposure can cause developmental abnormalities (fetal alcohol spectrum disorders; FASD), including small eyes, face and brain, and neurobehavioral deficits. These cannot be detected early in pregnancy with available imaging techniques. Early diagnosis could facilitate development of therapeutic interventions. Banked human fetal brains and eyes at 9−22 weeks’ gestation were paired with maternal blood samples, analyzed for morphometry, protein, and RNA expression, and apoptotic signaling. Alcohol (EtOH)-exposed (maternal self-report) fetuses were compared with unexposed controls matched for fetal age, sex, and maternal race. Fetal brain-derived exosomes (FB-E) were isolated from maternal blood and analyzed for protein, RNA, and apoptotic markers. EtOH use by mothers, assessed by self-report, was associated with reduced fetal eye diameter, brain size, and markers of synaptogenesis. Brain caspase-3 activity was increased. The reduction in eye and brain sizes were highly correlated with amount of EtOH intake and caspase-3 activity. Levels of several biomarkers in FB-E, most strikingly myelin basic protein (MBP; r > 0.9), correlated highly with morphological abnormalities. Reduction in FB-E MBP levels was highly correlated with EtOH exposure (p < 1.0 × 10−10). Although the morphological features of FAS appear long before they can be detected by live imaging, FB-E in the mother’s blood may contain markers, particularly MBP, that predict FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: (N.D.); (M.E.S.); Tel.: +1-215-926-9318 (M.E.S.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - John Sinard
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Faith D’Amico
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tarek Khader
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alina K. Gawlinski
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Richa Pursnani
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Mary Morrison
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Correspondence: (N.D.); (M.E.S.); Tel.: +1-215-926-9318 (M.E.S.)
| |
Collapse
|
2
|
Bargagna‐Mohan P, Schultz G, Rheaume B, Trakhtenberg EF, Robson P, Pal‐Ghosh S, Stepp MA, Given KS, Macklin WB, Mohan R. Corneal nonmyelinating Schwann cells illuminated by single-cell transcriptomics and visualized by protein biomarkers. J Neurosci Res 2021; 99:731-749. [PMID: 33197966 PMCID: PMC7894186 DOI: 10.1002/jnr.24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022]
Abstract
The cornea is the most innervated tissue in the human body. Myelinated axons upon inserting into the peripheral corneal stroma lose their myelin sheaths and continue into the central cornea wrapped by only nonmyelinating corneal Schwann cells (nm-cSCs). This anatomical organization is believed to be important for central vision. Here we employed single-cell RNA sequencing (scRNA-seq), microscopy, and transgenics to characterize these nm-cSCs of the central cornea. Using principal component analysis, uniform manifold approximation and projection, and unsupervised hierarchal cell clustering of scRNA-seq data derived from central corneal cells of male rabbits, we successfully identified several clusters representing different corneal cell types, including a unique cell cluster representing nm-cSCs. To confirm protein expression of cSC genes, we performed cross-species validation, employing corneal whole-mount immunostaining with confocal microscopy in mouse corneas. The expression of several representative proteins of nm-cSCs were validated. As the proteolipid protein 1 (PLP1) gene was also expressed in nm-cSCs, we explored the Plp1-eGFP transgenic reporter mouse line to visualize cSCs. Specific and efficient eGFP expression was observed in cSCs in adult mice of different ages. Of several putative cornea-specific SC genes identified, Dickkopf-related protein 1 was shown to be present in nm-cSCs. Taken together, our findings, for the first time, identify important insights and tools toward the study nm-cSCs in isolated tissue and adult animals. We expect that our results will advance the future study of nm-cSCs in applications of nerve repair, and provide a resource for the study of corneal sensory function.
Collapse
Affiliation(s)
- Paola Bargagna‐Mohan
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Gwendolyn Schultz
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Bruce Rheaume
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | | | - Paul Robson
- Department of Genetics & Genome SciencesUniversity of Connecticut Health CenterFarmingtonCTUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonCTUSA
| | - Sonali Pal‐Ghosh
- Department of Anatomy and Regenerative BiologyGeorge Washington University Medical SchoolWashingtonDCUSA
| | - Mary Ann Stepp
- Department of Anatomy and Regenerative BiologyGeorge Washington University Medical SchoolWashingtonDCUSA
| | - Katherine S. Given
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Wendy B. Macklin
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Royce Mohan
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| |
Collapse
|
3
|
Qusa MH, Abdelwahed KS, Meyer SA, El Sayed KA. Olive Oil Lignan (+)-Acetoxypinoresinol Peripheral Motor and Neuronal Protection against the Tremorgenic Mycotoxin Penitrem A Toxicity via STAT1 Pathway. ACS Chem Neurosci 2020; 11:3575-3589. [PMID: 32991800 DOI: 10.1021/acschemneuro.0c00458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Penitrem A, PA, is an indole diterpene alkaloid produced by several fungal species. PA acts as a selective Ca2+-dependent K-channels (Maxi-K, BK) antagonist in brain, causing motor system dysfunctions including tremors and seizures. However, its molecular mechanism at the peripheral nervous system (PNS) is still ambiguous. The Mediterranean diet key ingredient extra-virgin olive oil (EVOO) provides a variety of minor bioactive phenolics. (+)-Pinoresinol (PN) and (+)-1-acetoxypinoresinol (AC) are naturally occurring lignans in EVOO with diverse biological activities. AC exclusively occurs in EVOO, unlike PN, which occurs in several plants. Results suggest that PA neurotoxicity molecular mechanism is mediated, in part, through distortion of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. PA selectively activated the STAT1 pathway, independently of the interferon-γ (IFN-γ) pathway, in vitro in Schwann cells and in vivo in Swiss albino mice sciatic nerves. Preliminary in vitro screening of an EVOO phenolic compounds library for the ability to reverse PA toxicity on Schwann cells revealed PN and AC as potential hits. In a Swiss albino mouse model, AC significantly minimized the fatality after intraperitoneal administration of PA fatal doses and normalized most biochemical factors by modulating the STAT1 expression. The olive lignan AC is a novel lead that can prevent the neurotoxicity of food-contaminating tremorgenic indole alkaloid mycotoxins.
Collapse
Affiliation(s)
- Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Sharon A. Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| |
Collapse
|
4
|
Bandeira F, Yam GHF, Liu YC, Devarajan K, Mehta JS. Three-Dimensional Neurite Characterization of Small Incision Lenticule Extraction Derived Lenticules. Invest Ophthalmol Vis Sci 2020; 60:4408-4415. [PMID: 31639827 DOI: 10.1167/iovs.19-27566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We study the density and excitatory response of neurites, and Schwann cells (SCs) in fresh and cryopreserved stromal lenticules derived from small incision lenticule extraction (SMILE). Methods Human stromal lenticules (n = 23) were immunostained for β III-tubulin and imaged using spinning disk confocal laser microscopy, followed by three-dimensional reconstruction, to reveal neurite distribution. The lenticule neurite density (LND) was assessed using a validated neurite tracing and length measurement method with NeuronJ. LND was compared among groups of different lenticule thickness (71-165 μm) obtained from -3 to >-6 diopters (D) corrections. SCs were identified by marker expression and the laser effect on SC-neurite interaction was examined under transmission electron microscopy (TEM). Fresh porcine SMILE-lenticules (n = 18) were used for LND comparison among storage conditions and functional excitatory calcium response assay. Results Using a validated neurite length measurement method, we found an inverse correlation of LND with lenticule thickness. Higher LND was found in thinner lenticules obtained from lower power of correction (r = -0.8925, P < 0.0001), whereas total lenticule neurite lengths did not alter significantly with regards to lenticule thickness. SCs were identified by GAP43 and p75NTR expression and were closely associated with lenticule neurites under TEM. In porcine lenticules, LND and excitatory calcium response were reduced after cold and cryogenic storage, when compared to fresh lenticules. Conclusions The stromal neurites showed variations in density related to SMILE lenticule thickness and cryopreservation. With the presence of SC support and excitatory response, these neurite residues could retain minimal functionality that might serve as a potential advantage in the event of lenticule implantation.
Collapse
Affiliation(s)
- Francisco Bandeira
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore.,Federal University of São Paulo, Sao Paulo, Brazil.,São Gonçalo Eye Hospital, Rio de Janeiro, Brazil
| | - Gary Hin-Fai Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore.,Experimental Microscopy Platform, Singapore Eye Research Institute, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore.,Singapore National Eye Centre, Singapore
| | - Kavya Devarajan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore.,Singapore National Eye Centre, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,School of Material Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Abstract
The cornea is a transparent outermost structure of the eye anterior segment comprising the highest density of innervated tissue. In the process of corneal innervation, trigeminal ganglion originated corneal nerves diligently traverse different corneal cell types in different corneal layers including the corneal stroma and epithelium. While crossing the stromal and epithelial cell layers during innervation, due to the existing physical contacts, close interactions occur between stromal keratocytes, epithelial cells, resident immune cells and corneal nerves. Furthermore, by producing various trophic and growth factors corneal cells assist in maintaining the growth and function of corneal nerves. Similarly, corneal nerve generated growth factors critically modify the corneal cell function in all the corneal layers. Due to their close association and contacts, on-going cross-communication between these cell types and corneal nerves play a vital role in the modulation of corneal nerve function, regeneration during wound healing. The present review highlights the influence of different corneal cell types and growth factors released from these cells on corneal nerve regeneration and function.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
6
|
Ronchi G, Cillino M, Gambarotta G, Fornasari BE, Raimondo S, Pugliese P, Tos P, Cordova A, Moschella F, Geuna S. Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair. J Neurosurg 2017; 127:843-856. [DOI: 10.3171/2016.9.jns16140] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVEMultiple factors may affect functional recovery after peripheral nerve injury, among them the lesion site and the interval between the injury and the surgical repair. When the nerve segment distal to the lesion site undergoes chronic degeneration, the ensuing regeneration (when allowed) is often poor. The aims of the current study were as follows: 1) to examine the expression changes of the neuregulin 1/ErbB system during long-term nerve degeneration; and 2) to investigate whether a chronically denervated distal nerve stump can sustain nerve regeneration of freshly axotomized axons.METHODSThis study used a rat surgical model of delayed nerve repair consisting of a cross suture between the chronically degenerated median nerve distal stump and the freshly axotomized ulnar proximal stump. Before the suture, a segment of long-term degenerated median nerve stump was harvested for analysis. Functional, morphological, morphometric, and biomolecular analyses were performed.RESULTSThe results showed that neuregulin 1 is highly downregulated after chronic degeneration, as well as some Schwann cell markers, demonstrating that these cells undergo atrophy, which was also confirmed by ultrastructural analysis. After delayed nerve repair, it was observed that chronic degeneration of the distal nerve stump compromises nerve regeneration in terms of functional recovery, as well as the number and size of regenerated myelinated fibers. Moreover, neuregulin 1 is still downregulated after delayed regeneration.CONCLUSIONSThe poor outcome after delayed nerve regeneration might be explained by Schwann cell impairment and the consequent ineffective support for nerve regeneration. Understanding the molecular and biological changes occurring both in the chronically degenerating nerve and in the delayed nerve repair may be useful to the development of new strategies to promote nerve regeneration. The results suggest that neuregulin 1 has an important role in Schwann cell activity after denervation, indicating that its manipulation might be a good strategy for improving outcome after delayed nerve repair.
Collapse
Affiliation(s)
- Giulia Ronchi
- 1Department of Clinical and Biological Sciences,
- 2Neuroscience Institute Cavalieri Ottolenghi, and
| | - Michele Cillino
- 3Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | | | | | - Stefania Raimondo
- 1Department of Clinical and Biological Sciences,
- 2Neuroscience Institute Cavalieri Ottolenghi, and
| | - Pierfrancesco Pugliese
- 4Reconstructive Microsurgery, Centro Traumatologico Ortopedico Hospital, University of Torino; and
| | - Pierluigi Tos
- 4Reconstructive Microsurgery, Centro Traumatologico Ortopedico Hospital, University of Torino; and
| | - Adriana Cordova
- 3Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | - Francesco Moschella
- 3Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | - Stefano Geuna
- 1Department of Clinical and Biological Sciences,
- 2Neuroscience Institute Cavalieri Ottolenghi, and
| |
Collapse
|
7
|
Stepp MA, Tadvalkar G, Hakh R, Pal-Ghosh S. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves. Glia 2016; 65:851-863. [PMID: 27878997 DOI: 10.1002/glia.23102] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
The eye is innervated by neurons derived from both the central nervous system and peripheral nervous system (PNS). While much is known about retinal neurobiology and phototransduction, less attention has been paid to the innervation of the eye by the PNS and the roles it plays in maintaining a functioning visual system. The ophthalmic branch of the trigeminal ganglion contains somas of neurons that innervate the cornea. These nerves provide sensory functions for the cornea and are referred to as intraepithelial corneal nerves (ICNs) consisting of subbasal nerves and their associated intraepithelial nerve terminals. ICNs project for several millimeters within the corneal epithelium without Schwann cell support. Here, we present evidence for the hypothesis that corneal epithelial cells function as glial cells to support the ICNs. Much of the data supporting this hypothesis is derived from studies of corneal development and the reinnervation of the ICNs in the rodent and rabbit cornea after superficial wounds. Corneal epithelial cells activate in response to injury via mechanisms similar to those induced in Schwann cells during Wallerian Degeneration. Corneal epithelial cells phagocytize distal axon fragments within hours of ICN crush wounds. During aging, the proteins, lipids, and mitochondria within the ICNs become damaged in a process exacerbated by UV light. We propose that ICNs shed their aged and damaged termini and continuously elongate to maintain their density. Available evidence points to new unexpected roles for corneal epithelial cells functioning as surrogate Schwann cells for the ICNs during homeostasis and in response to injury. GLIA 2017;65:851-863.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Raymond Hakh
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| |
Collapse
|
8
|
Cheli VT, Santiago González DA, Spreuer V, Paez PM. Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp Neurol 2014; 265:69-83. [PMID: 25542980 DOI: 10.1016/j.expneurol.2014.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
We have previously shown that the expression of voltage-operated Ca(++) channels (VOCCs) is highly regulated in the oligodendroglial lineage and is essential for proper oligodendrocyte progenitor cell (OPC) migration. Here we assessed the role of VOCCs, in particular the L-type, in oligodendrocyte maturation. We used pharmacological treatments to activate or block voltage-gated Ca(++) uptake and siRNAs to specifically knock down the L-type VOCC in primary cultures of mouse OPCs. Activation of VOCCs by plasma membrane depolarization increased OPC morphological differentiation as well as the expression of mature oligodendrocyte markers. On the contrary, inhibition of L-type Ca(++) channels significantly delayed OPC development. OPCs transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents showed reduce Ca(++) influx by ~75% after plasma membrane depolarization, indicating that Cav1.2 is heavily involved in mediating voltage-operated Ca(++) entry in OPCs. Cav1.2 knockdown induced a decrease in the proportion of oligodendrocytes that expressed myelin proteins, and an increase in cells that retained immature oligodendrocyte markers. Moreover, OPC proliferation, but not cell viability, was negatively affected after L-type Ca(++) channel knockdown. Additionally, we have tested the ability of L-type VOCCs to facilitate axon-glial interaction during the first steps of myelin formation using an in vitro co-culture system of OPCs with cortical neurons. Unlike control OPCs, Cav1.2 deficient oligodendrocytes displayed a simple morphology, low levels of myelin proteins expression and appeared to be less capable of establishing contacts with neurites and axons. Together, this set of in vitro experiments characterizes the involvement of L-type VOCCs on OPC maturation as well as the role played by these Ca(++) channels during the early phases of myelination.
Collapse
Affiliation(s)
- V T Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - D A Santiago González
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - V Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - P M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA.
| |
Collapse
|
9
|
Effects of polysialic acid on sensory innervation of the cornea. Dev Biol 2014; 398:193-205. [PMID: 25478909 DOI: 10.1016/j.ydbio.2014.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 01/08/2023]
Abstract
Sensory trigeminal growth cones innervate the cornea in a coordinated fashion during embryonic development. Polysialic acid (polySia) is known for its important roles during nerve development and regeneration. The purpose of this work is to determine whether polySia, present in developing eyefronts and on the surface of sensory nerves, may provide guidance cues to nerves during corneal innervation. Expression and localization of polySia in embryonic day (E)5-14 chick eyefronts and E9 trigeminal ganglia were identified using Western blotting and immunostaining. Effects of polySia removal on trigeminal nerve growth behavior were determined in vivo, using exogenous endoneuraminidase (endoN) treatments to remove polySia substrates during chick cornea development, and in vitro, using neuronal explant cultures. PolySia substrates, made by the physical adsorption of colominic acid to a surface coated with poly-d-lysine (PDL), were used as a model to investigate functions of the polySia expressed in axonal environments. PolySia was localized within developing eyefronts and on trigeminal sensory nerves. Distributions of PolySia in corneas and pericorneal regions are developmentally regulated. PolySia removal caused defasciculation of the limbal nerve trunk in vivo from E7 to E10. Removal of polySia on trigeminal neurites inhibited neurite outgrowth and caused axon defasciculation, but did not affect Neural Cell Adhesion Molecule (NCAM) expression or Schwann cell migration in vitro. PolySia substrates in vitro inhibited outgrowth of trigeminal neurites and promoted their fasciculation. In conclusion, polySia is localized on corneal nerves and in their targeting environment during early developing stages of chick embryos. PolySias promote fasciculation of trigeminal axons in vivo and in vitro, whereas, in contrast, their removal promotes defasciculation.
Collapse
|
10
|
Mao X, Schwend T, Conrad GW. Expression and localization of neural cell adhesion molecule and polysialic acid during chick corneal development. Invest Ophthalmol Vis Sci 2012; 53:1234-43. [PMID: 22281821 DOI: 10.1167/iovs.11-8834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To assay for expression and localization of neural cell adhesion molecule (NCAM) and polysialic acid (polySia) in the chick cornea during embryonic and postnatal development. METHODS Real time quantitative PCR and Western blot analyses were used to determine NCAM expression and polysiaylation in embryonic, hatchling, and adult chick corneas. Immunofluorescence staining for NCAM and polySia was conducted on cryosections of embryonic and adult corneas, whole embryonic corneas, and trigeminal neurons. RESULTS NCAM and ST8SiaII mRNA transcripts peaked by embryonic day (E)9, remained steady between E10 and E14 and slowly decreased thereafter during embryonic development. Both gene transcripts showed > 190-fold decline in the adult chick cornea compared with E9. In contrast, ST8SiaIV expression gradually decreased 26.5-fold from E6 to E19, increased thereafter, and rose to the early embryonic level in the adult cornea. Western blot analysis revealed NCAM was polysialylated and its expression developmentally changed. Other polysiaylated proteins aside from NCAM were also detected by Western blot analysis. Five NCAM isoforms including NCAM-120, NCAM-180 and three soluble NCAM isoforms with low molecular weights (87-96 kDa) were present in chick corneas, with NCAM-120 being the predominate isoform. NCAM was localized to the epithelium, stroma, and stromal extracellular matrix (ECM) of the embryonic cornea. In stroma, NCAM expression shifted from anterior to posterior stroma during embryonic development and eventually became undetectable in 20-week-old adult cornea. Additionally, both NCAM and polySia were detected on embryonic corneal and pericorneal nerves. CONCLUSIONS NCAM and polySia are expressed and developmentally regulated in chick corneas. Both membrane-associated and soluble NCAM isoforms are expressed in chick corneas. The distributions of NCAM and polySia in cornea and on corneal nerves suggest their potential functions in corneal innervation.
Collapse
Affiliation(s)
- Xiuli Mao
- Division of Biology, Kansas State University, Manhattan, Kansas 66506-4901, USA.
| | | | | |
Collapse
|
11
|
Schwend T, Lwigale PY, Conrad GW. Nerve repulsion by the lens and cornea during cornea innervation is dependent on Robo-Slit signaling and diminishes with neuron age. Dev Biol 2012; 363:115-27. [PMID: 22236962 PMCID: PMC3288411 DOI: 10.1016/j.ydbio.2011.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/29/2022]
Abstract
The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5 to E8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slits 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus allowing nerves to find the Slit-expressing cornea permissive for growth cones.
Collapse
Affiliation(s)
- Tyler Schwend
- Division of Biology, Ackert Hall, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
12
|
Developmental guidance of embryonic corneal innervation: roles of Semaphorin3A and Slit2. Dev Biol 2010; 344:172-84. [PMID: 20471970 DOI: 10.1016/j.ydbio.2010.04.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/23/2022]
Abstract
The cornea is one of the most densely innervated structures of the body. In the developing chicken embryo, nerves from the ophthalmic trigeminal ganglion (OTG) innervate the cornea in a series of spatially and temporally regulated events. However, little is known concerning the signals that regulate these events. Here we have examined the involvement of the axon guidance molecules Semaphorin3A and Slit2, and their respective receptors, Neuropilin-1 and Robo2. Expression analyses of early corneas suggest an involvement of both Semaphorin3A and Slit2 in preventing nerves from entering the corneal stroma until the proper time (i.e., they serve as negative regulators), and analyses of their receptors support this conclusion. At later stages of development the expression of Semaphorin3A is again consistent with its serving as a negative regulator-this time for nerves entering the corneal epithelium. However, expression analyses of Robo2 at this stage raised the possibility that Slit2 had switched from a negative regulator to a positive regulator. In support of such a switch, functional analyses-by addition of recombinant Slit2 protein or immunoneutralization with a Slit2 antibody-showed that at an early stage Slit2 negatively regulates the outgrowth of nerves from the OTG, whereas at the later stage it positively regulated the growth of nerves by increasing nerve branching within the corneal epithelium.
Collapse
|
13
|
Conrad AH, Zhang Y, Tasheva ES, Conrad GW. Proteomic analysis of potential keratan sulfate, chondroitin sulfate A, and hyaluronic acid molecular interactions. Invest Ophthalmol Vis Sci 2010; 51:4500-15. [PMID: 20375348 DOI: 10.1167/iovs.09-4914] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Corneal stroma extracellular matrix (ECM) glycosaminoglycans (GAGs) include keratan sulfate (KS), chondroitin sulfate A (CSA), and hyaluronic acid (HA). Embryonic corneal keratocytes and sensory nerve fibers grow and differentiate according to chemical cues they receive from the ECM. This study asked which of the proteins that may regulate keratocytes or corneal nerve growth cone immigration interact with corneal GAGs. METHODS Biotinylated KS (bKS), CSA (bCSA), and HA (bHA) were prepared and used in microarray protocols to assess their interactions with 8268 proteins and a custom microarray of 85 extracellular epitopes of nerve growth-related proteins. Surface plasmon resonance (SPR) was performed with bKS and SLIT2, and their ka, kd, and KD were determined. RESULTS Highly sulfated KS interacted with 217 microarray proteins, including 75 kinases, several membrane or secreted proteins, many cytoskeletal proteins, and many nerve function proteins. CSA interacted with 24 proteins, including 10 kinases and 2 cell surface proteins. HA interacted with 6 proteins, including several ECM-related structural proteins. Of 85 ECM nerve-related epitopes, KS bound 40 proteins, including SLIT, 2 ROBOs, 9 EPHs, 8 Ephrins (EFNs), 8 semaphorins (SEMAs), and 2 nerve growth factor receptors. CSA bound nine proteins, including ROBO2, 2 EPHs, 1 EFN, two SEMAs, and netrin 4. HA bound no ECM nerve-related epitopes. SPR confirmed that KS binds SLIT2 strongly. The KS core protein mimecan/osteoglycin bound 15 proteins. CONCLUSIONS Corneal stromal GAGs bind, and thus could alter the availability or conformation of, many proteins that may influence keratocyte and nerve growth cone behavior in the cornea.
Collapse
Affiliation(s)
- Abigail H Conrad
- Division of Biology, Kansas State University, Manhattan, Kansas 66506-4901, USA.
| | | | | | | |
Collapse
|