1
|
Gullapalli VK, Zarbin MA. New Prospects for Retinal Pigment Epithelium Transplantation. Asia Pac J Ophthalmol (Phila) 2022; 11:302-313. [PMID: 36041145 DOI: 10.1097/apo.0000000000000521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Retinal pigment epithelium (RPE) transplants rescue photoreceptors in selected animal models of retinal degenerative disease. Early clinical studies of RPE transplants as treatment for age-related macular degeneration (AMD) included autologous and allogeneic transplants of RPE suspensions and RPE sheets for atrophic and neovascular complications of AMD. Subsequent studies explored autologous RPE-Bruch membrane-choroid transplants in patients with neovascular AMD with occasional marked visual benefit, which establishes a rationale for RPE transplants in late-stage AMD. More recent work has involved transplantation of autologous and allogeneic stem cell-derived RPE for patients with AMD and those with Stargardt disease. These early-stage clinical trials have employed RPE suspensions and RPE monolayers on biocompatible scaffolds. Safety has been well documented, but evidence of efficacy is variable. Current research involves development of better scaffolds, improved modulation of immune surveillance, and modification of the extracellular milieu to improve RPE survival and integration with host retina.
Collapse
Affiliation(s)
| | - Marco A Zarbin
- Iinstitute of Ophthalmology and visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, US
| |
Collapse
|
2
|
Yan T, Yang N, Hu W, Zhang X, Li X, Wang Y, Kong J. Differentiation and Maturation Effect of All-trans Retinoic Acid on Cultured Fetal RPE and Stem Cell-Derived RPE Cells for Cell-Based Therapy. Curr Eye Res 2022; 47:1300-1311. [PMID: 35763026 DOI: 10.1080/02713683.2022.2079144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Clinical trials using fetal retinal pigment epithelium (fRPE), human embryonic stem cell (hESC)-derived RPE, or human induced pluripotent stem cell (hiPSC)-derived RPE for cell-based therapy for degenerative retinal diseases have been carried out. We investigated the culture-induced changes in passaged fRPE, hESC-RPE and hiPSC-RPE cells and explored the differentiation and maturation effect of all-trans retinoic acid (ATRA) on cells for manufacturing and screening high quality RPE cells for clinical transplantation. METHODS RPE cell lines were set up and the culture-induced changes in subsequent passages caused by manipulating plating density, dissociation method and repeated passaging were studied by microscope, real-time quantitative PCR, western blot and immunofluorescent assays. Gene and protein expression and functional characteristics of RPE cells incubated with ATRA were evaluated. RESULTS Compared with fRPE, hESC-RPE and hiPSC-RPE showed decreased gene and protein expression of RPE markers. RPE cells underwent mesenchymal changes showing increased expression of mesenchymal markers including a-SMA, N-cadherin, fibronectin and decreased expression of RPE markers including RPE65, E-cadherin and ZO-1, as a subsequence of low plating density, inappropriate dissociated method, and repeated passaging. RPE cells treated by ATRA showed increased expression of RPE markers and increased expression of negative complement regulatory proteins (CRPs), and increased transepithelial resistance as well. CONCLUSIONS Differences in protein and gene expression among three RPE types exist. ATRA can increase RPE markers, CRPs gene expression in fRPE and stem cell-derived RPE. These can be used to guide the standard of screening RPE cells for clinical translational cell therapy.
Collapse
Affiliation(s)
- Tingyu Yan
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China.,Department of Ophthalmology, the Fourth People's Hospital of Shenyang, No. 20 Huanghe Street, Huanggu District, Shenyang, Liaoning Province 110000, P. R. China
| | - Na Yang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China.,Department of Medical Genetics, China Medical University, Shenyang, 110122, P. R. China
| | - Wei Hu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, No.2428 Yuhe Road, Weifang 261031, Shandong, China
| | - Xinxin Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Xuedong Li
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Youjin Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Jun Kong
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| |
Collapse
|
3
|
Chinchilla B, Fernandez-Godino R. AMD-Like Substrate Causes Epithelial Mesenchymal Transition in iPSC-Derived Retinal Pigment Epithelial Cells Wild Type but Not C3-Knockout. Int J Mol Sci 2021; 22:ijms22158183. [PMID: 34360950 PMCID: PMC8348968 DOI: 10.3390/ijms22158183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Bruch's membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is the most common cause of visual loss among the elderly. A role for the complement system in AMD pathology has been established, but the disease mechanisms are poorly understood, which hampers the design of efficient therapies to treat millions of patients. In an effort to identify the mechanisms that lead from normal aging to pathology, we have developed a cell-based model using complement deficient human induced pluripotent stem cell (iPSC)-derived RPE cells cultured on an AMD-like ECM that mimics BrM. The data present evidence that changes in the ECM result in loss of differentiation and promote epithelial mesenchymal transition (EMT) of healthy RPE cells. This pathological process is mediated by complement activation and involves the formation of a randomly oriented collagen meshwork that drives the dedifferentiation of the RPE monolayer. Genetic ablation of complement component 3 has a protective effect against EMT but does not prevent the abnormal deposition of collagens. These findings offer new insights into the sequence of events that initiate AMD and may guide the design of efficient therapies to treat this disease with unmet medical needs.
Collapse
|
4
|
Oliveira CR, Paiva MRBD, Ribeiro MCS, Andrade GF, Carvalho JL, Gomes DA, Nehemy M, Fialho SL, Silva-Cunha A, Góes AMD. Human Stem Cell-Derived Retinal Pigment Epithelial Cells as a Model for Drug Screening and Pre-Clinical Assays Compared to ARPE-19 Cell Line. Int J Stem Cells 2021; 14:74-84. [PMID: 33377455 PMCID: PMC7904525 DOI: 10.15283/ijsc20094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background and Objectives Eye diseases have a high socioeconomic impact on society and may be one of the fields in which most stem cell-related scientific accomplishments have been achieved recently. In this context, human Pluripotent Stem Cell (hPSC) technology arises as an important tool to produce and study human Embryonic Stem cell derived-Retinal Pigmented Epithelial Cells (hES-RPE) for several applications, such as cell therapy, disease modeling, and drug screening. The use of this technology in pre-clinical phases attends to the overall population desire for animal-free product development. Here, we aimed to compare hES-RPE cells with ARPE-19, one of the most commonly used retinal pigmented epithelial immortalized cell lines. Methods and Results Functional, cellular and molecular data obtained suggest that hES-RPE cells more closely resembles native RPEs compared to ARPE-19. Furthermore, hES-RPE revealed an interesting robustness when cultured on human Bruch’s membrane explants and after exposure to Cyclosporine (CSA), Sirolimus (SRL), Tacrolimus (TAC), Leflunomide (LEF) and Teriflunomide (TER). On these conditions, hES-RPE cells were able to survive at higher drug concentrations, while ARPE-19 cell line was more susceptible to cell death. Conclusions Therefore, hES-RPEs seem to have the ability to incur a broader range of RPE functions than ARPE-19 and should be more thoroughly explored for drug screening.
Collapse
Affiliation(s)
- Carolina Reis Oliveira
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Gracielle Ferreira Andrade
- SENAN, Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Lott Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Dawidson Assis Gomes
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Márcio Nehemy
- Department of Ophthalmology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sílvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Armando Silva-Cunha
- Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Góes
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 2019; 76:100803. [PMID: 31704339 DOI: 10.1016/j.preteyeres.2019.100803] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
The three interacting components of the outer blood-retinal barrier are the retinal pigment epithelium (RPE), choriocapillaris, and Bruch's membrane, the extracellular matrix that lies between them. Although previously reviewed independently, this review integrates these components into a more wholistic view of the barrier and discusses reconstitution models to explore the interactions among them. After updating our understanding of each component's contribution to barrier function, we discuss recent efforts to examine how the components interact. Recent studies demonstrate that claudin-19 regulates multiple aspects of RPE's barrier function and identifies a barrier function whereby mutations of claudin-19 affect retinal development. Co-culture approaches to reconstitute components of the outer blood-retinal barrier are beginning to reveal two-way interactions between the RPE and choriocapillaris. These interactions affect barrier function and the composition of the intervening Bruch's membrane. Normal or disease models of Bruch's membrane, reconstituted with healthy or diseased RPE, demonstrate adverse effects of diseased matrix on RPE metabolism. A stumbling block for reconstitution studies is the substrates typically used to culture cells are inadequate substitutes for Bruch's membrane. Together with human stem cells, the alternative substrates that have been designed offer an opportunity to engineer second-generation culture models of the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Mark A Fields
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA; Department of Surgery, Yale University School of Medicine, PO Box 208062, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
6
|
Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells (MA09-hRPE) in macular degeneration. NPJ Regen Med 2019; 4:19. [PMID: 31482011 PMCID: PMC6712006 DOI: 10.1038/s41536-019-0081-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
The use of human embryonic stem cell (hESC)-derived Retinal Pigment Epithelium (RPE) transplants has advanced dramatically in different forms for clinical application in macular degeneration. This review focuses on the first generation of hESC-RPE cell line, named as “MA09-hRPE” by Astellas Institute of Regenerative Medicine (AIRM), and its therapeutic application in human, which evaluated the safety and efficacy of MA09-hRPE cell line transplanted in patients with macular degeneration. This project marks the first milestone in overcoming ethical hurdles and oncogenic safety concerns associated with the use of an embryonic stem cell-derived line. Through in-depth, evidence-based analysis of the MA09-hRPE cell line, along with other hESC-RPE cell lines, this review aims to draw attention to the key technical challenges pertinent to the generation of a biologically competent hESC-RPE cell line and distill the four key prognostic factors residing in the host retina, which concurrently determine the outcomes of clinical efficacy and visual benefits. Given that the technology is still at its infancy for human use, a new clinical regulatory path could aid in cell line validation through small cohort, adaptive clinical trials to accelerate product development toward commercialization. These strategic insights will be invaluable to help both academia and industry, collaboratively shorten the steep learning curve, and reduce large development expenditures spent on unnecessary lengthy clinical trials.
Collapse
|
7
|
Zarbin M, Sugino I, Townes‐Anderson E. Concise Review: Update on Retinal Pigment Epithelium Transplantation for Age-Related Macular Degeneration. Stem Cells Transl Med 2019; 8:466-477. [PMID: 30748126 PMCID: PMC6477002 DOI: 10.1002/sctm.18-0282] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Retinal cell therapy can have the objectives of rescue (i.e., modulation of metabolic abnormalities primarily for sight preservation) as well as replacement (i.e., replace cells lost due to injury or disease for sight restoration as well as preservation). The first clinical trials of retinal pigment epithelium (RPE) transplantation for vision-threatening complications of age-related macular degeneration (AMD) have begun with some preliminary signs of success (e.g., improvement in vision in some patients, anatomic evidence of transplant-host integration with some evidence of host photoreceptor recovery, long-term survival of autologous induced pluripotent stem cell-derived RPE transplants without immune suppression) as well as limitations (e.g., limited RPE suspension survival in the AMD eye, limited tolerance for long-term systemic immune suppression in elderly patients, suggestion of uncontrolled cell proliferation in the vitreous cavity). RPE survival on aged and AMD Bruch's membrane can be improved with chemical treatment, which may enhance the efficacy of RPE suspension transplants in AMD patients. Retinal detachment, currently used to deliver transplanted RPE cells to the subretinal space, induces disjunction of the first synapse in the visual pathway: the photoreceptor-bipolar synapse. This synaptic change occurs even in areas of attached retina near the locus of detachment. Synaptic disjunction and photoreceptor apoptosis associated with retinal detachment can be reduced with Rho kinase inhibitors. Addition of Rho kinase inhibitors may improve retinal function and photoreceptor survival after subretinal delivery of cells either in suspension or on scaffolds.
Collapse
Affiliation(s)
- Marco Zarbin
- Institute of Ophthalmology and Visual ScienceRutgers‐New Jersey Medical School, Rutgers UniversityNewarkNew JerseyUSA
| | - Ilene Sugino
- Institute of Ophthalmology and Visual ScienceRutgers‐New Jersey Medical School, Rutgers UniversityNewarkNew JerseyUSA
| | - Ellen Townes‐Anderson
- Department of Pharmacology, Physiology, and NeuroscienceRutgers‐New Jersey Medical SchoolNewarkNew JerseyUSA
| |
Collapse
|
8
|
Abstract
The availability of noninvasive high-resolution imaging technology, the immune-suppressive nature of the subretinal space, and the existence of surgical techniques that permit transplantation surgery to be a safe procedure all render the eye an ideal organ in which to begin cell-based therapy in the central nervous system. A number of early stage clinical trials are underway to assess the safety and feasibility of cell-based therapy for retinal blindness. Cell-based therapy using embryonic stem cell-derived differentiated cells (e.g., retinal pigment epithelium (RPE)), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells has demonstrated successful rescue and/or replacement in preclinical models of human retinal degenerative disease. Additional research is needed to identify the mechanisms that control synapse formation/disjunction (to improve photoreceptor transplant efficacy), to identify factors that limit RPE survival in areas of geographic atrophy (to improve RPE transplant efficacy in eyes with age-related macular degeneration), and to identify factors that regulate immune surveillance of the subretinal space (to improve long-term photoreceptor and RPE transplant survival).
Collapse
Affiliation(s)
- Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
9
|
Tian Y, Davis R, Zonca MR, Stern JH, Temple S, Xie Y. Screening and optimization of potential injection vehicles for storage of retinal pigment epithelial stem cell before transplantation. J Tissue Eng Regen Med 2018; 13:76-86. [DOI: 10.1002/term.2770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/27/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yangzi Tian
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| | - Richard Davis
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Michael R. Zonca
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| | - Jeffrey H. Stern
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Sally Temple
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| |
Collapse
|
10
|
Hunt NC, Hallam D, Chichagova V, Steel DH, Lako M. The Application of Biomaterials to Tissue Engineering Neural Retina and Retinal Pigment Epithelium. Adv Healthc Mater 2018; 7:e1800226. [PMID: 30175520 DOI: 10.1002/adhm.201800226] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/16/2018] [Indexed: 12/21/2022]
Abstract
The prevalence of degenerative retinal disease is ever increasing as life expectancy rises globally. The human retina fails to regenerate and the use of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) to engineer retinal tissue is of particular interest due to the limited availability of suitable allogeneic or autologous tissue. Retinal tissue and its development are well characterized, which have resulted in robust assays to assess the development of tissue-engineered retina. Retinal tissue can be generated in vitro from hESCs and hiPSCs without biomaterial scaffolds, but despite advancements, protocols remain slow, expensive, and fail to result in mature functional tissue. Several recent studies have demonstrated the potential of biomaterial scaffolds to enhance generation of hESC/hiPSC-derived retinal tissue, including synthetic polymers, silk, alginate, hyaluronic acid, and extracellular matrix molecules. This review outlines the advances that have been made toward tissue-engineered neural retina and retinal pigment epithelium (RPE) for clinical application in recent years, including the success of clinical trials involving transplantation of cells and tissue to promote retinal repair; and the evidence from in vitro and animal studies that biomaterials can enhance development and integration of retinal tissue.
Collapse
Affiliation(s)
- Nicola C. Hunt
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Dean Hallam
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Valeria Chichagova
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
- Biomedicine WestInternational Centre for LifeTimes SquareNewcastle upon Tyne NE1 4EP UK
| | - David H. Steel
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| | - Majlinda Lako
- Newcastle UniversityInstitute of Genetic MedicineInternational Centre for Life Central Parkway Newcastle NE1 3BZ UK
| |
Collapse
|
11
|
Korkka I, Viheriälä T, Juuti-Uusitalo K, Uusitalo-Järvinen H, Skottman H, Hyttinen J, Nymark S. Functional Voltage-Gated Calcium Channels Are Present in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med 2018; 8:179-193. [PMID: 30394009 PMCID: PMC6344904 DOI: 10.1002/sctm.18-0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022] Open
Abstract
Retinal pigment epithelium (RPE) performs important functions for the maintenance of photoreceptors and vision. Malfunctions within the RPE are implicated in several retinal diseases for which transplantations of stem cell‐derived RPE are promising treatment options. Their success, however, is largely dependent on the functionality of the transplanted cells. This requires correct cellular physiology, which is highly influenced by the various ion channels of RPE, including voltage‐gated Ca2+ (CaV) channels. This study investigated the localization and functionality of CaV channels in human embryonic stem cell (hESC)‐derived RPE. Whole‐cell patch‐clamp recordings from these cells revealed slowly inactivating L‐type currents comparable to freshly isolated mouse RPE. Some hESC‐RPE cells also carried fast transient T‐type resembling currents. These findings were confirmed by immunostainings from both hESC‐ and mouse RPE that showed the presence of the L‐type Ca2+ channels CaV1.2 and CaV1.3 as well as the T‐type Ca2+ channels CaV3.1 and CaV3.2. The localization of the major subtype, CaV1.3, changed during hESC‐RPE maturation co‐localizing with pericentrin to the base of the primary cilium before reaching more homogeneous membrane localization comparable to mouse RPE. Based on functional assessment, the L‐type Ca2+ channels participated in the regulation of vascular endothelial growth factor secretion as well as in the phagocytosis of photoreceptor outer segments in hESC‐RPE. Overall, this study demonstrates that a functional machinery of voltage‐gated Ca2+ channels is present in mature hESC‐RPE, which is promising for the success of transplantation therapies. stem cells translational medicine2019;8:179&15
Collapse
Affiliation(s)
- Iina Korkka
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Taina Viheriälä
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland.,Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Kati Juuti-Uusitalo
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Eye Centre, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, Department of Ophthalmology, University of Tampere, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Soile Nymark
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
12
|
Wu W, Zeng Y, Li Z, Li Q, Xu H, Yin ZQ. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures - a new donor for cell therapy. Oncotarget 2017; 7:22819-33. [PMID: 27009841 PMCID: PMC5008403 DOI: 10.18632/oncotarget.8185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/18/2016] [Indexed: 12/17/2022] Open
Abstract
Retinal pigment epithelium (RPE) transplantation is a particularly promising treatment of retinal degenerative diseases affecting RPE-photoreceptor complex. Embryonic stem cells (ESCs) provide an abundant donor source for RPE transplantation. Herein, we studied the time-course characteristics of RPE cells derived from three-dimensional human ESCs cultures (3D-RPE). We showed that 3D-RPE cells possessed morphology, ultrastructure, gene expression profile, and functions of authentic RPE. As differentiation proceeded, 3D-RPE cells could mature gradually with decreasing proliferation but increasing functions. Besides, 3D-RPE cells could form polarized monolayer with functional tight junction and gap junction. When grafted into the subretinal space of Royal College of Surgeons rats, 3D-RPE cells were safe and efficient to rescue retinal degeneration. This study showed that 3D-RPE cells were a new donor for cell therapy of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wei Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
13
|
Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1113-1126. [PMID: 28664762 DOI: 10.1080/14712598.2017.1346079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In age-related macular degeneration (AMD), stem cells could possibly replace or regenerate disrupted pathologic retinal pigment epithelium (RPE), and produce supportive growth factors and cytokines such as brain-derived neurotrophic factor. Induced pluripotent stem cells (iPSCs)-derived RPE was first subretinally transplanted in a neovascular AMD patient in 2014. Areas covered: Induced PSCs are derived from the introduction of transcription factors to adult cells under specific cell culture conditions, followed by differentiation into RPE cells. Induced PSC-derived RPE cells exhibit ion transport, membrane potential, polarized VEGF secretion and gene expression that is similar to native RPE. Despite having similar in vitro function, morphology, immunostaining and microscopic analysis, it remains to be seen if iPSC-derived RPE can replicate the myriad of in vivo functions, including immunomodulatory effects, of native RPE cells. Historically, adjuvant RPE transplantation during CNV resections were technically difficult and complicated by immune rejection. Autologous iPSCs are hypothesized to reduce the risk of immune rejection, but their production is time-consuming and expensive. Alternatively, allogenic transplantation using human leukocyte antigen (HLA)-matched iPSCs, similar to HLA-matched organ transplantation, is currently being investigated. Expert opinion: Challenges to successful transplantation with iPSCs include surgical technique, a pathologic subretinal microenvironment, possible immune rejection, and complications of immunosuppression.
Collapse
Affiliation(s)
- Peter Bracha
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nicholas A Moore
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Glick Eye Institute, Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
14
|
Nommiste B, Fynes K, Tovell VE, Ramsden C, da Cruz L, Coffey P. Stem cell-derived retinal pigment epithelium transplantation for treatment of retinal disease. PROGRESS IN BRAIN RESEARCH 2017; 231:225-244. [PMID: 28554398 DOI: 10.1016/bs.pbr.2017.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Age-related macular degeneration remains the most common cause of blindness in the western world, severely comprising patients' and carers' quality of life and presenting a great cost to the healthcare system. As the disease progresses, the retinal pigmented epithelium (RPE) layer at the back of the eye degenerates, contributing to a series of events resulting in visual impairment. The easy accessibility of the eye has allowed for in-depth study of disease progression in patients, while in vivo studies have facilitated investigations into healthy and diseased RPE. Consequently, a number of research groups are examining different approaches for the replacement of RPE cells in age-related macular degeneration (AMD) patients. This chapter examines some of these initial proof-of-principle studies and goes on to review the use of pluripotent stem cells as a source for RPE replacement in a number of current AMD clinical trials. Finally, we consider just some of the regulatory and manufacturing challenges presented in taking a promising AMD treatment from the research bench into clinical trials in patients, and how to mitigate potential risks early in process development.
Collapse
Affiliation(s)
| | - Kate Fynes
- Institute of Ophthalmology, London, United Kingdom
| | | | - Conor Ramsden
- Institute of Ophthalmology, London, United Kingdom; NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Lyndon da Cruz
- Institute of Ophthalmology, London, United Kingdom; NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Peter Coffey
- Institute of Ophthalmology, London, United Kingdom; NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.
| |
Collapse
|
15
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Whiting P, Kerby J, Coffey P, da Cruz L, McKernan R. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140375. [PMID: 26416684 DOI: 10.1098/rstb.2014.0375] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since the first publication of the derivation of human embryonic stem cells in 1998, there has been hope and expectation that this technology will lead to a wave of regenerative medicine therapies with the potential to revolutionize our approach to managing certain diseases. Despite significant resources in this direction, the path to the clinic for an embryonic stem-cell-based regenerative medicine therapy has not proven straightforward, though in the past few years progress has been made. Here, with a focus upon retinal disease, we discuss the current status of the development of such therapies. We also highlight some of our own experiences of progressing a retinal pigment epithelium cell replacement therapy towards the clinic.
Collapse
Affiliation(s)
- Paul Whiting
- Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, UK
| | - Julie Kerby
- Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, UK
| | - Peter Coffey
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Lyndon da Cruz
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Ruth McKernan
- Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
17
|
Hotaling NA, Khristov V, Wan Q, Sharma R, Jha BS, Lotfi M, Maminishkis A, Simon CG, Bharti K. Nanofiber Scaffold-Based Tissue-Engineered Retinal Pigment Epithelium to Treat Degenerative Eye Diseases. J Ocul Pharmacol Ther 2016; 32:272-85. [PMID: 27110730 PMCID: PMC4904235 DOI: 10.1089/jop.2015.0157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 12/16/2022] Open
Abstract
Clinical-grade manufacturing of a functional retinal pigment epithelium (RPE) monolayer requires reproducing, as closely as possible, the natural environment in which RPE grows. In vitro, this can be achieved by a tissue engineering approach, in which the RPE is grown on a nanofibrous biological or synthetic scaffold. Recent research has shown that nanofiber scaffolds perform better for cell growth and transplantability compared with their membrane counterparts and that the success of the scaffold in promoting cell growth/function is not heavily material dependent. With these strides, the field has advanced enough to begin to consider implementation of one, or a combination, of the tissue engineering strategies discussed herein. In this study, we review the current state of tissue engineering research for in vitro culture of RPE/scaffolds and the parameters for optimal scaffold design that have been uncovered during this research. Next, we discuss production methods and manufacturers that are capable of producing the nanofiber scaffolds in such a way that would be biologically, regulatory, clinically, and commercially viable. Then, a discussion of how the scaffolds could be characterized, both morphologically and mechanically, to develop a testing process that is viable for regulatory screening is performed. Finally, an example of a tissue-engineered RPE/scaffold construct is given to provide the reader a framework for understanding how these pieces could fit together to develop a tissue-engineered RPE/scaffold construct that could pass regulatory scrutiny and can be commercially successful.
Collapse
Affiliation(s)
- Nathan A. Hotaling
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Vladimir Khristov
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Qin Wan
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Balendu Shekhar Jha
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mostafa Lotfi
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Arvydas Maminishkis
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Carl G. Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Sugino IK, Sun Q, Springer C, Cheewatrakoolpong N, Liu T, Li H, Zarbin MA. Two Bioactive Molecular Weight Fractions of a Conditioned Medium Enhance RPE Cell Survival on Age-Related Macular Degeneration and Aged Bruch's Membrane. Transl Vis Sci Technol 2016; 5:8. [PMID: 26933521 PMCID: PMC4771074 DOI: 10.1167/tvst.5.1.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/01/2016] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To characterize molecular weight fractions of bovine corneal endothelial cell conditioned medium (CM) supporting retinal pigment epithelium (RPE) cell survival on aged and age-related macular degeneration (AMD) Bruch's membrane. METHODS CM was subject to size separation using centrifugal filters. Retentate and filtrate fractions were tested for bioactivity by analyzing RPE survival on submacular Bruch's membrane of aged and AMD donor eyes and behavior on collagen I-coated tissue culture wells. Protein and peptide composition of active fractions was determined by mass spectrometry. RESULTS Two bioactive fractions, 3-kDa filtrate and a 10-50-kDa fraction, were necessary for RPE survival on aged and AMD Bruch's membrane. The 3-kDa filtrate, but not the 10-50-kDa fraction, supported RPE growth on collagen 1-coated tissue culture plates. Mass spectrometry of the 10-50-kDa fraction identified 175 extracellular proteins, including growth factors and extracellular matrix molecules. Transforming growth factor (TGF)β-2 was identified as unique to active CM. Peptides representing 29 unique proteins were identified in the 3-KDa filtrate. CONCLUSIONS These results indicate there is a minimum of two bioactive molecules in CM, one found in the 3-kDa filtrate and one in the 10-50-kDa fraction, and that bioactive molecules in both fractions must be present to ensure RPE survival on Bruch's membrane. Mass spectrometry analysis suggested proteins to test in future studies to identify proteins that may contribute to CM bioactivity. TRANSLATIONAL RELEVANCE Results of this study are the first steps in development of an adjunct to cell-based therapy to ensure cell transplant survival and functionality in AMD patients.
Collapse
Affiliation(s)
- Ilene K Sugino
- Institute of Ophthalmology and Visual Science Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Qian Sun
- Institute of Ophthalmology and Visual Science Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Carola Springer
- Institute of Ophthalmology and Visual Science Rutgers, New Jersey Medical School, Newark, NJ, USA
| | | | - Tong Liu
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, Neuroproteomics Core Facility, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, Neuroproteomics Core Facility, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Marco A Zarbin
- Institute of Ophthalmology and Visual Science Rutgers, New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
19
|
Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol Med 2016; 22:115-134. [PMID: 26791247 DOI: 10.1016/j.molmed.2015.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Stem cell-derived retinal pigment epithelium (RPE) and photoreceptors (PRs) have restored vision in preclinical models of human retinal degenerative disease. This review discusses characteristics of stem cell therapy in the eye and the challenges to clinical implementation that are being confronted today. Based on encouraging results from Phase I/II trials, the first Phase II clinical trials of stem cell-derived RPE transplantation are underway. PR transplant experiments have demonstrated restoration of visual function in preclinical models of retinitis pigmentosa and macular degeneration, but also indicate that no single approach is likely to succeed in overcoming PR loss in all cases. A greater understanding of the mechanisms controlling synapse formation as well as the immunoreactivity of transplanted retinal cells is urgently needed.
Collapse
Affiliation(s)
- Marco Zarbin
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
20
|
Gong J, Fields MA, Moreira EF, Bowrey HE, Gooz M, Ablonczy Z, Del Priore LV. Differentiation of Human Protein-Induced Pluripotent Stem Cells toward a Retinal Pigment Epithelial Cell Fate. PLoS One 2015; 10:e0143272. [PMID: 26606685 PMCID: PMC4659559 DOI: 10.1371/journal.pone.0143272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 01/26/2023] Open
Abstract
Compared with many induced pluripotent stem cell (iPSC) lines generated using retrovirus and other non-integrating methods, the utilization of human protein-induced iPSC (piPSC) lines may provide a safer alternative for the generation of retinal pigment epithelial (RPE) cells for transplantation in retinal degenerative diseases. Here we assess the ability of piPSCs to differentiate into RPE cells, and to perform native RPE cell behavior. piPSCs were seeded in 6-well low-attachment plates to allow embryoid body formation, and then analyzed for pluripotent stem cell markers NANOG, SSEA4 and TRA-1-60 by immunofluorescence. Following colony formation, piPSCs were assessed for confirmation of RPE cell differentiation by staining for zonula occludens (ZO-1), bestrophin, microphthalmia-associated transcription factor (MITF) and retinal pigment epithelium specific protein-65 (RPE65). To evaluate piPSC-RPE cell phagocytic ability, adult bovine photoreceptor rod outer segments (ROS) were fed to piPSC-RPE cells, which were analyzed by fluorescent microscopy and flow cytometry. Undifferentiated piPSCs expressed all pluripotent markers assessed and formed embryoid body aggregates after 7 days. Differentiated piPSC-RPE cells expressed ZO-1, bestrophin, MITF and RPE65, typical RPE cell markers. Flow cytometry revealed robust ingestion of fluorescently-labeled ROS by piPSC-RPE cells, which was over four-times greater than that of undifferentiated piPSCs and comparable to that of an immortalized RPE cell line. Phagocytosis activity by piPSC-RPE cells was significantly reduced after the addition of anti-integrin αVβ5. In conclusion, piPSCs can be differentiated toward an RPE cell fate, expressing RPE cell markers and resembling native RPE cells in behavior. These results demonstrate that piPSCs can be differentiated into RPE-like cells using a method that has an increased safety profile, a critical consideration for the development of better treatments for retinal degenerative diseases such as age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Jie Gong
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
| | - Mark A. Fields
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Ernesto F. Moreira
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
| | - Hannah E. Bowrey
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States of America
| | - Zsolt Ablonczy
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
| | - Lucian V. Del Priore
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ilmarinen T, Hiidenmaa H, Kööbi P, Nymark S, Sorkio A, Wang JH, Stanzel BV, Thieltges F, Alajuuma P, Oksala O, Kataja M, Uusitalo H, Skottman H. Ultrathin Polyimide Membrane as Cell Carrier for Subretinal Transplantation of Human Embryonic Stem Cell Derived Retinal Pigment Epithelium. PLoS One 2015; 10:e0143669. [PMID: 26606532 PMCID: PMC4659637 DOI: 10.1371/journal.pone.0143669] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the suitability of ultrathin and porous polyimide (PI) membrane as a carrier for subretinal transplantation of human embryonic stem cell (hESC) -derived retinal pigment epithelial (RPE) cells in rabbits. The in vivo effects of hESC-RPE cells were analyzed by subretinal suspension injection into Royal College of Surgeons (RCS) rats. Rat eyes were analyzed with electroretinography (ERG) and histology. After analyzing the surface and permeability properties of PI, subretinal PI membrane transplantations with and without hESC-RPE were performed in rabbits. The rabbits were followed for three months and eyes analyzed with fundus photography, ERG, optical coherence tomography (OCT), and histology. Animals were immunosuppressed with cyclosporine the entire follow-up time. In dystrophic RCS rats, ERG and outer nuclear layer (ONL) thickness showed some rescue after hESC-RPE injection. Cells positive for human antigen were found in clusters under the retina 41 days post-injection but not anymore after 105 days. In rabbits, OCT showed good placement of the PI. However, there was loss of pigmentation on the hESC-RPE-PI over time. In the eyes with PI alone, no obvious signs of inflammation or retinal atrophy were observed. In the presence of hESC-RPE, mononuclear cell infiltration and retinal atrophy were observed around the membranes. The porous ultrathin PI membrane was well-tolerated in the subretinal space and is a promising scaffold for RPE transplantation. However, the rejection of the transplanted cells seems to be a major problem and the given immunosuppression was insufficient for reduction of xenograft induced inflammation.
Collapse
Affiliation(s)
- Tanja Ilmarinen
- BioMediTech, University of Tampere, Tampere, Finland
- * E-mail:
| | | | - Peeter Kööbi
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | - Soile Nymark
- Department of Electronics and Communications Engineering and BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Anni Sorkio
- BioMediTech, University of Tampere, Tampere, Finland
| | - Jing-Huan Wang
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | | | | | | | | | | | - Hannu Uusitalo
- Department of Ophthalmology, SILK, University of Tampere and Tays Eye Center, Tampere, Finland
| | - Heli Skottman
- BioMediTech, University of Tampere, Tampere, Finland
| |
Collapse
|
22
|
Shadforth AMA, Suzuki S, Alzonne R, Edwards GA, Richardson NA, Chirila TV, Harkin DG. Incorporation of Human Recombinant Tropoelastin into Silk Fibroin Membranes with the View to Repairing Bruch's Membrane. J Funct Biomater 2015; 6:946-62. [PMID: 26389960 PMCID: PMC4598686 DOI: 10.3390/jfb6030946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/18/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022] Open
Abstract
Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM) components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE) on fibroin membranes with the view to repairing the retina of patients afflicted with age-related macular degeneration (AMD). The goal of the present study was to investigate the feasibility of incorporating the ECM component elastin, in the form of human recombinant tropoelastin, into these same membranes. Two basic strategies were explored: (1) membranes prepared from blended solutions of fibroin and tropoelastin; and (2) layered constructs prepared from sequentially cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts by weight. Retention of tropoelastin within the blend and layered constructs was confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR). In the layered constructs, the bulk of tropoelastin was apparently absorbed into the initially cast fibroin layer. Blend membranes displayed higher elastic modulus, percentage elongation, and tensile strength (p < 0.01) when compared to the layered constructs. RPE cell response to fibroin membranes was not affected by the presence of tropoelastin. These findings support the potential use of fibroin membranes for the co-delivery of RPE cells and tropoelastin.
Collapse
Affiliation(s)
- Audra M A Shadforth
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland 4101, Australia.
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4001, Australia.
| | - Shuko Suzuki
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland 4101, Australia.
| | - Raphaelle Alzonne
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland 4101, Australia.
| | - Grant A Edwards
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Neil A Richardson
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland 4101, Australia.
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4001, Australia.
| | - Traian V Chirila
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland 4101, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland 4029, Australia.
- Faculty of Science, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Damien G Harkin
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland 4101, Australia.
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4001, Australia.
| |
Collapse
|
23
|
Sorkio A, Porter PJ, Juuti-Uusitalo K, Meenan BJ, Skottman H, Burke GA. Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Tissue Eng Part A 2015; 21:2301-14. [PMID: 25946229 DOI: 10.1089/ten.tea.2014.0640] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier holds great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material that could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation, and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analyzed with an Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, reverse transcription-polymerase chain reaction, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements, and in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue-engineered construct for regenerative retinal repair applications.
Collapse
Affiliation(s)
- Anni Sorkio
- 1 BioMediTech, University of Tampere , Tampere, Finland
| | - Patrick J Porter
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| | | | - Brian J Meenan
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| | - Heli Skottman
- 1 BioMediTech, University of Tampere , Tampere, Finland
| | - George A Burke
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| |
Collapse
|
24
|
Regenerating Retinal Pigment Epithelial Cells to Cure Blindness: A Road Towards Personalized Artificial Tissue. CURRENT STEM CELL REPORTS 2015; 1:79-91. [PMID: 26146605 DOI: 10.1007/s40778-015-0014-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinal pigment epithelium (RPE) is a polarized monolayer tissue that functions to support the health and integrity of retinal photoreceptors (PRs). RPE atrophy has been linked to pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness in elderly in the USA. RPE atrophy in AMD leads to the PR cell death and vision loss. It is thought that replacing diseased RPE with healthy RPE tissue can prevent PR cell death. Retinal surgical innovations have provided proof-of-principle data that autologous RPE tissue can replace diseased macular RPE and provide visual rescue in AMD patients. Current efforts are focused on developing an in vitro tissue using natural and synthetic scaffolds to generate a polarized functional RPE monolayer. In the future, these tissue-engineering approaches combined with pluripotent stem cell technology will lead to the development of personalized and "off-the-shelf" cell therapies for AMD patients. This review summarizes the historical development and ongoing efforts in surgical and in vitro tissue engineering techniques to develop a three-dimensional therapeutic native RPE tissue substitute.
Collapse
|
25
|
Chapter 4 - Restoring Vision to the Blind: Stem Cells and Transplantation. Transl Vis Sci Technol 2015; 3:6. [PMID: 25653890 DOI: 10.1167/tvst.3.7.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
|
26
|
Hsiung J, Zhu D, Hinton DR. Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Transl Med 2014; 4:10-20. [PMID: 25411476 DOI: 10.5966/sctm.2014-0205] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress-mediated injury to the retinal pigment epithelium (RPE) is a major factor involved in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. Human embryonic stem cell (hESC)-derived RPE cells are currently being evaluated for their potential for cell therapy in AMD patients through subretinal injection of cells in suspension and subretinal placement as a polarized monolayer. To gain an understanding of how transplanted RPE cells will respond to the highly oxidatively stressed environment of an AMD patient eye, we compared the survival of polarized and nonpolarized RPE cultures following oxidative stress treatment. Polarized, nonpolarized/confluent, nonpolarized/subconfluent hESC-RPE cells were treated with H2O2. Terminal deoxynucleotidyl transferase dUTP nick end labeling stains revealed the highest amount of cell death in subconfluent hESC-RPE cells and little cell death in polarized hESC-RPE cells with H2O2 treatment. There were higher levels of proapoptotic factors (phosphorylated p38, phosphorylated c-Jun NH2-terminal kinase, Bax, and cleaved caspase 3 fragments) in treated nonpolarized RPE-particularly subconfluent cells-relative to polarized cells. On the other hand, polarized RPE cells had constitutively higher levels of cell survival and antiapoptotic signaling factors such as p-Akt and Bcl-2, as well as antioxidants superoxide dismutase 1 and catalase relative to nonpolarized cells, that possibly contributed to polarized cells' higher tolerance to oxidative stress compared with nonpolarized RPE cells. Subconfluent cells were particularly sensitive to oxidative stress-induced apoptosis. These results suggest that implantation of polarized hESC-RPE monolayers for treating AMD patients with geographic atrophy should have better survival than injections of hESC-RPE cells in suspension.
Collapse
Affiliation(s)
- Jamie Hsiung
- Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Danhong Zhu
- Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - David R Hinton
- Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
27
|
Querques G, Rosenfeld PJ, Cavallero E, Borrelli E, Corvi F, Querques L, Bandello FM, Zarbin MA. Treatment of Dry Age-Related Macular Degeneration. Ophthalmic Res 2014; 52:107-15. [DOI: 10.1159/000363187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022]
|
28
|
|
29
|
Heller JP, Martin KR. Enhancing RPE Cell-Based Therapy Outcomes for AMD: The Role of Bruch's Membrane. Transl Vis Sci Technol 2014. [DOI: 10.1167/tvst.3.4.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Heller JP, Martin KR. Enhancing RPE Cell-Based Therapy Outcomes for AMD: The Role of Bruch's Membrane. Transl Vis Sci Technol 2014; 3:11. [PMID: 25068093 PMCID: PMC4108298 DOI: 10.1167/tvst.3.3.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 02/09/2014] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness in older people in the developed world. The disease involves damage to the part of the retina responsible for central vision. Degeneration of retinal pigment epithelial (RPE) cells, photoreceptors, and choriocapillaris may contribute to visual loss. Over the past decades, scientists and clinicians have tried to replace lost RPE cells in patients with AMD using cells from different sources. In recent years, advances in generating RPE cells from stem cells have been made and clinical trials are currently evaluating the safety and efficiency of replacing the degenerated RPE cell layer with stem cell-derived RPE cells. However, the therapeutic success of transplantation of stem cell-derived RPE cells may be limited unless the transplanted cells can adhere and survive in the long term in the diseased eye. One hallmark of AMD is the altered extracellular environment of Bruch's membrane to which the grafted cells have to adhere. Here, we discuss recent approaches to overcome the inhibitory environment of the diseased eye and to enhance the survival rate of transplanted RPE cells. Our aim is to highlight novel approaches that may have the potential to improve the efficacy of RPE transplantation for AMD in the future.
Collapse
Affiliation(s)
- Janosch P. Heller
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, United Kingdom
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Department of Ophthalmology, NIHR Biomedical Research Centre and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
| |
Collapse
|
31
|
Liu Z, Jiang R, Yuan S, Wang N, Feng Y, Hu G, Zhu X, Huang K, Ma J, Xu G, Liu Q, Xue Z, Fan G. Integrated analysis of DNA methylation and RNA transcriptome during in vitro differentiation of human pluripotent stem cells into retinal pigment epithelial cells. PLoS One 2014; 9:e91416. [PMID: 24638073 PMCID: PMC3956675 DOI: 10.1371/journal.pone.0091416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/12/2014] [Indexed: 12/22/2022] Open
Abstract
Using the paradigm of in vitro differentiation of hESCs/iPSCs into retinal pigment epithelial (RPE) cells, we have recently profiled mRNA and miRNA transcriptomes to define a set of RPE mRNA and miRNA signature genes implicated in directed RPE differentiation. In this study, in order to understand the role of DNA methylation in RPE differentiation, we profiled genome-scale DNA methylation patterns using the method of reduced representation bisulfite sequencing (RRBS). We found dynamic waves of de novo methylation and demethylation in four stages of RPE differentiation. Integrated analysis of DNA methylation and RPE transcriptomes revealed a reverse-correlation between levels of DNA methylation and expression of a subset of miRNA and mRNA genes that are important for RPE differentiation and function. Gene Ontology (GO) analysis suggested that genes undergoing dynamic methylation changes were related to RPE differentiation and maturation. We further compared methylation patterns among human ESC- and iPSC-derived RPE as well as primary fetal RPE (fRPE) cells, and discovered that specific DNA methylation pattern is useful to classify each of the three types of RPE cells. Our results demonstrate that DNA methylation may serve as biomarkers to characterize the cell differentiation process during the conversion of human pluripotent stem cells into functional RPE cells.
Collapse
Affiliation(s)
- Zhenshan Liu
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Suzhou Institute of Tongji University, Suzhou, Jiangsu, China
| | - Rongfeng Jiang
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Wang
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Feng
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ganlu Hu
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianmin Zhu
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kevin Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jieliang Ma
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guotong Xu
- Tongji Eye Institute and Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (QL); (ZX); (GF)
| | - Zhigang Xue
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Suzhou Institute of Tongji University, Suzhou, Jiangsu, China
- * E-mail: (QL); (ZX); (GF)
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Advanced Institute of Translational Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- * E-mail: (QL); (ZX); (GF)
| |
Collapse
|
32
|
Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials 2014; 35:2837-50. [DOI: 10.1016/j.biomaterials.2013.12.069] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022]
|
33
|
Kvanta A, Grudzinska MK. Stem cell-based treatment in geographic atrophy: promises and pitfalls. Acta Ophthalmol 2014; 92:21-6. [PMID: 23890249 DOI: 10.1111/aos.12185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Geographic atrophy is a common and untreatable form of advanced age-related macular degeneration. The degeneration primarily affects the retinal pigment epithelium and photoreceptors of the retina and their restoration by cell transplantation seems attractive. Recently, a patient with geographic atrophy was the first human to receive cells derived from human embryonic stem cells. In this short review, the rationale, potential and obstacles for stem cell-derived therapy in geographic atrophy are discussed.
Collapse
Affiliation(s)
- Anders Kvanta
- Department of Vitreoretinal Diseases, St. Erik Eye Hospital and Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
34
|
Current treatment limitations in age-related macular degeneration and future approaches based on cell therapy and tissue engineering. J Ophthalmol 2014; 2014:510285. [PMID: 24672707 PMCID: PMC3941782 DOI: 10.1155/2014/510285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/10/2013] [Indexed: 01/01/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruch's membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein.
Collapse
|
35
|
Stanzel BV, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N, Corneo B, Holz FG, Temple S, Stern JH, Blenkinsop TA. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Reports 2014; 2:64-77. [PMID: 24511471 PMCID: PMC3916756 DOI: 10.1016/j.stemcr.2013.11.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
Transplantation of the retinal pigment epithelium (RPE) is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC)-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC) as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET) membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT) and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies. Adult hRPESC-derived RPE had comparable in vitro characteristics to fetal hRPE hRPE monolayers survived 4 weeks on PET carriers under the rabbit retina Better xenograft survival may be due to the maintained hRPE cell polarity Atrophy of the retina overlaying the hRPE xenograft remains a future challenge
Collapse
Affiliation(s)
- Boris V Stanzel
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany
| | - Zengping Liu
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany
| | - Sudawadee Somboonthanakij
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany ; Mettapracharak Eye Institute, Raikhing, Nakhon Pathom 73210, Thailand
| | - Warapat Wongsawad
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany ; Mettapracharak Eye Institute, Raikhing, Nakhon Pathom 73210, Thailand
| | - Ralf Brinken
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Muenster, Muenster 48149, Germany
| | | | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | | |
Collapse
|
36
|
Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, Ahuja A, Zhu D, Liu L, Koss M, Maia M, Chader G, Hinton DR, Humayun MS. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 2013; 54:5087-96. [PMID: 23833067 DOI: 10.1167/iovs.12-11239] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To evaluate cell survival and tumorigenicity of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). METHODS Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). RESULTS The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. CONCLUSIONS hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects.
Collapse
Affiliation(s)
- Bruno Diniz
- Doheny Eye Institute, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Reynolds J, Lamba DA. Human embryonic stem cell applications for retinal degenerations. Exp Eye Res 2013; 123:151-60. [PMID: 23880530 DOI: 10.1016/j.exer.2013.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 12/12/2022]
Abstract
Loss of vision in severe retinal degenerations often is a result of photoreceptor cell or retinal pigment epithelial cell death or dysfunction. Cell replacement therapy has the potential to restore useful vision for these individuals especially after they have lost most or all of their light-sensing cells in the eye. A reliable, well-characterized source of retinal cells will be needed for replacement purposes. Human embryonic stem cells (ES cells) can provide an unlimited source of replacement retinal cells to take over the function of lost cells in the eye. The author's intent for this review is to provide an historical overview of the field of embryonic stem cells with relation to the retina. The review will provide a quick primer on key pathways involved in the development of the neural retina and RPE followed by a discussion of the various protocols out in the literature for generating these cells from non-human and human embryonic stem cells and end with in vivo application of ES cell-derived photoreceptors and RPE cells.
Collapse
Affiliation(s)
- Joseph Reynolds
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Deepak A Lamba
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| |
Collapse
|
38
|
Singh AK, Srivastava GK, Martín L, Alonso M, Pastor JC. Bioactive substrates for human retinal pigment epithelial cell growth from elastin-like recombinamers. J Biomed Mater Res A 2013; 102:639-46. [DOI: 10.1002/jbm.a.34726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/06/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Amar K. Singh
- IOBA-Eye Institute; University of Valladolid; Valladolid Spain
| | - Girish K. Srivastava
- IOBA-Eye Institute; University of Valladolid; Valladolid Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Valladolid Spain
- Regenerative Medicine and Cell Therapy Networking Center of “Castilla y León”; Spain
| | - Laura Martín
- BIOFORGE Group, University of Valladolid, Valladolid; Spain
| | - Matilde Alonso
- BIOFORGE Group, University of Valladolid, Valladolid; Spain
| | - J. Carlos Pastor
- IOBA-Eye Institute; University of Valladolid; Valladolid Spain
- Regenerative Medicine and Cell Therapy Networking Center of “Castilla y León”; Spain
| |
Collapse
|
39
|
Carr AJF, Smart MJK, Ramsden CM, Powner MB, da Cruz L, Coffey PJ. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci 2013; 36:385-95. [PMID: 23601133 DOI: 10.1016/j.tins.2013.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/11/2013] [Accepted: 03/18/2013] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in older adults and ultimately leads to the death of photoreceptor cells in the macular area of the neural retina. Currently, treatments are only available for patients with the wet form of AMD. In this review, we describe recent approaches to develop cell-based therapies for the treatment of AMD. Recent research has focused on replacing the retinal pigment epithelium (RPE), a monolayer of cells vital to photoreceptor cell health. We discuss the various methods used to differentiate and purify RPE from human embryonic stem cells (HESC), and describe the surgical approaches being used to transplant these cells in existing and forthcoming clinical trials.
Collapse
Affiliation(s)
- Amanda-Jayne F Carr
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Gullapalli VK, Khodair MA, Wang H, Sugino IK, Madreperla S, Zarbin MA. Transplantation Frontiers. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Seiler MJ, Aramant RB. Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 2012; 31:661-87. [PMID: 22771454 PMCID: PMC3472113 DOI: 10.1016/j.preteyeres.2012.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/23/2012] [Indexed: 12/18/2022]
Abstract
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a 'nursing' role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance - they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Anatomy & Neurobiology, Reeve-Irvine Research Center, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, 1101 Gross Hall, 845 Health Science Rd., Irvine, CA 92697-4265, USA.
| | | |
Collapse
|
42
|
Phillips MJ, Wallace KA, Dickerson SJ, Miller MJ, Verhoeven AD, Martin JM, Wright LS, Shen W, Capowski EE, Percin EF, Perez ET, Zhong X, Canto-Soler MV, Gamm DM. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 2012; 53:2007-19. [PMID: 22410558 DOI: 10.1167/iovs.11-9313] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE We sought to determine if human induced pluripotent stem cells (iPSCs) derived from blood could produce optic vesicle-like structures (OVs) with the capacity to stratify and express markers of intercellular communication. METHODS Activated T-lymphocytes from a routine peripheral blood sample were reprogrammed by retroviral transduction to iPSCs. The T-lymphocyte-derived iPSCs (TiPSCs) were characterized for pluripotency and differentiated to OVs using our previously published protocol. TiPSC-OVs were then manually isolated, pooled, and cultured en masse to more mature stages of retinogenesis. Throughout this stepwise differentiation process, changes in anterior neural, retinal, and synaptic marker expression were monitored by PCR, immunocytochemistry, and/or flow cytometry. RESULTS TiPSCs generated abundant OVs, which contained a near homogeneous population of proliferating neuroretinal progenitor cells (NRPCs). These NRPCs differentiated into multiple neuroretinal cell types, similar to OV cultures from human embryonic stem cells and fibroblast-derived iPSCs. In addition, portions of some TiPSC-OVs maintained their distinctive neuroepithelial appearance and spontaneously formed primitive laminae, reminiscent of the developing retina. Retinal progeny from TiPSC-OV cultures expressed numerous genes and proteins critical for synaptogenesis and gap junction formation, concomitant with the emergence of glia and the upregulation of thrombospondins in culture. CONCLUSIONS We demonstrate for the first time that human blood-derived iPSCs can generate retinal cell types, providing a highly convenient donor cell source for iPSC-based retinal studies. We also show that cultured TiPSC-OVs have the capacity to self-assemble into rudimentary neuroretinal structures and express markers indicative of chemical and electrical synapses.
Collapse
Affiliation(s)
- M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Piquet AL, Venkiteswaran K, Marupudi NI, Berk M, Subramanian T. The immunological challenges of cell transplantation for the treatment of Parkinson's disease. Brain Res Bull 2012; 88:320-31. [PMID: 22521427 DOI: 10.1016/j.brainresbull.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/24/2023]
Abstract
Dopaminergic cell transplantation is an experimental therapy for Parkinson's disease (PD). It has many potential theoretical advantages over current treatment strategies such as providing continuous local dopaminergic replenishment, eliminating motor fluctuations and medication-induced dyskinesias, slowing down disease progression or even reversing disease pathology in the host. Recent studies also show that dopaminergic cell transplants provide long-term neuromodulation in the basal ganglia that simulates the combined effects of oral dopaminergic therapy and surgical therapies like deep brain stimulation, the contemporary therapeutic approach to advanced PD. However, dopaminergic cell transplantation in PD as not been optimized and current experimental techniques have many drawbacks. In published experiments to date of attempted dopaminergic grafting in PD, the major challenges are unacceptable graft-induced dyskinesias or failure of such grafts to exceed the benefits afforded by sham surgery. A deleterious host immune response to the transplant has been implicated as a major putative cause for these adverse outcomes. This article focuses on recent advances in understanding the immunology of the transplantation in PD and possible methods to overcome adverse events such that we could translate cell replacement strategies into viable clinical treatments in the future.
Collapse
Affiliation(s)
- Amanda L Piquet
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, United States
| | | | | | | | | |
Collapse
|
44
|
Plafker SM, O'Mealey GB, Szweda LI. Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:135-77. [PMID: 22878106 DOI: 10.1016/b978-0-12-394309-5.00004-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Clinical and experimental evidence supports that chronic oxidative stress is a primary contributing factor to numerous retinal degenerative diseases, such as age-related macular degeneration (AMD). Eyes obtained postmortem from AMD patients have extensive free radical damage to the proteins, lipids, DNA, and mitochondria of their retinal pigment epithelial (RPE) cells. In addition, several mouse models of chronic oxidative stress develop many of the pathological hallmarks of AMD. However, the extent to which oxidative stress is an etiologic component versus its involvement in disease progression remains a major unanswered question. Further, whether the primary target of oxidative stress and damage is photoreceptors or RPE cells, or both, is still unclear. In this review, we discuss the major functions of RPE cells with an emphasis on the oxidative challenges these cells encounter and the endogenous antioxidant mechanisms employed to neutralize the deleterious effects that such stresses can elicit if left unchecked.
Collapse
Affiliation(s)
- Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | | | |
Collapse
|
45
|
Skottman H. Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells into Retinal Pigment Epithelium. STEM CELLS AND CANCER STEM CELLS, VOLUME 7 2012. [DOI: 10.1007/978-94-007-4285-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Stout JT, Francis PJ. Surgical approaches to gene and stem cell therapy for retinal disease. Hum Gene Ther 2011; 22:531-5. [PMID: 21480778 DOI: 10.1089/hum.2011.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|