1
|
Structural imaging of the retina in psychosis spectrum disorders: current status and perspectives. Curr Opin Psychiatry 2020; 33:476-483. [PMID: 32639357 DOI: 10.1097/yco.0000000000000624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Structural changes of the retina in schizophrenia and other psychotic disorders seem plausible as these conditions are accompanied by widespread morphological abnormalities of the brain. Advances in structural retinal imaging have led to the possibility of precise quantification of individual retinal layers, using optical coherence tomography (OCT) scanners. RECENT FINDINGS The aggregation of information related to OCT findings in schizophrenia has resulted in three metaanalyses, which are currently described. Areas where retinal changes were reported include retinal nerve fiber layer (RNFL), ganglion cell layer complex (GCC), macular volume, and macular thickness, but findings on affected retinal segments vary to some extent across studies. Discrepancies in individual studies could be because of small samples, heterogeneity within schizophrenia (phase of the illness, illness duration, predominant symptomatology), inconsistent reporting of antipsychotic therapy, insufficient control of confounding variables (somatic comorbidities, smoking, and so on), and use of the different types of OCT scanners. SUMMARY Exploration of potential disturbances in retinal architecture could provide new insights into neuronal changes associated with psychosis spectrum disorders, with potential to elucidate the nature and timing of developmental, progressive, inflammatory, and degenerative aspects of neuropathology and pathophysiology, and to assist with characterizing heterogeneity and facilitating personalized treatment approaches.
Collapse
|
2
|
Begum M, Joiner DP, Ts'o DY. Stimulus-Driven Retinal Intrinsic Signal Optical Imaging in Mouse Demonstrates a Dominant Rod-Driven Component. Invest Ophthalmol Vis Sci 2020; 61:37. [PMID: 32721018 PMCID: PMC7425724 DOI: 10.1167/iovs.61.8.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/18/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The primary hypotheses tested are that (1) there exist stimulus-driven intrinsic optical signals in the mouse retina similar to those previously observed in other species, and (2) these optical signals require an intact rod photoreceptor phototransduction cascade. Methods We used 38 wild-type C57BL6J mice and 18 genetic knockout Gnat1-/- mice to study the light-evoked retinal intrinsic response. A custom mouse fundus camera delivered visual stimuli and collected mouse retinal imaging data of changes in retinal reflectance for further analysis. The retina was stimulated in the high-mesopic range with a 505-nm light-emitting diode while also being illuminated with 780-nm near-infrared light. Results Wild-type C57BL6J mice yielded retinal imaging signals that typically showed a stimulus-driven decrease in retinal reflectance of ∼0.1%, with a time course of several seconds. The signals exhibit spatial specificity in the retina. Overall, the mouse imaging signals are similar in sign and time course to those reported in other mammalian species but are of lower amplitude. In contrast, functional retinal imaging of Gnat1-/- mice that lack a functional rod transducin yielded no such stimulus-driven signals. Conclusions Previous studies have not shown which pathway component is essential for the generation of these imaged signals. The absence of the intrinsic signal responses in Gnat1-/- knockout mice indicates that a functional rod transducin is likely to be necessary for generating the retinal intrinsic signals. These studies, to the best of our knowledge, demonstrate for the first time in vivo mouse retinal functional imaging signals similar to those previously shown in other mammalian species.
Collapse
Affiliation(s)
| | | | - Daniel Y. Ts'o
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, United States
| |
Collapse
|
3
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
4
|
Abstract
Retinal function has long been studied with psychophysical methods in humans, whereas detailed functional studies of vision have been conducted mostly in animals owing to the invasive nature of physiological approaches. There are exceptions to this generalization, for example, the electroretinogram. This review examines exciting recent advances using in vivo retinal imaging to understand the function of retinal neurons. In some cases, the methods have existed for years and are still being optimized. In others, new methods such as optophysiology are revealing novel patterns of retinal function in animal models that have the potential to change our understanding of the functional capacity of the retina. Together, the advances in retinal imaging mark an important milestone that shifts attention away from anatomy alone and begins to probe the function of healthy and diseased eyes.
Collapse
Affiliation(s)
- Jennifer J Hunter
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
- The Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, New York 14604, USA
| | - William H Merigan
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
| | - Jesse B Schallek
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
- Department of Neuroscience, University of Rochester, Rochester, New York 14604, USA
| |
Collapse
|
5
|
Son T, Alam M, Toslak D, Wang B, Lu Y, Yao X. Functional optical coherence tomography of neurovascular coupling interactions in the retina. JOURNAL OF BIOPHOTONICS 2018; 11:e201800089. [PMID: 29770594 PMCID: PMC6239985 DOI: 10.1002/jbio.201800089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Quantitative evaluation of retinal neurovascular coupling is essential for a better understanding of visual function and early detection of eye diseases. However, there is no established method to monitor coherent interactions between stimulus-evoked neural activity and hemodynamic responses at high resolution. Here, we report a multimodal functional optical coherence tomography (OCT) imaging methodology to enable concurrent intrinsic optical signal (IOS) imaging of stimulus-evoked neural activity and hemodynamic responses at capillary resolution. OCT angiography guided IOS analysis was used to separate neural-IOS and hemodynamic-IOS changes in the same retinal image sequence. Frequency flicker stimuli evoked neural-IOS changes in the outer retina; that is, photoreceptor layer, first and then in the inner retina, including outer plexus layer (OPL), inner plexiform layer (IPL), and ganglion cell layer (GCL), which were followed by hemodynamic-IOS changes primarily in the inner retina; that is, OPL, IPL, and GCL. Different time courses and signal magnitudes of hemodynamic-IOS responses were observed in blood vessels with various diameters.
Collapse
Affiliation(s)
- Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Minhaj Alam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Devrim Toslak
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kılıç K, Can A, Di Polo A, Dalkara T. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. eLife 2018; 7:e34861. [PMID: 29561727 PMCID: PMC5862523 DOI: 10.7554/elife.34861] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023] Open
Abstract
Recent evidence suggests that capillary pericytes are contractile and play a crucial role in the regulation of microcirculation. However, failure to detect components of the contractile apparatus in capillary pericytes, most notably α-smooth muscle actin (α-SMA), has questioned these findings. Using strategies that allow rapid filamentous-actin (F-actin) fixation (i.e. snap freeze fixation with methanol at -20°C) or prevent F-actin depolymerization (i.e. with F-actin stabilizing agents), we demonstrate that pericytes on mouse retinal capillaries, including those in intermediate and deeper plexus, express α-SMA. Junctional pericytes were more frequently α-SMA-positive relative to pericytes on linear capillary segments. Intravitreal administration of short interfering RNA (α-SMA-siRNA) suppressed α-SMA expression preferentially in high order branch capillary pericytes, confirming the existence of a smaller pool of α-SMA in distal capillary pericytes that is quickly lost by depolymerization. We conclude that capillary pericytes do express α-SMA, which rapidly depolymerizes during tissue fixation thus evading detection by immunolabeling.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalUniversité de Montréal, MontréalQuébecCanada
- Department of NeuroscienceUniversité de Montréal, MontréalQuébecCanada
| | - Sinem Yilmaz-Ozcan
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
| | - Muge Yemisci
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
- Department of NeurologyFaculty of Medicine, Hacettepe UniversityAnkaraTurkey
| | - Jesse Schallek
- Center for Visual ScienceUniversity of RochesterNew YorkUnited States
- Flaum Eye InstituteUniversity of RochesterNew YorkUnited States
| | - Kıvılcım Kılıç
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
| | - Alp Can
- Department of Histology and EmbryologySchool of Medicine, Ankara UniversityAnkaraTurkey
| | - Adriana Di Polo
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalUniversité de Montréal, MontréalQuébecCanada
- Department of NeuroscienceUniversité de Montréal, MontréalQuébecCanada
| | - Turgay Dalkara
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
- Department of NeurologyFaculty of Medicine, Hacettepe UniversityAnkaraTurkey
| |
Collapse
|
7
|
Cellular origin of intrinsic optical signals in the rabbit retina. Vision Res 2017; 137:40-49. [PMID: 28687326 DOI: 10.1016/j.visres.2017.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 11/23/2022]
Abstract
Optical imaging of retinal intrinsic signals is a relatively new method that provides spatiotemporal patterns of retinal activity through activity-dependent changes in light reflectance of the retina. The exact physiological mechanisms at the origin of retinal intrinsic signals are poorly understood and there are significant inter-species differences in their characteristics and cellular origins. In this study, we re-examined this issue through pharmacological dissection of retinal intrinsic signals in the rabbit with simultaneous ERG recordings. Retinal intrinsic signals faithfully reflected retinal activity as their amplitude was strongly associated with stimulation intensity (r2=0.85). Further, a strong linear relation was found using linear regression (r2=0.98) between retinal intrinsic signal amplitude and the ERG b wave, which suggests common cellular origins. Intravitreal injections of pharmacological agents were performed to isolate the activity of the retina's major cell types. Retinal intrinsic signals were abolished when the photoreceptors' activity was isolated with aspartate, indicative that they are not at the origin of this signal. A small but significant decrease in intrinsic response (20%) was observed when ganglion and amacrine cells' activity was inhibited by TTX injections. The remaining intrinsic responses were abolished in a dose-dependent manner through the inhibition of ON-bipolar cells by APB. Our results indicate that, in rabbits, retinal intrinsic signals reflect stimulation intensity and originate from the inner retina with a major contribution of bipolar cells and a minor one from ganglion or amacrine cells.
Collapse
|
8
|
Guevara-Torres A, Joseph A, Schallek JB. Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye. BIOMEDICAL OPTICS EXPRESS 2016; 7:4228-4249. [PMID: 27867728 PMCID: PMC5102544 DOI: 10.1364/boe.7.004228] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 05/02/2023]
Abstract
Measuring blood cell dynamics within the capillaries of the living eye provides crucial information regarding the health of the microvascular network. To date, the study of single blood cell movement in this network has been obscured by optical aberrations, hindered by weak optical contrast, and often required injection of exogenous fluorescent dyes to perform measurements. Here we present a new strategy to non-invasively image single blood cells in the living mouse eye without contrast agents. Eye aberrations were corrected with an adaptive optics camera coupled with a fast, 15 kHz scanned beam orthogonal to a capillary of interest. Blood cells were imaged as they flowed past a near infrared imaging beam to which the eye is relatively insensitive. Optical contrast of cells was optimized using differential scatter of blood cells in the split-detector imaging configuration. Combined, these strategies provide label-free, non-invasive imaging of blood cells in the retina as they travel in single file in capillaries, enabling determination of cell flux, morphology, class, velocity, and rheology at the single cell level.
Collapse
Affiliation(s)
- A. Guevara-Torres
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - A. Joseph
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - J. B. Schallek
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes. PLoS One 2014; 9:e92186. [PMID: 24651530 PMCID: PMC3961329 DOI: 10.1371/journal.pone.0092186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Transcorneal electrical stimulation (TES) activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm) were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all). The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.
Collapse
|
10
|
Schallek J, Geng Y, Nguyen H, Williams DR. Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Invest Ophthalmol Vis Sci 2013; 54:8237-50. [PMID: 24150762 DOI: 10.1167/iovs.13-12581] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To noninvasively image retinal pericytes in the living eye and characterize NG2-positive cell topography and morphology in the adult mouse retina. METHODS Transgenic mice expressing fluorescent pericytes (NG2, DsRed) were imaged using a two-channel, adaptive optics scanning laser ophthalmoscope (AOSLO). One channel imaged vascular perfusion with near infrared light. A second channel simultaneously imaged fluorescent retinal pericytes. Mice were also imaged using wide-field ophthalmoscopy. To confirm in vivo imaging, five eyes were enucleated and imaged in flat mount with conventional fluorescent microscopy. Cell topography was quantified relative to the optic disc. RESULTS We observed strong DsRed fluorescence from NG2-positive cells. AOSLO revealed fluorescent vascular mural cells enveloping all vessels in the living retina. Cells were stellate on larger venules, and showed banded morphology on arterioles. NG2-positive cells indicative of pericytes were found on the smallest capillaries of the retinal circulation. Wide-field SLO enabled quick assessment of NG2-positive distribution, but provided insufficient resolution for cell counts. Ex vivo microscopy showed relatively even topography of NG2-positive capillary pericytes at eccentricities more than 0.3 mm from the optic disc (515 ± 94 cells/mm(2) of retinal area). CONCLUSIONS We provide the first high-resolution images of retinal pericytes in the living animal. Subcellular resolution enabled morphological identification of NG2-positive cells on capillaries showing classic features and topography of retinal pericytes. This report provides foundational basis for future studies that will track and quantify pericyte topography, morphology, and function in the living retina over time, especially in the progression of microvascular disease.
Collapse
Affiliation(s)
- Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York
| | | | | | | |
Collapse
|
11
|
Ponticorvo A, Cardenas D, Dunn AK, Ts’o D, Duong TQ. Laser speckle contrast imaging of blood flow in rat retinas using an endoscope. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:090501. [PMID: 24064947 PMCID: PMC3782556 DOI: 10.1117/1.jbo.18.9.090501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/04/2013] [Indexed: 05/02/2023]
Abstract
Laser speckle contrast imaging (LSCI) offers a cost-effective means to image blood flow in vivo. However, it is not commonly used to image rodent retinas because of the challenges associated with imaging through the curved cornea and delivering light through the highly scattering lens. A solution to overcome these problems by using LSCI in conjunction with an endoscope to obtain high spatiotemporal blood flow images is described. Its utility is demonstrated by imaging blood flow changes in rat retinas using hyperoxic, hypercapnic, and visual (flicker) stimulations. Hypercapnia increases blood flow, hyperoxia decreases blood flow, and visual stimulation increases blood flow in the retina relative to basal conditions. The time-to-peak of the LSCI response to visual stimulation is also measured. This approach may prove useful to investigate dysregulation in blood flow-evoked responses in retinal diseases and to evaluate treatment strategies in rodents.
Collapse
Affiliation(s)
- Adrien Ponticorvo
- University of Texas Health Science Center, Research Imaging Institute, San Antonio, Texas 78229
| | - Damon Cardenas
- University of Texas Health Science Center, Research Imaging Institute, San Antonio, Texas 78229
| | - Andrew K. Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas 78712
| | - Daniel Ts’o
- SUNY Upstate Medical University, Departments of Neurosurgery and Neuroscience, Syracuse, New York 13210
| | - Timothy Q. Duong
- University of Texas Health Science Center, Research Imaging Institute, San Antonio, Texas 78229
- South Texas Veterans Health Care System, Department of Veterans Affairs, San Antonio, Texas 78229
- Address all correspondence to: Timothy Q. Duong, University of Texas Health Science Center, Research Imaging Institute, San Antonio, Texas 78229. Tel: 210 567 8100; Fax: 210 567 8152; E-mail:
| |
Collapse
|
12
|
Radhakrishnan H, Srinivasan VJ. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:86010. [PMID: 23955476 PMCID: PMC3745229 DOI: 10.1117/1.jbo.18.8.086010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/20/2023]
Abstract
The hemodynamic response to neuronal activation is a well-studied phenomenon in the brain, due to the prevalence of functional magnetic resonance imaging. The retina represents an optically accessible platform for studying lamina-specific neurovascular coupling in the central nervous system; however, due to methodological limitations, this has been challenging to date. We demonstrate techniques for the imaging of visual stimulus-evoked hyperemia in the rat inner retina using Doppler optical coherence tomography (OCT) and OCT angiography. Volumetric imaging with three-dimensional motion correction, en face flow calculation, and normalization of dynamic signal to static signal are techniques that reduce spurious changes caused by motion. We anticipate that OCT imaging of retinal functional hyperemia may yield viable biomarkers in diseases, such as diabetic retinopathy, where the neurovascular unit may be impaired.
Collapse
Affiliation(s)
- Harsha Radhakrishnan
- University of California Davis, Department of Biomedical Engineering, Davis, California 95616
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California 95616
- Address all correspondence to: Vivek J. Srinivasan, Department of Biomedical Engineering, UC Davis, 451 E Health Sciences Drive, GBSF 2521, Davis, California 95616. Tel: +(530) 752-9277; Fax: +(530) 754-5739; E-mail:
| |
Collapse
|
13
|
Zhong Z, Huang G, Chui TYP, Petrig BL, Burns SA. Local flicker stimulation evokes local retinal blood velocity changes. J Vis 2012; 12:3. [PMID: 22661609 DOI: 10.1167/12.6.3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We investigated the effect of localized visual stimulation on human retinal blood velocity using an adaptive optics scanning laser ophthalmoscope (AOSLO). To measure the blood velocity response, the AOSLO scanning raster was moved over the target arteries and red blood cell velocity was measured. Localized visual stimuli were delivered by projecting flicker patterns inside or outside the target artery's downstream region. The blood velocity increased in the presence of a flicker stimulus in the downstream region but not when outside the downstream region. The blood velocity increased more with larger area of stimulation. This increase was significant even when the stimulus was smaller than 600 μm × 600 μm. These findings suggest that when the retina regulates its blood flow to metabolic demands, it regulates blood velocity in the vascular system selectively, according to activity of neurons within its field of influence.
Collapse
Affiliation(s)
- Zhangyi Zhong
- School of Optometry, Indiana University, Bloomington, IN, USA.
| | | | | | | | | |
Collapse
|
14
|
Schallek JB, McLellan GJ, Viswanathan S, Ts'o DY. Retinal intrinsic optical signals in a cat model of primary congenital glaucoma. Invest Ophthalmol Vis Sci 2012; 53:1971-81. [PMID: 22395886 DOI: 10.1167/iovs.11-8299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the impact of reduced inner retinal function and breed on intrinsic optical signals in cats. METHODS Retinal intrinsic optical signals were recorded from anesthetized cats with a modified fundus camera. Near infrared light (NIR, 700-900 nm) was used to illuminate the retina while a charge-coupled device (CCD) camera captured the NIR reflectance of the retina. Visible stimuli (540 nm) evoked patterned changes in NIR retinal reflectance. NIR intrinsic signals were compared across three subject groups: two Siamese cats with primary congenital glaucoma (PCG), a control Siamese cat without glaucoma, and a control group of seven normally pigmented cats. Intraocular pressure (IOP), pattern electroretinogram, and optical coherence tomography measurements were evaluated to confirm the inner retinal deficit in PCG cats. RESULTS Stimulus-evoked, NIR retinal reflectance signals were observed in PCG cats despite severe degeneration of the nerve fiber layer and inner retinal function. The time course, spectral dependence, and spatial profile of signals imaged in PCG cats were similar to signals measured from normal and Siamese control cats. CONCLUSIONS Despite increased IOP, reduced nerve fiber layer thickness and ganglion cell function, intrinsic optical signals persist in cats affected with PCG. The mechanisms giving rise to intrinsic signals remain despite inner retinal damage. Signal strength was reduced in all Siamese cats compared to controls, suggesting that reduced intrinsic signals in PCG cats represent a difference between breeds rather than loss of ganglion cells. These results corroborated previous findings that retinal ganglion cells are not the dominant source of intrinsic optical signals of the retina.
Collapse
Affiliation(s)
- Jesse B Schallek
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.
| | | | | | | |
Collapse
|
15
|
Bernardes R, Serranho P, Lobo C. Digital ocular fundus imaging: a review. ACTA ACUST UNITED AC 2011; 226:161-81. [PMID: 21952522 DOI: 10.1159/000329597] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 01/09/2023]
Abstract
Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs.
Collapse
Affiliation(s)
- Rui Bernardes
- Institute of Biomedical Research on Light and Image, Faculty of Medicine, University of Coimbra, and Coimbra University Hospital, Coimbra, Portugal.
| | | | | |
Collapse
|