1
|
Wang T, Kimmel HRC, Park C, Ryoo H, Liu J, Underhill GH, Pattabiraman PP. Regulatory role of cholesterol in modulating actin dynamics and cell adhesive interactions in the trabecular meshwork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578717. [PMID: 38352310 PMCID: PMC10862777 DOI: 10.1101/2024.02.02.578717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The trabecular meshwork (TM) tissue plays a crucial role in maintaining intraocular pressure (IOP) homeostasis. Increased TM contractility and stiffness are directly correlated with elevated IOP. Although cholesterol is known to be a determinant of glaucoma occurrence and elevated IOP, the underlying mechanisms remain elusive. In this study, we used human TM (HTM) cells to unravel the effects of cholesterol on TM stiffness. We achieved this by performing acute cholesterol depletion with Methyl-β-cyclodextrin (MβCD) and cholesterol enrichment/replenishment with MβCD cholesterol complex (CHOL). Interestingly, cholesterol depletion triggered notable actin depolymerization and decreased focal adhesion formation, while enrichment/replenishment promoted actin polymerization, requiring the presence of actin monomers. Using a specific reporter of phosphatidylinositol 4,5-bisphosphate (PIP2), we demonstrated that cholesterol depletion decreases PIP2 levels on the cell membrane, whereas enrichment increases them. Given the critical role of PIP2 in actin remodeling and focal adhesion formation, we postulate that cholesterol regulates actin dynamics by modulating PIP2 levels on the membrane. Furthermore, we showed that cholesterol levels regulate integrin α5β1 and αVβ3 distribution and activation, subsequently altering cell-extracellular matrix (ECM) interactions. Notably, the depletion of cholesterol, as a major lipid constituent of the cell membrane, led to a decrease in HTM cell membrane tension, which was reversed upon cholesterol replenishment. Overall, our systematic exploration of cholesterol modulation on TM stiffness highlights the critical importance of maintaining appropriate membrane and cellular cholesterol levels for achieving IOP homeostasis.
Collapse
Affiliation(s)
- Ting Wang
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| | - Hannah R C Kimmel
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Charles Park
- Deparment of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana, 47907, United States of America
| | - Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Jing Liu
- Deparment of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana, 47907, United States of America
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Padmanabhan P Pattabiraman
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| |
Collapse
|
2
|
Schmitt HM, Hake KM, Perkumas KM, Lê BM, Suarez MF, De Ieso ML, Rahman RS, Johnson WM, Gomez-Caraballo M, Ashley-Koch AE, Hauser MA, Stamer WD. Lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) lncRNA differentially regulates gene and protein expression, signaling and morphology of human ocular cells. Hum Mol Genet 2023; 32:3053-3062. [PMID: 37540217 PMCID: PMC10586201 DOI: 10.1093/hmg/ddad128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Pseudoexfoliation glaucoma (PEXG) is characterized by dysregulated extracellular matrix (ECM) homeostasis that disrupts conventional outflow function and increases intraocular pressure (IOP). Prolonged IOP elevation results in optic nerve head damage and vision loss. Uniquely, PEXG is a form of open angle glaucoma that has variable penetrance, is difficult to treat and does not respond well to common IOP-lowering pharmaceuticals. Therefore, understanding modulators of disease severity will aid in targeted therapies for PEXG. Genome-wide association studies have identified polymorphisms in the long non-coding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) as a risk factor for PEXG. Risk alleles, oxidative stress and mechanical stretch all alter LOXL1-AS1 expression. As a long non-coding RNA, LOXL1-AS1 binds hnRNPL and regulates global gene expression. In this study, we focus on the role of LOXL1-AS1 in the ocular cells (trabecular meshwork and Schlemm's canal) that regulate IOP. We show that selective knockdown of LOXL1-AS1 leads to cell-type-specific changes in gene expression, ECM homeostasis, signaling and morphology. These results implicate LOXL1-AS1 as a modulator of cellular homeostasis, altering cell contractility and ECM turnover, both of which are well-known contributors to PEXG. These findings support LOXL1-AS1 as a key target for modifying the disease.
Collapse
Affiliation(s)
- Heather M Schmitt
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kristyn M Hake
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Brandon M Lê
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Maria F Suarez
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Rashad S Rahman
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| | - William M Johnson
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Michael A Hauser
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Ren R, Humphrey AA, Kopczynski C, Gong H. Rho Kinase Inhibitor AR-12286 Reverses Steroid-Induced Changes in Intraocular Pressure, Effective Filtration Areas, and Morphology in Mouse Eyes. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 36734964 PMCID: PMC9907372 DOI: 10.1167/iovs.64.2.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Purpose We investigated mechanisms of reduction of intraocular pressure (IOP) by Rho kinase inhibitor AR-12286 in steroid-induced ocular hypertension (SIOH). Methods C57BL/6 mice (N = 56) were randomly divided into Saline, dexamethasone (DEX), DEX + AR-12286, and DEX-discontinuation (DEX-DC) groups. IOP was measured weekly during the first four weeks in all groups. Beginning at week 5, the DEX-DC group was followed without treatment until IOP returned to normal, and the other groups were treated as assigned with IOP measured every other day for another week. Fluorescent tracer was injected into the anterior chamber to visualize the outflow pattern in the trabecular meshwork (TM) and TM effective filtration area (EFA) was determined. Radial sections from both high- and low-tracer regions were processed for electron microscopy. Results AR-12286 reduced IOP in SIOH mouse eyes in one day (P < 0.01). At the end of week 5, mean IOP in the DEX + AR-12286 group was ∼4 mm Hg lower than DEX group (P < 0.001) and ∼2 mm Hg lower than DEX-DC group (P < 0.05). After one-week AR-12286 treatment (P < 0.05) or five-week DC of DEX (P < 0.01), DEX-induced reduction of EFA was rescued and DEX-induced morphological changes in the TM were partially reversed. Conclusions AR-12286 reversed steroid-induced morphological changes in the TM and reduced EFA, which correlated with reduced IOP in SIOH eyes. AR-12286 reduced IOP elevation in SIOH eyes more effectively than discontinuing DEX treatment even when accompanied by continuous DEX treatment. Therefore Rho kinase inhibitors may lower SIOH in patients who rely on steroid treatment.
Collapse
Affiliation(s)
- Ruiyi Ren
- Boston University School of Medicine, Department of Ophthalmology, Boston, Massachusetts, United States
| | - Anne A. Humphrey
- Boston University School of Medicine, Department of Ophthalmology, Boston, Massachusetts, United States
| | - Casey Kopczynski
- Aerie Pharmaceuticals, Inc., Durham, North Carolina, United States
| | - Haiyan Gong
- Boston University School of Medicine, Department of Ophthalmology, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Yang YF, Sun YY, Peters DM, Keller KE. The Effects of Mechanical Stretch on Integrins and Filopodial-Associated Proteins in Normal and Glaucomatous Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886706. [PMID: 35573666 PMCID: PMC9100841 DOI: 10.3389/fcell.2022.886706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023] Open
Abstract
The trabecular meshwork (TM) is the tissue responsible for regulating aqueous humor fluid egress from the anterior eye. If drainage is impaired, intraocular pressure (IOP) becomes elevated, which is a primary risk factor for primary open angle glaucoma. TM cells sense elevated IOP via changes in their biomechanical environment. Filopodia cellular protrusions and integrin transmembrane proteins may play roles in detecting IOP elevation, yet this has not been studied in detail in the TM. Here, we investigate integrins and filopodial proteins, such as myosin-X (Myo10), in response to mechanical stretch, an in vitro technique that produces mechanical alterations mimicking elevated IOP. Pull-down assays showed Myo10 binding to α5 but not the β1 subunit, αvβ3, and αvβ5 integrins. Several of these integrins colocalized in nascent adhesions in the filopodial tip and shaft. Using conformation-specific antibodies, we found that β1 integrin, but not α5 or αvβ3 integrins, were activated following 1-h mechanical stretch. Cadherin -11 (CDH11), a cell adhesion molecule, did not bind to Myo10, but was associated with filopodia. Interestingly, CDH11 was downregulated on the TM cell surface following 1-h mechanical stretch. In glaucoma cells, CDH11 protein levels were increased. Finally, mechanical stretch caused a small, yet significant increase in Myo10 protein levels in glaucoma cells, but did not affect cellular communication of fluorescent vesicles via filopodia-like tunneling nanotubes. Together, these data suggest that TM cell adhesion proteins, β1 integrin and CDH11, have relatively rapid responses to mechanical stretch, which suggests a central role in sensing changes in IOP elevation in situ.
Collapse
Affiliation(s)
- Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Kate E. Keller,
| |
Collapse
|
5
|
Yemanyi F, Baidouri H, Burns AR, Raghunathan V. Dexamethasone and Glucocorticoid-Induced Matrix Temporally Modulate Key Integrins, Caveolins, Contractility, and Stiffness in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2021; 61:16. [PMID: 33170205 PMCID: PMC7686803 DOI: 10.1167/iovs.61.13.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To determine the temporal effects of dexamethasone (DEX) and glucocorticoid-induced matrix (GIM) on integrins/integrin adhesomes, caveolins, cytoskeletal-related proteins, and stiffness in human trabecular meshwork (hTM) cells. Methods Primary hTM cells were plated on plastic dishes (TCP), treated with vehicle (Veh) or 100 nM DEX in 1% serum media for 1, 3, 5, and 7 day(s). Concurrently, hTM cells were also plated on vehicle control matrices (VehMs) and GIMs for similar time points; VehMs and GIMs had been generated from chronic cultures of Veh-/DEX-stimulated hTM cells and characterized biochemically. Subsets of cells prior to plating on TCP or VehMs / GIMs served as baseline. Protein expression of mechanoreceptors, cytoskeletal-related proteins, and elastic moduli of hTM cells were determined. Results Compared with Veh, DEX temporally overexpressed αV, β3, and β5 integrins from day 3 to day 7, and integrin linked kinase at day 7, in hTM cells. However, DEX decreased β1 integrin at day 1 and day 7, while increasing Cavin1 at day 7, in a time-independent manner. Further, DEX temporally upregulated α-smooth muscle actin(α-SMA) and RhoA at day 7 and day 5, respectively; while temporally downregulating Cdc42 at day 3 and day 7 in hTM cells. Conversely, GIM showed increased immunostaining of fibronectin extra-domain A and B isoforms. Compared with VehM, GIM temporally increased αV integrin, Cavin1, and RhoA from day 3 to day 7, at day 3 and day 7, and at day 5, respectively, in hTM cells. Further, GIM overexpressed α-SMA at day 3 and day 7, and stiffened hTM cells from day 1 to day 7, in a time-independent fashion. Conclusions Our data highlight crucial mechanoreceptors, integrin adhesomes, and actin-related proteins that may temporally sustain fibrotic phenotypes precipitated by DEX and/or GIM in hTM cells.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - Hasna Baidouri
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - Alan R Burns
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, University of Houston College of Optometry, Houston, Texas, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas, United States
| |
Collapse
|
6
|
Vollmer TR, Zhou EH, Rice DS, Prasanna G, Chen A, Wilson CW. Application of Cell Impedance as a Screening Tool to Discover Modulators of Intraocular Pressure. J Ocul Pharmacol Ther 2020; 36:269-281. [PMID: 32176566 DOI: 10.1089/jop.2019.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose: To identify new targets and compounds involved in mediating cellular contractility or relaxation in trabecular meshwork (TM) cells and test their efficacy in an ex vivo model measuring outflow facility. Methods: A low-molecular weight compound library composed of 3,957 compounds was screened for cytoskeletal changes using the Acea xCelligence impedance platform in immortalized human NTM5 TM cells. Hits were confirmed by 8-point concentration response and were subsequently evaluated for impedance changes in 2 primary human TM strains, as well as cross-reactivity in bovine primary cells. A recently described bovine whole eye perfusion system was used to evaluate effects of compounds on aqueous outflow facility. Results: The primary screen conducted was robust, with Z' values >0.5. Fifty-two compounds were identified in the primary screen and confirmed to have concentration-dependent effects on impedance in NTM5 cells. Of these, 9 compounds representing distinct drug classes were confirmed to modulate impedance in both human primary TM cells and bovine cells. One of these compounds, wortmannin, an inhibitor of phosphoinositide 3-kinase, increased outflow facility by 11%. Conclusions: A robust phenotypic assay was developed that enabled identification of contractility modulators in immortalized TM cells. The screening hits were translatable to primary TM cells and modulated outflow facility in an ex vivo perfusion assay.
Collapse
Affiliation(s)
- Thomas R Vollmer
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Enhua H Zhou
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Dennis S Rice
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Ganesh Prasanna
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Amy Chen
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Christopher W Wilson
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|
7
|
Yemanyi F, Vranka J, Raghunathan V. Generating cell-derived matrices from human trabecular meshwork cell cultures for mechanistic studies. Methods Cell Biol 2020; 156:271-307. [PMID: 32222223 DOI: 10.1016/bs.mcb.2019.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ocular hypertension has been attributed to increased resistance to aqueous outflow often as a result of changes in trabecular meshwork (TM) extracellular matrix (ECM) using in vivo animal models (for example, by genetic manipulation) and ex vivo anterior segment perfusion organ cultures. These are, however, complex and difficult in dissecting molecular mechanisms and interactions. In vitro approaches to mimic the underlying substrate exist by manipulating either ECM topography, mechanics, or chemistry. These models best investigate the role of individual ECM protein(s) and/or substrate property, and thus do not recapitulate the multifactorial extracellular microenvironment; hence, mitigating its physiological relevance for mechanistic studies. Cell-derived matrices (CDMs), however, are capable of presenting a 3D-microenvironment rich in topography, chemistry, and whose mechanics can be tuned to better represent the network of native ECM constituents in vivo. Critically, the composition of CDMs may also be fine-tuned by addition of small molecules or relevant bioactive factors to mimic homeostasis or pathology. Here, we first provide a streamlined protocol for generating CDMs from TM cell cultures from normal or glaucomatous donor tissues. Second, we document how TM cells can be pharmacologically manipulated to obtain glucocorticoid-induced CDMs and how generated pristine CDMs can be manipulated with reagents like genipin. Finally, we summarize how CDMs may be used in mechanistic studies and discuss their probable application in future TM regenerative studies.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, University of Houston, Houston, TX, United States
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, University of Houston, Houston, TX, United States; The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, United States; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, United States.
| |
Collapse
|
8
|
Faralli JA, Filla MS, Peters DM. Effect of αvβ3 Integrin Expression and Activity on Intraocular Pressure. Invest Ophthalmol Vis Sci 2019; 60:1776-1788. [PMID: 31022732 PMCID: PMC6485315 DOI: 10.1167/iovs.18-26038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose To determine the effects of αvβ3 integrin expression and activation on intraocular pressure (IOP). Methods Cre+/−β3flox/flox mice were treated with topical tamoxifen eye drops for 5 days to activate Cre and excise the β3 integrin gene from the anterior segment. IOP was measured weekly for 11 weeks using rebound tonometry. Mice were then killed and changes in expression of the β3 integrin subunit in Cre+/− β3flox/flox mice were determined using Western blotting analysis and immunofluorescence microscopy. To determine the effect of αvβ3 integrin activation on outflow facility, porcine organ culture anterior segments (POCAS) were perfused with the αvβ3 integrin-activating antibody AP5 or an isotype IgG control for 21 hours. The effect of αvβ3 integrin activation on IOP was measured over 7 days in C57BL/6J mice intracamerally infused with AP5, AP3, IgG, or PBS. Results Deletion of the β3 integrin subunit using the tamoxifen-inducible Cre-loxP system resulted in a decrease in expression of the β3 integrin subunit in the trabecular meshwork and ciliary muscle. Morphologically no gross changes in the anterior segment were detected. Deletion of the β3 integrin subunit resulted in a significantly (P < 0.05) lower IOP in mice within 2 weeks following the tamoxifen treatment and persisted for 11 weeks. Activating the αvβ3 integrin with the AP5 antibody resulted in a significant (P < 0.05) increase in IOP in C57BL/6J mice and a decrease in outflow facility in 42% of the POCAS. Conclusions These studies demonstrate a role for αvβ3 integrin signaling in the regulation of IOP.
Collapse
Affiliation(s)
- Jennifer A Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States
| | - Mark S Filla
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States
| | - Donna M Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States
| |
Collapse
|
9
|
Webber HC, Bermudez JY, Millar JC, Mao W, Clark AF. The Role of Wnt/β-Catenin Signaling and K-Cadherin in the Regulation of Intraocular Pressure. Invest Ophthalmol Vis Sci 2018; 59:1454-1466. [PMID: 29625468 PMCID: PMC5858463 DOI: 10.1167/iovs.17-21964] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Wnt/β-catenin signaling in the trabecular meshwork (TM) is required for maintaining normal intraocular pressure (IOP), although the mechanism(s) behind this are unknown. We hypothesize that Wnt/β-catenin signaling regulates IOP via β-catenin's effects on cadherin junctions. Methods Nonglaucomatous primary human TM (NTM) cells were treated with or without 100 ng/ml Wnt3a, 1 μg/ml sFRP1, or both for 4 to 48 hours. Cells were immunostained for β-catenin, total cadherins, or cadherin isoforms. Membrane proteins or whole-cell lysates were isolated for Western immunoblotting and probed for cadherin isoforms. RNA was extracted for cDNA synthesis and qPCR analysis of cadherin expression. Some NTM cells were cultured on electric plates for cell impedance assays. Ad5.CMV recombinant adenoviruses encoding K-cadherin, and/or sFRP1 were injected into eyes of 4- to 6-month-old female BALB/cJ mice (n = 8–10). Conscious IOPs were assessed for 35 days. Results Upon Wnt3a treatment, total cadherin expression increased and β-catenin accumulated at the TM cell membrane and on processes formed between TM cells. qPCR showed that Wnt3a significantly increased K-cadherin expression in NTM cells (P < 0.01, n = 3), and Western immunoblotting showed that Wnt3a increased K-cadherin in NTM cells, which was inhibited by the addition of sFRP1. Cell impedance assays showed that Wnt3a treatment increased transcellular resistance and anti-K-cadherin siRNA decreased transcellular resistance (P < 0.001, n = 4–6). Our in vivo study showed that K-cadherin significantly decreased sFRP1-induced ocular hypertension (P < 0.05, n = 6). Western immunoblotting also showed that K-cadherin alleviated sFRP1-induced β-catenin decrease in mouse anterior segments. Conclusions Our results suggest that cadherins play important roles in the regulation of TM homeostasis and IOP via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hannah C Webber
- North Texas Eye Research Institute, University of North Texas Health Science Center
| | - Jaclyn Y Bermudez
- North Texas Eye Research Institute, University of North Texas Health Science Center
| | - J Cameron Millar
- North Texas Eye Research Institute, University of North Texas Health Science Center
| | - Weiming Mao
- North Texas Eye Research Institute, University of North Texas Health Science Center
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center
| |
Collapse
|
10
|
Vranka JA, Staverosky JA, Reddy AP, Wilmarth PA, David LL, Acott TS, Russell P, Raghunathan VK. Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures. Invest Ophthalmol Vis Sci 2018; 59:246-259. [PMID: 29340639 PMCID: PMC5770183 DOI: 10.1167/iovs.17-22759] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose The extracellular matrix (ECM) of the trabecular meshwork (TM) modulates resistance to aqueous humor outflow, thereby regulating IOP. Glaucoma, a leading cause of irreversible blindness worldwide, is associated with changes in the ECM of the TM. The elastic modulus of glaucomatous TM is larger than age-matched normal TM; however, the biomechanical properties of segmental low (LF) and high flow (HF) TM regions and their response to elevated pressure, are unknown. Methods We perfused human anterior segments at two pressures using an ex vivo organ culture system. After extraction, we measured the elastic modulus of HF and LF TM regions by atomic force microscopy and quantitated protein differences by proteomics analyses. Results The elastic modulus of LF regions was 2.3-fold larger than HF regions at physiological (1×) pressure, and 7.4-fold or 3.5-fold larger than HF regions at elevated (2×) pressure after 24 or 72 hours, respectively. Using quantitative proteomics, comparisons were made between HF and LF regions at 1× or 2× pressure. Significant ECM protein differences were observed between LF and HF regions perfused at 2×, and between HF regions at 1× compared to 2× pressures. Decorin, TGF-β–induced protein, keratocan, lumican, dermatopontin, and thrombospondin 4 were common differential candidates in both comparisons. Conclusions These data show changes in biomechanical properties of segmental regions within the TM in response to elevated pressure, and levels of specific ECM proteins. Further studies are needed to determine whether these ECM proteins are specifically involved in outflow resistance and IOP homeostasis.
Collapse
Affiliation(s)
- Janice A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Julia A Staverosky
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ashok P Reddy
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, United States
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, United States.,Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States
| | - Larry L David
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, United States.,Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States.,Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, United States
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas, United States
| |
Collapse
|
11
|
Ren R, Li G, Le TD, Kopczynski C, Stamer WD, Gong H. Netarsudil Increases Outflow Facility in Human Eyes Through Multiple Mechanisms. Invest Ophthalmol Vis Sci 2017; 57:6197-6209. [PMID: 27842161 PMCID: PMC5114035 DOI: 10.1167/iovs.16-20189] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Netarsudil is a Rho kinase/norepinephrine transporter inhibitor currently in phase 3 clinical development for glaucoma treatment. We investigated the effects of its active metabolite, netarsudil-M1, on outflow facility (C), outflow hydrodynamics, and morphology of the conventional outflow pathway in enucleated human eyes. Methods Paired human eyes (n = 5) were perfused with either 0.3 μM netarsudil-M1 or vehicle solution at constant pressure (15 mm Hg). After 3 hours, fluorescent microspheres were added to perfusion media to trace the outflow patterns before perfusion-fixation. The percentage effective filtration length (PEFL) was calculated from the measured lengths of tracer distribution in the trabecular meshwork (TM), episcleral veins (ESVs), and along the inner wall (IW) of Schlemm's canal after global and confocal imaging. Morphologic changes along the trabecular outflow pathway were investigated by confocal, light, and electron microscopy. Results Perfusion with netarsudil-M1 significantly increased C when compared to baseline (51%, P < 0.01) and to paired controls (102%, P < 0.01), as well as significantly increased PEFL in both IW (P < 0.05) and ESVs (P < 0.01). In treated eyes, PEFL was significantly higher in ESVs than in the IW (P < 0.01) and was associated with increased cross-sectional area of ESVs (P < 0.01). Percentage effective filtration length in ESVs positively correlated with the percentage change in C (R2 = 0.58, P = 0.01). A significant increase in juxtacanalicular connective tissue (JCT) thickness (P < 0.05) was found in treated eyes compared to controls. Conclusions Netarsudil acutely increased C by expansion of the JCT and dilating the ESVs, which led to redistribution of aqueous outflow through a larger area of the IW and ESVs.
Collapse
Affiliation(s)
- Ruiyi Ren
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States 2Department of Anatomoy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Thuy Duong Le
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Casey Kopczynski
- Aerie Pharmaceuticals, Inc., Durham, North Carolina, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States 2Department of Anatomoy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Zhavoronkov A, Izumchenko E, Kanherkar RR, Teka M, Cantor C, Manaye K, Sidransky D, West MD, Makarev E, Csoka AB. Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma. Cell Cycle 2017; 15:1643-52. [PMID: 27229292 PMCID: PMC4934076 DOI: 10.1080/15384101.2016.1170261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide, it still does not have a clear mechanism that can explain all clinical cases of the disease. Elevated IOP is associated with increased accumulation of extracellular matrix (ECM) proteins in the trabecular meshwork (TM) that prevents normal outflow of aqueous humor (AH) and has damaging effects on the fine mesh-like lamina cribrosa (LC) through which the optic nerve fibers pass. Applying a pathway analysis algorithm, we discovered that an elevated level of TGFβ observed in glaucoma-affected tissues could lead to pro-fibrotic pathway activation in TM and in LC. In turn, activated pro-fibrotic pathways lead to ECM remodeling in TM and LC, making TM less efficient in AH drainage and making LC more susceptible to damage from elevated IOP via ECM transformation in LC. We propose pathway targets for potential therapeutic interventions to delay or avoid fibrosis initiation in TM and LC tissues.
Collapse
Affiliation(s)
- Alex Zhavoronkov
- a Insilico Medicine, Inc., ETC, Johns Hopkins University , Baltimore , MD , USA.,b The Biogerontology Research Foundation , London , UK
| | - Evgeny Izumchenko
- e Johns Hopkins University , Department of Otolaryngology-Head and Neck Surgery
| | - Riya R Kanherkar
- c Vision Genomics, LLC , Washington, DC , USA.,d Epigenetics Laboratory, Howard University , Washington, DC , USA
| | - Mahder Teka
- c Vision Genomics, LLC , Washington, DC , USA
| | - Charles Cantor
- f Boston University , Boston , MA , USA.,g Retrotope, Inc ; Los Altos Hills , CA , USA
| | - Kebreten Manaye
- d Epigenetics Laboratory, Howard University , Washington, DC , USA
| | | | | | - Eugene Makarev
- a Insilico Medicine, Inc., ETC, Johns Hopkins University , Baltimore , MD , USA
| | - Antonei Benjamin Csoka
- c Vision Genomics, LLC , Washington, DC , USA.,d Epigenetics Laboratory, Howard University , Washington, DC , USA
| |
Collapse
|
13
|
Peotter JL, Phillips J, Tong T, Dimeo K, Gonzalez JM, Peters DM. Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells. Exp Cell Res 2016; 347:301-11. [PMID: 27539661 DOI: 10.1016/j.yexcr.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that an αvβ5 integrin/FAK- mediated pathway regulated the phagocytic properties of human trabecular meshwork (HTM) cells. Here we demonstrate that this process is mediated by Rac-1 and a previously unreported signaling pathway that utilizes the Tiam1 as well as a novel ILK/RhoG/ELMO2 signaling pathway. Phagocytosis in both a TM-1 cell line and normal HTM cells was mediated by Rac1 and could be significantly decreased by >75% using the Rac1 inhibitor EHop-016. Knockdown of Rac1 in TM-1 cells also inhibited phagocytosis by 40% whereas overexpression of a constitutively active Rac1 or stimulation with PDGF increased phagocytosis by 83% and 32% respectively. Tiam1 was involved in regulating phagocytosis. Knockdown of Tiam1 inhibited phagocytosis by 72% while overexpression of Tiam1 C1199 increased phagocytosis by 75%. Other upstream effectors of Rac1 found to be involved included ELMO2, RhoG, and ILK. Knockdowns of ELMO2, ILK, and RhoG caused a reduction in phagocytosis by 51%, 55% and 46% respectively. In contrast, knockdown of Vav2 and Dock1 or overexpression of Vav2 Y159/172F did not cause a significant change in phagocytosis. These data suggest a novel link between Tiam1 and RhoG/ILK /ELMO2 pathway as upstream effectors of the Rac1-mediated phagocytic process in TM cells.
Collapse
Affiliation(s)
- Jennifer L Peotter
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jenny Phillips
- The Waisman Center, University of Wisconsin, Madison, WI 53706, USA
| | - Tiegang Tong
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Kaylee Dimeo
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jose M Gonzalez
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
14
|
The role of integrins in glaucoma. Exp Eye Res 2016; 158:124-136. [PMID: 27185161 DOI: 10.1016/j.exer.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023]
Abstract
Integrins are a family of heterodimeric transmembrane receptors that mediate adhesion to the extracellular matrix (ECM). In addition to their role as adhesion receptors, integrins can act as ''bidirectional signal transducers'' that coordinate a large number of cellular activities in response to the extracellular environment and intracellular signaling events. This bidirectional signaling helps maintain tissue homeostasis. Dysregulated bidirectional signaling, however, could trigger the propagation of feedback loops that can lead to the establishment of a disease state such as glaucoma. Here we discuss the role of integrins and bidirectional signaling as they relate to the glaucomatous phenotype with special emphasis on the αvβ3 integrin. We present evidence that this particular integrin may have a significant impact on the pathogenesis of glaucoma.
Collapse
|
15
|
Kalra J, Dragowska WH, Bally MB. Using Pharmacokinetic Profiles and Digital Quantification of Stained Tissue Microarrays as a Medium-Throughput, Quantitative Method for Measuring the Kinetics of Early Signaling Changes Following Integrin-Linked Kinase Inhibition in an In Vivo Model of Cancer. J Histochem Cytochem 2015; 63:691-709. [PMID: 25940338 PMCID: PMC4804727 DOI: 10.1369/0022155415587978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/27/2015] [Indexed: 12/24/2022] Open
Abstract
A small molecule inhibitor (QLT0267) targeting integrin-linked kinase is able to slow breast tumor growth in vivo; however, the mechanism of action remains unknown. Understanding how targeting molecules involved in intersecting signaling pathways impact disease is challenging. To facilitate this understanding, we used tumor tissue microarrays (TMA) and digital image analysis for quantification of immunohistochemistry (IHC) in order to investigate how QLT0267 affects signaling pathways in an orthotopic model of breast cancer over time. Female NCR nude mice were inoculated with luciferase-positive human breast tumor cells (LCC6Luc) and tumor growth was assessed by bioluminescent imaging (BLI). The plasma levels of QLT0267 were determined by LC-MS/MS methods following oral dosing of QLT0267 (200 mg/kg). A TMA was constructed using tumor tissue collected at 2, 4, 6, 24, 78 and 168 hr after treatment. IHC methods were used to assess changes in ILK-related signaling. The TMA was digitized, and Aperio ScanScope and ImageScope software were used to provide semi-quantitative assessments of staining levels. Using medium-throughput IHC quantitation, we show that ILK targeting by QLT0267 in vivo influences tumor physiology through transient changes in pathways involving AKT, GSK-3 and TWIST accompanied by the translocation of the pro-apoptotic protein BAD and an increase in Caspase-3 activity.
Collapse
Affiliation(s)
- Jessica Kalra
- Experimental Therapeutics BC Cancer Agency, British Columbia, Canada (JK,WHD,MBB),Langara College, Vancouver, British Columbia, Canada (JK)
| | - Weislawa H Dragowska
- Experimental Therapeutics BC Cancer Agency, British Columbia, Canada (JK,WHD,MBB)
| | - Marcel B Bally
- Experimental Therapeutics BC Cancer Agency, British Columbia, Canada (JK,WHD,MBB),Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia (MBB),Department of Biochemistry, University of British Columbia, Vancouver, British Columbia (MBB),Faculty of Pharm. Sciences, University of British Columbia, Vancouver, British Columbia (MBB),Center for Drug Research and Development Vancouver, British Columbia, Canada (MBB)
| |
Collapse
|
16
|
Abstract
Trabecular meshwork (TM) and ciliary muscle contraction and relaxation function together to provide control of outflow. The active role the TM plays in the regulation of intraocular pressure (IOP) is mediated by cytoskeletal and contractility mechanisms as well as signal/transduction factors that mediate its response to stressors. This complex system is altered with age and the glaucomas, and it can be difficult to differentiate between the various etiological effects/agents. Factors such as a compromised antioxidant defense system and altered extracellular matrix metabolism are known to contribute to impaired outflow and may be common to primary open-angle glaucoma, exfoliation syndrome, and exfoliation glaucoma (XFG). Genes differentially expressed in diseased ocular tissue or in cultured HTM cell models, and thus implicated in the disease process, include SOD2, ALDH1A1, MGST1, LOX, and LOXL1, elements of the transforming growth factor-β/bone morphogenetic protein/SMAD signaling pathways, connective tissue growth factor, matrix metalloproteinase-2, a tissue inhibitor of metalloproteinases also known as TIMP-2, and endothelin-1 (ET-1). In exfoliation syndrome and XFG fibrillar, proteinaceous extracellular material is produced in excess and accumulates in both outflow pathways but does not always lead to elevated IOP. Locally produced material may accumulate in the intertrabecular spaces, juxtacanalicular (JCT) meshwork, and the inner wall of Schlemm's canal as a result of a combination of both excessive synthesis and insufficient degradation. An increase in JCT plaque and decreased cellularity in the TM are thought to contribute to decreased outflow facility in glaucoma patients, but XFG patient specimens show reduced extracellular plaque material in the JCT, and the structural integrity of trabecular endothelial cells is mostly retained and cellularity remains unchanged. The distinctions between causes/effects of structural changes leading to reduced outflow/elevated IOP are important for developing effective, individualized treatment strategies.
Collapse
|
17
|
Swaminathan SS, Oh DJ, Kang MH, Rhee DJ. Aqueous outflow: segmental and distal flow. J Cataract Refract Surg 2015; 40:1263-72. [PMID: 25088623 DOI: 10.1016/j.jcrs.2014.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 12/29/2022]
Abstract
UNLABELLED The elevated intraocular pressure (IOP) of primary open-angle glaucoma is caused by impaired outflow of aqueous humor through the trabecular meshwork. Within the juxtacanalicular region, alterations of both extracellular matrix homeostasis and the cellular tone of trabecular meshwork endothelial and the inner wall of Schlemm canal cells affect outflow. Newer pharmacologic agents that target trabecular meshwork and Schlemm canal cell cytoskeleton lower IOP. Aqueous drainage occurs nonhomogenously with greater flow going through certain portions of the TM and less going through other portions-a concept known as segmental flow, which is theoretically the result of outflow being dependent on the presence of discrete pores within Schlemm canal. The limited long-term success of trabecular meshwork bypass surgeries implicates the potential impact of resistance in Schlemm canal itself and collector channels. Additionally, others have observed that outflow occurs preferentially near collector channels. These distal structures may be more important to aqueous outflow than previously believed. FINANCIAL DISCLOSURE Dr. Rhee is a consultant to Aerie Pharmaceuticals, Alcon Laboratories, Inc., Allegan, Inc., Aquesys, Inc., Glaukos Corp., Ivantis, Inc., Johnson & Johnson, Merck Sharp & Dohme Corp. and Santen, Inc., and has received research funding from Alcon Laboratories, Inc., Merck Sharp & Dohme Corp., and Ivantis, Inc. No other author has a financial or proprietary interest in any material or method mentioned.
Collapse
Affiliation(s)
- Swarup S Swaminathan
- From Harvard-MIT Division of Health Sciences and Technology (Swaminathan), Harvard Medical School, Boston, Massachusetts, and the Department of Ophthalmology & Visual Sciences (Oh, Kang, Rhee), Case Western Reserve University, Cleveland, Ohio, USA
| | - Dong-Jin Oh
- From Harvard-MIT Division of Health Sciences and Technology (Swaminathan), Harvard Medical School, Boston, Massachusetts, and the Department of Ophthalmology & Visual Sciences (Oh, Kang, Rhee), Case Western Reserve University, Cleveland, Ohio, USA
| | - Min Hyung Kang
- From Harvard-MIT Division of Health Sciences and Technology (Swaminathan), Harvard Medical School, Boston, Massachusetts, and the Department of Ophthalmology & Visual Sciences (Oh, Kang, Rhee), Case Western Reserve University, Cleveland, Ohio, USA
| | - Douglas J Rhee
- From Harvard-MIT Division of Health Sciences and Technology (Swaminathan), Harvard Medical School, Boston, Massachusetts, and the Department of Ophthalmology & Visual Sciences (Oh, Kang, Rhee), Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
18
|
Cholkar K, Trinh HM, Pal D, Mitra AK. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin Drug Discov 2015; 10:293-313. [PMID: 25575654 DOI: 10.1517/17460441.2015.1000857] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glaucoma is a neurodegenerative disease with heterogeneous causes that result in retinal ganglionic cell (RGC) death. The discovery of ocular antihypertensives has shifted glaucoma therapy, largely, from surgery to medical intervention. Indeed, several intraocular pressure (IOP)-lowering drugs, with different mechanisms of action and RGC protective property, have been developed. AREAS COVERED In this review, the authors discuss the main new class of kinase inhibitors used as glaucoma treatments, which lower IOP by enhancing drainage and/or lowering production of aqueous humor. The authors include novel inhibitors under preclinical evaluation and investigation for their anti-glaucoma treatment. Additionally, the authors look at treatments that are in clinics now and which may be available in the near future. EXPERT OPINION Treatment of glaucoma remains challenging because the exact cause is yet to be delineated. Neuroprotection to the optic nerve head is undisputable. The novel Rho-associated kinase inhibitors have the capacity to lower IOP and provide optic nerve and RGC protection. In particular, the S-isomer of roscovitine has the capacity to lower IOP and provide neuroprotection. Combinations of selected drugs, which can provide maximal and sustained IOP-lowering effects as well as neuroprotection, are paramount to the prevention of glaucoma progression. In the near future, microRNA intervention may be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- Kishore Cholkar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmaceutical Sciences , 5258 Health Science Building, 2464 Charlotte Street, Kansas City, MO 64108-2718 , USA +1 816 235 1615 ; +1 816 235 5779 ;
| | | | | | | |
Collapse
|
19
|
Parapuram SK, Hodge W. The integrin needle in the stromal haystack: emerging role in corneal physiology and pathology. J Cell Commun Signal 2014; 8:113-24. [PMID: 24604397 DOI: 10.1007/s12079-014-0230-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/14/2014] [Indexed: 01/22/2023] Open
Abstract
Several studies have established the role of activated corneal keratocytes in the fibrosis of the cornea. However, the role of keratocytes in maintaining the structural integrity of a normal cornea is less appreciated. We focus on the probable functions of integrins in the eye and of the importance of integrin-mediated keratocyte interactions with stromal matrix in the maintenance of corneal integrity. We point out that further understanding of how keratocytes interact with their matrix could establish a novel direction in preventing corneal pathology including loss of structural integrity as in keratoconus or as in fibrosis of the corneal stroma.
Collapse
Affiliation(s)
- Sunil K Parapuram
- Department of Ophthalmology, University of Western Ontario, London, Ontario, N6A 4V2, Canada,
| | | |
Collapse
|
20
|
Interference with the contractile machinery of the fibroblastic chondrocyte cytoskeleton induces re-expression of the cartilage phenotype through involvement of PI3K, PKC and MAPKs. Exp Cell Res 2013; 320:175-87. [PMID: 24246223 DOI: 10.1016/j.yexcr.2013.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
Chondrocytes rapidly lose their phenotypic expression of collagen II and aggrecan when grown on 2D substrates. It has generally been observed that a fibroblastic morphology with strong actin-myosin contractility inhibits chondrogenesis, whereas chondrogenesis may be promoted by depolymerization of the stress fibers and/or disruption of the physical link between the actin stress fibers and the ECM, as is the case in 3D hydrogels. Here we studied the relationship between the actin-myosin cytoskeleton and expression of chondrogenic markers by culturing fibroblastic chondrocytes in the presence of cytochalasin D and staurosporine. Both drugs induced collagen II re-expression; however, renewed glycosaminoglycan synthesis could only be observed upon treatment with staurosporine. The chondrogenic effect of staurosporine was augmented when blebbistatin, an inhibitor of myosin/actin contractility, was added to the staurosporine-stimulated cultures. Furthermore, in 3D alginate cultures, the amount of staurosporine required to induce chondrogenesis was much lower compared to 2D cultures (0.625 nM vs. 2.5 nM). Using a selection of specific signaling pathway inhibitors, it was found that PI3K-, PKC- and p38-MAPK pathways positively regulated chondrogenesis while the ERK-pathway was found to be a negative regulator in staurosporine-induced re-differentiation, whereas down-regulation of ILK by siRNA indicated that ILK is not determining for chondrocyte re-differentiation. Furthermore, staurosporine analog midostaurin displayed only a limited chondrogenic effect, suggesting that activation/deactivation of a specific set of key signaling molecules can control the expression of the chondrogenic phenotype. This study demonstrates the critical importance of mechanobiological factors in chondrogenesis suggesting that the architecture of the actin cytoskeleton and its contractility control key signaling molecules that determine whether the chondrocyte phenotype will be directed along a fibroblastic or chondrogenic path.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Regulation of intraocular pressure by the conventional (trabecular) outflow pathway is complicated, involving a myriad of mechanical and chemical signals. In most, intraocular pressure is maintained within a tight range over a lifetime. Unfortunately in some, dysfunction results in ocular hypertension and open-angle glaucoma. In the context of established knowledge, this review summarizes recent investigations of conventional outflow function, with the goal of identifying areas for future inquiry and therapeutic targeting. RECENT FINDINGS Mechanical stimulation of conventional outflow cells due to intraocular pressure fluctuations impacts contractility, gene expression, pore formation, enzyme activity, and signaling. Numerous local signaling mediators in the conventional pathway such as bioactive lipids, cytokines, nitric oxide, and nucleotides participate in the regulation of outflow. Interestingly outflow through the conventional pathway is not uniform, but segmental, with passageways constantly changing due to focal protease activity of trabecular cells clearing extracellular matrix materials. The relationship between extracellular matrix expression and trabecular meshwork contractility appears to coordinately impact outflow resistance and is the target of a new class of drugs, the Rho kinase inhibitors. SUMMARY The conventional outflow pathway is a dynamic, pressure-sensitive tissue that is vulnerable to pathology on many fronts, each representing a therapeutic opportunity.
Collapse
|