1
|
Sekhon AS, He B, Iovieno A, Yeung SN. Pathophysiology of Corneal Endothelial Cell Loss in Dry Eye Disease and Other Inflammatory Ocular Disorders. Ocul Immunol Inflamm 2023; 31:21-31. [PMID: 34678119 DOI: 10.1080/09273948.2021.1980808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Dry eye disease (DED) and other inflammatory ocular disorders have been reported to be associated with decreased corneal endothelial cell density (CECD), however the mechanism of underlying endothelial cell loss remains unknown. METHODS We conducted a comprehensive literature search of English-written publications on dry eye disease, corneal endothelial cell loss, Sjögren's syndrome, and Graft Vs Host Disease (GVHD), to review the effects of DED and other inflammatory ocular surface conditions on CECD. RESULTS A total of 78 studies were included in our study. Loss of corneal neurotrophic support, cytotoxic stress, and a heightened immune response, all of which may occur secondarily to a common causative agent such as inflammation, are major contributors to reduced CECD. CONCLUSION More studies are needed to determine how the interrelated pathways of altered corneal nerve function and upregulated expression of inflammatory activity influence corneal endothelial cell loss.
Collapse
Affiliation(s)
- Amardeep S Sekhon
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Bonnie He
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alfonso Iovieno
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Sonia N Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
3
|
Lužnik Marzidovšek Z, Blanco T, Sun Z, Alemi H, Ortiz G, Nakagawa H, Chauhan SK, Taylor AW, Jurkunas UV, Yin J, Dana R. The Neuropeptide Alpha-Melanocyte-Stimulating Hormone Is Critical for Corneal Endothelial Cell Protection and Graft Survival after Transplantation. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:270-280. [PMID: 34774519 PMCID: PMC8908049 DOI: 10.1016/j.ajpath.2021.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Corneal transplantation is the most common form of tissue transplantation. The success of corneal transplantation mainly relies on the integrity of corneal endothelial cells (CEnCs), which maintain tissue transparency by pumping out excess water from the cornea. After transplantation, the rate of CEnC loss far exceeds that seen with normal aging, which can threaten sight. The underlying mechanisms are poorly understood. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide that is constitutively found in the aqueous humor with both cytoprotective and immunomodulatory effects. The curent study found high expression of melanocortin 1 receptor (MC1R), the receptor for α-MSH, on CEnCs. The effect of α-MSH/MC1R signaling on endothelial function and allograft survival in vitro and in vivo was investigated using MC1R signaling-deficient mice (Mc1re/e mice with a nonfunctional MC1R). Herein, the results indicate that in addition to its well-known immunomodulatory effect, α-MSH has cytoprotective effects on CEnCs after corneal transplantation, and the loss of MC1R signaling significantly decreases long-term graft survival in vivo. In conclusion, α-MSH/MC1R signaling is critical for CEnC function and graft survival after corneal transplantation.
Collapse
Affiliation(s)
- Zala Lužnik Marzidovšek
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Zhongmou Sun
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Gustavo Ortiz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hayate Nakagawa
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sunil K. Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Andrew W. Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Ula V. Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Address correspondence to Reza Dana, M.D., M.P.H., M.Sc., or Jia Yin, M.D., Ph.D., M.P.H., Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114.
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Address correspondence to Reza Dana, M.D., M.P.H., M.Sc., or Jia Yin, M.D., Ph.D., M.P.H., Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114.
| |
Collapse
|
4
|
Satitpitakul V, Sun Z, Suri K, Amouzegar A, Katikireddy KR, Jurkunas UV, Kheirkhah A, Dana R. Vasoactive Intestinal Peptide Promotes Corneal Allograft Survival. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2016-2024. [PMID: 30097165 DOI: 10.1016/j.ajpath.2018.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
Corneal transplantation is the most prevalent form of tissue transplantation. The success of corneal transplantation mainly relies on the integrity of corneal endothelial cells (CEnCs), which maintain graft transparency. CEnC density decreases significantly after corneal transplantation even in the absence of graft rejection. To date, different strategies have been used to enhance CEnC survival. The neuropeptide vasoactive intestinal peptide (VIP) improves CEnC integrity during donor cornea tissue storage and protects CEnCs against oxidative stress-induced apoptosis. However, little is known about the effect of exogenous administration of VIP on corneal transplant outcomes. We found that VIP significantly accelerates endothelial wound closure and suppresses interferon-γ- and tumor necrosis factor-α-induced CEnC apoptosis in vitro in a dose-dependent manner. In addition, we found that intracameral administration of VIP to mice undergoing syngeneic corneal transplantation with endothelial injury increases CEnC density and decreases graft opacity scores. Finally, using a mouse model of allogeneic corneal transplantation, we found for the first time that treatment with VIP significantly suppresses posttransplantation CEnC loss and improves corneal allograft survival.
Collapse
Affiliation(s)
- Vannarut Satitpitakul
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Zhongmou Sun
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Kunal Suri
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Kishore R Katikireddy
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ula V Jurkunas
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ahmad Kheirkhah
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Hypoxia and the Prolyl Hydroxylase Inhibitor FG-4592 Protect Corneal Endothelial Cells From Mechanical and Perioperative Surgical Stress. Cornea 2018; 37:501-507. [PMID: 29504956 DOI: 10.1097/ico.0000000000001430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine whether hypoxia preconditioning can protect corneal endothelial cells from mechanical stress and perioperative procedures mimicking Descemet stripping automated endothelial keratoplasty (DSAEK). METHODS Preconditioning was delivered by 2 hours of 0.5% oxygen incubation in a hypoxia chamber or by exposure to the prolyl hydroxylase inhibitor FG-4592, which prevents hypoxia-inducible factor-1 alpha degradation. Damage to whole corneas was produced by brief sonication. To mimic use with DSAEK, FG-4592-preconditioned and control donor corneas were dissected with a microkeratome, and the posterior donor button was pulled through a transplant insertion device (Busin glide). The area of endothelial damage was determined by trypan blue staining. RESULTS In all cases, hypoxia preconditioning or incubation with FG-4592 protected corneal endothelial cells from death by mechanical stress. Hypoxia-preconditioned human and rabbit corneas showed 19% and 29% less cell loss, respectively, relative to controls, which were both significant at P < 0.05. FG-4592 preconditioning reduced endothelial cell loss associated with preparation and insertion of DSAEK grafts by 23% relative to the control (P < 0.01). CONCLUSIONS These results support the hypothesis that preconditioning by hypoxia or exposure to FG-4592 improves corneal endothelial cell survival and may also provide protection during surgical trauma.
Collapse
|
6
|
Maugeri G, Longo A, D'Amico AG, Rasà DM, Reibaldi M, Russo A, Bonfiglio V, Avitabile T, D'Agata V. Trophic effect of PACAP on human corneal endothelium. Peptides 2018; 99:20-26. [PMID: 29126993 DOI: 10.1016/j.peptides.2017.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Cornea's posterior surface includes endothelium maintaining stromal hydration and clarity. Due to their limited proliferative capability, the loss of endothelial cells can outcome in permanent opacity. In the last years, different studies have demonstrated the protective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in different ocular diseases. However, its role on human corneal endothelial cells (HCECs) has not been investigated, yet. Here, we have developed a culture protocol to differentiate HCECs from donor's cornea. PACAP treatment prevented damage induced by growth factors deprivation of cells grown on transwell supports as revealed by TERR measurements. Moreover, this peptide significantly increased tight junction proteins expression by conferring resistance to endothelial barrier. This effect is also related to promotion of cell viability as demonstrated by MTT assay. Furthermore, PACAP stimulated repairing of corneal endothelium lesion as shown by wound healing analysis. In conclusion, our data suggest that this peptide could represent an important trophic factor in maintaining functionality of human corneal endothelium.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Agata Grazia D'Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Italy
| | - Daniela Maria Rasà
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Andrea Russo
- Eye Clinic, University of Catania, Catania, Italy
| | | | | | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
7
|
Corneal Endothelial Cell Integrity in Precut Human Donor Corneas Enhanced by Autocrine Vasoactive Intestinal Peptide. Cornea 2017; 36:476-483. [PMID: 28181929 PMCID: PMC5334175 DOI: 10.1097/ico.0000000000001136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To demonstrate that vasoactive intestinal peptide (VIP), a corneal endothelial (CE) cell autocrine factor, maintains the integrity of corneal endothelium in human donor corneoscleral explants precut for endothelial keratoplasty. METHODS Twelve paired human donor corneoscleral explants used as control versus VIP-treated explants (10 nM, 30 minutes, 37°C) were shipped (4°C) to the Lions Eye Institute for Transplantation and Research for precutting (Moria CBM-ALTK Keratome), shipped back to the laboratory, and cultured in ciliary neurotrophic factor (CNTF, 0.83 nM, 37°C, 24 hours). Trephined endothelial discs (8-8.5 mm) were analyzed for differentiation markers (N-cadherin, CNTF receptor α subunit [CNTFRα], and connexin 43) by Western blot after a quarter of the discs from 4 paired explants were cut away and stained with alizarin red S for microscopic damage analysis. Two additional paired explants (6 days in culture) were stained for panoramic view of central CE damage. RESULTS VIP treatment increased N-cadherin and CNTFRα levels (mean ± SEM) to 1.38 ± 0.11-fold (P = 0.003) and 1.46 ± 0.22-fold (P = 0.03) of paired controls, respectively, whereas CE cell CNTF responsiveness in upregulation of connexin 43 increased to 2.02 ± 0.5 (mean ± SEM)-fold of the controls (P = 0.04). CE damage decreased from (mean ± SEM) 10.0% ± 1.2% to 1.6% ± 0.3% (P < 0.0001) and 9.1% ± 1.1% to 2.4% ± 1.0% (P = 0.0006). After 6 days in culture, the damage in whole CE discs decreased from 20.0% (control) to 5.5% (VIP treated). CONCLUSIONS VIP treatment before precut enhanced the preservation of corneal endothelium.
Collapse
|
8
|
Bhogal M, Balda MS, Matter K, Allan BD. Global cell-by-cell evaluation of endothelial viability after two methods of graft preparation in Descemet membrane endothelial keratoplasty. Br J Ophthalmol 2016; 100:572-8. [PMID: 26740609 PMCID: PMC4819631 DOI: 10.1136/bjophthalmol-2015-307534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022]
Abstract
Purpose To describe a novel method of global cell viability assessment for Descemet membrane endothelial keratoplasty (DMEK) and the comparison of two contemporary methods of donor tissue preparation. Methods DMEK transplants were prepared using two different methods: liquid bubble separation and manual peeling (n=8 each group). Samples were incubated with Hoechst, calcein-AM and ethidium homodimer prior to mounting on a curved imaging chamber. Z-stacked fluorescence microscopy images were combined to produce an in-focus global image capable of resolving all cell nuclei. Image processing software was used to define a calcein-positive live cell area, count all cell nuclei within this area and subtract ethidium-positive dead cells to derive the total viable endothelial cell count. Corrected global cell density was calculated by dividing the number of viable cells by the graft area, which had been corrected for imaging a curved surface. Results Corrected global cell density was lower than the central endothelial cell density in both groups: 85.5% of the pre-preparation central endothelial cell density in the peel group and 75.8% in the bubble group. Corrected global cell density was significantly lower in the liquid bubble separation group than in the peel group (p=0.04). Conclusions Eye bank estimations of central endothelial cell density overestimate true cell density after graft preparation in DMEK. A peel method is less damaging and more consistent than a liquid bubble method. Cell loss correlated strongly with the degree of stromal hydration prior to bubble separation in the liquid bubble group.
Collapse
Affiliation(s)
- Maninder Bhogal
- Department of Corneal and External Disease, Moorfields Eye Hospital, London, UK Department of Cell Biology, University College London, Institute of Ophthalmology, London, UK
| | - Maria S Balda
- Department of Cell Biology, University College London, Institute of Ophthalmology, London, UK
| | - Karl Matter
- Department of Cell Biology, University College London, Institute of Ophthalmology, London, UK
| | - Bruce D Allan
- Department of Corneal and External Disease, Moorfields Eye Hospital, London, UK Department of Cell Biology, University College London, Institute of Ophthalmology, London, UK
| |
Collapse
|
9
|
Müller RT, Pourmirzaie R, Pavan-Langston D, Cavalcanti BM, Aggarwal S, Colón C, Jamali A, Cruzat A, Hamrah P. In Vivo Confocal Microscopy Demonstrates Bilateral Loss of Endothelial Cells in Unilateral Herpes Simplex Keratitis. Invest Ophthalmol Vis Sci 2015. [PMID: 26225629 DOI: 10.1167/iovs.15-16527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To report bilateral corneal endothelial cell density (ECD), as well as its correlation with subbasal nerve changes, in patients with unilateral herpes simplex keratitis (HSK). METHODS Thirty-six eyes of 36 patients with corneal scarring caused by HSK, as well as their respective contralateral clinically unaffected eyes, were prospectively studied and compared with 26 eyes of 26 healthy volunteers. In vivo confocal microscopy and corneal sensation of the central cornea were performed bilaterally in all patients and in one random eye of controls. The ECD and subbasal corneal nerve density, including the lengths of total nerves, main trunks, and branches were evaluated and correlated to central corneal sensation. RESULTS The ECD was significantly lower in eyes affected with HSK than in controls (2304 ± 578 vs. 2940 ± 370 cells/mm(2), P < 0.0001). Surprisingly, lower ECD was also detected in contralateral clinically unaffected eyes (2548 ± 423), compared to controls (P = 0.02). Both affected and contralateral eyes showed decrease in total nerve length, compared to controls (10.0 ± 6.3 vs. 17.6 ± 6.3 vs. 21.9 ± 4.3 mm/mm2, respectively; P < 0.05 for all). The ECD correlated positively with total nerve length (r = 0.39, P = 0.0009) and with corneal sensation (r = 0.31, P = 0.009). CONCLUSIONS In vivo confocal microscopy findings demonstrated alterations in corneal ECD in both affected and clinically unaffected contralateral eyes of patients with unilateral HSK. Moreover, the positive significant correlation between the ECD and the subbasal nerve density may suggest a potential link between corneal innervation and corneal endothelial cell homeostasis.
Collapse
Affiliation(s)
- Rodrigo T Müller
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Roxanna Pourmirzaie
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Deborah Pavan-Langston
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Bernardo M Cavalcanti
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Shruti Aggarwal
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Clara Colón
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Arsia Jamali
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Andrea Cruzat
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Pedram Hamrah
- Ocular Surface Imaging Center, Cornea & Refractive Surgery Service, Massachusetts Eye & Ear, Harvard Medical School, Boston, Massachusetts, United States 2Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medic
| |
Collapse
|
10
|
D'hondt C, Iyyathurai J, Himpens B, Leybaert L, Bultynck G. Cx43-hemichannel function and regulation in physiology and pathophysiology: insights from the bovine corneal endothelial cell system and beyond. Front Physiol 2014; 5:348. [PMID: 25309448 PMCID: PMC4162354 DOI: 10.3389/fphys.2014.00348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
Intercellular communication in primary bovine corneal endothelial cells (BCECs) is mainly driven by the release of extracellular ATP through Cx43 hemichannels. Studying the characteristics of Ca2+-wave propagation in BCECs, an important form of intercellular communication, in response to physiological signaling events has led to the discovery of important insights in the functional properties and regulation of native Cx43 hemichannels. Together with ectopic expression models for Cx43 hemichannels and truncated/mutated Cx43 versions, it became very clear that loop/tail interactions play a key role in controlling the activity of Cx43 hemichannels. Interestingly, the negative regulation of Cx43 hemichannels by enhanced actin/myosin contractility seems to impinge upon loss of these loop/tail interactions essential for opening Cx43 hemichannels. Finally, these molecular insights have spurred the development of novel peptide tools that can selectively inhibit Cx43 hemichannels, but neither Cx43 gap junctions nor hemichannels formed by other Cx isoforms. These tools now set the stage to hunt for novel physiological functions for Cx43 hemichannels in primary cells and tissues and to tackle disease conditions associated with excessive, pathological Cx43-hemichannel openings.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Belgium
| | - Jegan Iyyathurai
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Belgium
| | - Bernard Himpens
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University Ghent, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Belgium
| |
Collapse
|
11
|
Yamaguchi T, Turhan A, Harris DL, Hu K, Prüss H, von Andrian U, Hamrah P. Bilateral nerve alterations in a unilateral experimental neurotrophic keratopathy model: a lateral conjunctival approach for trigeminal axotomy. PLoS One 2013; 8:e70908. [PMID: 23967133 PMCID: PMC3743879 DOI: 10.1371/journal.pone.0070908] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/24/2013] [Indexed: 01/11/2023] Open
Abstract
To study bilateral nerve changes in a newly developed novel mouse model for neurotrophic keratopathy by approaching the trigeminal nerve from the lateral fornix. Surgical axotomy of the ciliary nerve of the trigeminal nerve was performed in adult BALB/c mice at the posterior sclera. Axotomized, contralateral, and sham-treated corneas were excised on post-operative days 1, 3, 5, 7 and 14 and immunofluorescence histochemistry was performed with anti-β-tubulin antibody to evaluate corneal nerve density. Blink reflex was evaluated using a nylon thread. The survival rate was 100% with minimal bleeding during axotomy and a surgical time of 8±0.5 minutes. The blink reflex was diminished at day 1 after axotomy, but remained intact in the contralateral eyes in all mice. The central and peripheral subbasal nerves were not detectable in the axotomized cornea at day 1 (p<0.001), compared to normal eyes (101.3±14.8 and 69.7±12.0 mm/mm² centrally and peripherally). Interestingly, the subbasal nerve density in the contralateral non-surgical eyes also decreased significantly to 62.4±2.8 mm/mm² in the center from day 1 (p<0.001), but did not change in the periphery (77.3±11.7 mm/mm², P = 0.819). Our novel trigeminal axotomy mouse model is highly effective, less invasive, rapid, and has a high survival rate, demonstrating immediate loss of subbasal nerves in axotomized eyes and decreased subbasal nerves in contralateral eyes after unilateral axotomy. This model will allow investigating the effects of corneal nerve damage and serves as a new model for neurotrophic keratopathy.
Collapse
Affiliation(s)
- Takefumi Yamaguchi
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aslihan Turhan
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deshea L. Harris
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kai Hu
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harald Prüss
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Ulrich von Andrian
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pedram Hamrah
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Koh SWM. Corneal endothelial autocrine trophic factor VIP in a mechanism-based strategy to enhance human donor cornea preservation for transplantation. Exp Eye Res 2011; 95:48-53. [PMID: 22036689 DOI: 10.1016/j.exer.2011.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 12/13/2022]
Abstract
Vasoactive intestinal peptide (VIP) and ciliary neurotrophic factor (CNTF) are identified as autocrines of human corneal endothelial (CE) cells working in concert to maintain the differentiated state and promote the survival of the corneal endothelium. From VIP gene knockdown study, endogenous VIP is shown to maintain the level of the differentiation marker, the adhesion molecule N-cadherin, CE cell size, shape, and retention, in situ in the human donor corneoscleral explants. Exogenous VIP protects the corneal endothelium against the killing effect of oxidative stress, in part by upholding ATP levels in CE cells dying of oxidative stress-induced injury, allowing them to die of an apoptotic death instead of an acute necrotic one. The switch from the acute necrosis to the programmed cell death (apoptosis) may have allowed the injured CE cell to be rescued by the VIP-upregulated pathways, including those of Bcl-2 and N-cadherin, and resulted in long-term CE cell survival. The endogenous VIP in CE cells is upregulated by CNTF, which is released by CE cells surviving the oxidative stress. The CNTF receptor (CNTFRα) is expressed in CE cells in human donor corneoscleral explant and gradually becomes lost during corneal storage. VIP treatment (10(-8) M, 37 °C, 30 min) prior to storage of freshly dissected human donor corneoscleral explants increases their CE cell CNTFRα level and responsiveness to CNTF in upregulating the gap junctional protein connexin-43 expression. VIP treatment of both fresh and preserved corneoscleral explants reduces CE damage in the corneoscleral explants and in the corneal buttons trephined from them. CE cell loss is a critical risk factor in corneal graft failure at any time in the life of the graft, which can be as late as 5-10 years after an initially successful transplant. A new procedure, Descemet's stripping automated endothelial keratoplasty (DSAEK), which is superior to the traditional full thickness transplantation in many aspects, nevertheless subjects the corneal endothelium to extensive mechanical forces, resulting in even more pronounced CE cell loss than the traditional technique. Whereas it is known that cells transduce mechanical stress through N-cadherin, stimulation of the N-cadherin pathway increases the anti-apoptotic protein Bcl-2 expression. Since N-cadherin and Bcl-2 in the corneal endothelium are both upregulated by VIP, we aim to strengthen the CE sheet by VIP treatments of the corneoscleral explants for full thickness traditional corneal transplantation and pre-cut corneas for DSAEK.
Collapse
Affiliation(s)
- Shay-Whey Margaret Koh
- Department of Ophthalmology & Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|