1
|
Wu CM, Mao JW, Zhu JZ, Xie CC, Yao JY, Yang XQ, Xiang M, He YF, Tong X, Litifu D, Xiong XY, Cheng MN, Zhu FH, He SJ, Lin ZM, Zuo JP. DZ2002 alleviates corneal angiogenesis and inflammation in rodent models of dry eye disease via regulating STAT3-PI3K-Akt-NF-κB pathway. Acta Pharmacol Sin 2024; 45:166-179. [PMID: 37605050 PMCID: PMC10770170 DOI: 10.1038/s41401-023-01146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 μL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.
Collapse
Affiliation(s)
- Chun-Mei Wu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wen Mao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Zhi Zhu
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Can-Can Xie
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Ying Yao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Qian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mai Xiang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Fan He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Tong
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dilinaer Litifu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yu Xiong
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Nan Cheng
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng-Hua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ze-Min Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Kuklinski EJ, Yu Y, Ying GS, Asbell PA. Association of Ocular Surface Immune Cells With Dry Eye Signs and Symptoms in the Dry Eye Assessment and Management (DREAM) Study. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37669063 PMCID: PMC10484021 DOI: 10.1167/iovs.64.12.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose Dry eye disease (DED) is a multifactorial, heterogeneous disease of the ocular surface with one etiology being ocular surface inflammation. Studies using animal models demonstrate the role of ocular surface immune cells in the inflammatory pathway leading to DED, but few have evaluated humans. This study described the white blood cell population from the ocular surface of patients with DED and assessed its association with DED signs and symptoms in participants of the Dry Eye Assessment and Management (DREAM) study. Methods Participants were assessed for symptoms using the Ocular Surface Disease Index, signs via corneal staining, conjunctival staining, tear break-up time, and Schirmer test, and Sjögren's syndrome (SS) based on the 2012 American College of Rheumatology classification criteria. Impression cytology of conjunctival cells from each eye was evaluated using flow cytometry: T cells, helper T cells (Th), regulatory T cells (Tregs), cytotoxic T cells, and dendritic cells. Results We assessed 1049 eyes from 527 participants. White blood cell subtype percentages varied widely across participants. Significant positive associations were found for Th and conjunctival staining (mean score of 2.8 for 0% Th and 3.1 for >4.0% Th; P = 0.007), and corneal staining (mean score of 3.5 for 0% Th and 4.3 for >4.0% Th; P = 0.01). SS was associated with higher percent of Tregs (median 0.1 vs. 0.0; P = 0.01). Conclusions Th were associated with more severe conjunctival and corneal staining, possibly indicating their role in inflammation leading to damage of the ocular surface. There is no consistent conclusion about Tregs in SS, but these results support that Tregs are elevated in SS.
Collapse
Affiliation(s)
- Eric J. Kuklinski
- Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Yinxi Yu
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui-Shuang Ying
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - for the DREAM Study Research Group
- Rutgers New Jersey Medical School, Newark, New Jersey, United States
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
- University of Memphis, Memphis, Tennessee, United States
| |
Collapse
|
3
|
Chen Y, Pu J, Li X, Lian L, Ge C, Liu Z, Wang W, Hou L, Chen W, Li J. Aim2 Deficiency Ameliorates Lacrimal Gland Destruction and Corneal Epithelium Defects in an Experimental Dry Eye Model. Invest Ophthalmol Vis Sci 2023; 64:26. [PMID: 36920364 PMCID: PMC10029764 DOI: 10.1167/iovs.64.3.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Purpose Dry eye disease (DED) is a multifactorial disease that is associated with inflammation. Excessive DNA is present in the tear fluid of patients with DED. Absent in melanoma 2 (AIM2) is a key DNA sensor. This study aimed to investigate the role of AIM2 in the pathogenesis of DED. Methods DED was induced by injection of scopolamine (SCOP). Aberrant DNA was detected by cell-free DNA (cfDNA) ELISA and immunostaining. Corneal epithelial defects were assessed by corneal fluorescein staining, zonula occludens-1 immunostaining and TUNEL. Tear production was analyzed by phenol red thread test. Lacrimal gland (LG) histology was evaluated by hematoxylin and eosin staining, and transmission electron microscopy examination. Macrophage infiltration in LG was detected by immunohistochemistry for the macrophage marker F4/80. Gene expression was analyzed by RT-qPCR. Protein production was examined by immunoblot analysis or ELISA. Results Aim2-/- mice displayed a normal structure and function of LG and cornea under normal conditions. In SCOP-induced DED, wild type (WT) mice showed increased cfDNA in tear fluid, and aberrant accumulations of dsDNA accompanied by increased AIM2 expression in the LG. In SCOP-induced DED, WT mice displayed damaged structures of LG, reduced tear production, and severe corneal epithelium defects, whereas Aim2-/- mice had a better preserved LG structure, less decreased tear production, and improved clinical signs of dry eye. Furthermore, genetic deletion of Aim2 suppressed the increased infiltration of macrophages and inhibited N-GSDMD and IL18 production in the LG of SCOP-induced DED. Conclusions Aim2 deficiency alleviates ocular surface damage and LG inflammation in SCOP-induced DED.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiheng Pu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Ophthalmology, The East Beijing Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinda Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lili Lian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chaoxiang Ge
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zuimeng Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weizhuo Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jinyang Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Acupuncture Alleviates Corneal Inflammation in New Zealand White Rabbits with Dry Eye Diseases by Regulating α7nAChR and NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6613144. [DOI: 10.1155/2022/6613144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
Abstract
Purpose. The purpose of this study is to determine the mechanism of improvement in dry eye diseases (DEDs) treated by acupuncture. The inflammatory molecules and related pathways will be analyzed in our study. Methods. In order to establish the animal model for DEDs, healthy New Zealand white rabbits were treated with scopolamine (Scop) hydrobromide for 21 consecutive days. After 21 days, acupuncture, fluorometholone (Flu), and α7nAChR antagonist (α-BGT) treatments were performed, and the Scop injections were continued until day 35. The therapeutic effect of acupuncture on DED inflammation was evaluated by corneal fluorescence staining, tear film rupture time, tear flow measurement, in vivo confocal microscopy (IVCM), corneal histopathology, and cytokine protein chip technology. The influence of acupuncture on the corneal pathology and inflammatory factors ACh, α7nAChR, and NF-κB was detected by enzyme-linked immunosorbent assay (ELISA) and western blot. Results. Compared with the group Scop, acupuncture can significantly reduce corneal staining and increase the tear film rupture time and tear flow, which are accompanied by a decrease in corneal epithelial detachment and lymphocyte infiltration. Acupuncture can relieve the inflammation of corneal stroma and mitigate the expression of proinflammatory factors and chemokines. Acupuncture can upregulate the expression of ACh and α7nAChR and downregulate the expression of NF-κB. Conclusion. Our findings demonstrate that acupuncture can alleviate corneal inflammation in New Zealand white rabbits with DEDs via α7nAChR and NF-κB signaling pathway regulation. The expression indicates that α7nAChR/NF-κB signaling pathway may be active and that acupuncture is a potential therapeutic target for dry eye.
Collapse
|
5
|
Li L, Li Y, Zhu X, Wu B, Tang Z, Wen H, Yuan J, Zheng Q, Chen W. Conjunctiva Resident γδ T Cells Expressed High Level of IL-17A and Promoted the Severity of Dry Eye. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 36350619 PMCID: PMC9652718 DOI: 10.1167/iovs.63.12.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose Conjunctival inflammation promotes ocular surface disorders in dry eye disease (DED). Here we identified γδ T cells as the predominant source of IL-17A in the murine conjunctiva and assessed their contribution to the pathogenesis of DED. Methods We enrolled 22 patients with DED, and analyzed the proportion of γδ T cells in the conjunctival epithelial samples by flow cytometry. Adult C57Bl/6 wild-type and TCRδ−/− mice were used to induce DED models to investigate the role of γδ T cells. The characteristics of immune cell infiltration and the expression of immune-related cytokines or markers in mouse conjunctiva were analyzed by flow cytometry, Western blot, and quantitative polymerase chain reaction. Results The proportion of γδ T cells in the human DED conjunctiva is significantly higher in patients with severe corneal epithelial defects than in mild ones, which is consistently observed in the murine DED model. Further, a high level of IL-17A but not IFN-γ is detected in the conjunctiva of mice. The increased murine IL-17A–producing cells on the conjunctiva are identified as γδ T cells predominantly and Th17 cells to a lesser extent. Ablation of γδ T cells by antibody depletion or genetic deletion of TCRδ alleviates ocular surface damage in the murine DED model. Conclusions Our studies evaluate human and experimental murine DED for evidence of γδ T-cell–mediated inflammation and highlight a potential therapeutic synergy by targeting IL-17 and γδ T cells in DED treatment.
Collapse
Affiliation(s)
- Ling Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yanxiao Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinhao Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Biao Wu
- Shaoxing people's hospital, Shaoxing, Zhejiang, China
| | - Zhuo Tang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Han Wen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshu Yuan
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Qinxiang Zheng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Wei Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Jeon HS, Kang B, Li X, Song JS. Differences in vulnerability to desiccating stress between corneal and conjunctival epithelium in rabbit models of short-term ocular surface exposure. Sci Rep 2022; 12:16941. [PMID: 36209216 PMCID: PMC9547869 DOI: 10.1038/s41598-022-21478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
We evaluate the difference in vulnerability to desiccating stress (DS) between the corneal and conjunctival epithelia to understand different ocular surface staining patterns in dry eye patients. We generated a rabbit model of short-term exposure keratopathy. To induce DS in the ocular surface, rabbit right eyelids were opened for 30 min, with blinking once/minute. Corneal staining scores increased from 3-min post-DS exposure, while conjunctival staining increased from 20-min post-DS. At 20 min, the tear MUC5AC level doubled as compared to pre-DS (p = 0.007). In Western blot analysis, conjunctival AQP5, MUC5AC, and CFTR expression increased significantly in response to DS, compared to control (p = 0.039, 0.002, 0.039, respectively). Immunohistochemistry for CD31 and LYVE-1 were performed. CD31-positive cells and lymphatic space surrounded by LYVE-1-positive cells increased significantly in conjunctival tissue post-DS, compared to control (p = 0.0006, p < 0.0001, respectively). Surface damage was worse in the corneal than in the conjunctival epithelium after DS, by scanning electron microscopy. This study showed that the cornea and conjunctival epithelium show differences in vulnerability to DS. Increased blood vessels and dilated lymphatics, accompanied by increased conjunctival epithelial AQP5, MUC5AC, and CFTR expression, underlie the protective mechanism of the conjunctiva to desiccating stress.
Collapse
Affiliation(s)
- Hyun Sun Jeon
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Boram Kang
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Xuemin Li
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jong Suk Song
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Zha Z, Chen Q, Xiao D, Pan C, Xu W, Shen L, Shen J, Chen W. Mussel-Inspired Microgel Encapsulated NLRP3 Inhibitor as a Synergistic Strategy Against Dry Eye. Front Bioeng Biotechnol 2022; 10:913648. [PMID: 35721850 PMCID: PMC9198461 DOI: 10.3389/fbioe.2022.913648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The inflammatory response mediated by oxidative stress is the main pathogenesis of dry eye, but clinical observations have shown that scavenging oxygen-free radicals alone has limited therapeutic effect. Moreover, the unique anatomy and physiology of the ocular surface result in low bioavailability of drugs, and higher concentration is required to achieve the desired efficacy, which, however, may bring systemic side effects. These problems pose a challenge, but the revelation of the ROS-NLRP3-IL-1β signaling axis opens up new possibilities. In this investigation, an NLRP3 inhibitor was successfully encapsulated in polydopamine-based microgels and used for dry eye treatment. It was demonstrated that the well-designed microgels exhibited good biocompatibility, prolonged drug retention time on the ocular surface, and effective inhibition of corneal epithelial damage and cell apoptosis. In addition, due to the synergistic effect, the NLRP3 inhibitor–loaded microgels could exert enhanced oxygen radical scavenging and inflammation-inhibiting effects at a lower dose than monotherapy. These findings suggest that polydopamine-based microgels have advantages as ocular surface drug delivery platforms and have promising applications in oxidative damage–related inflammatory diseases in synergy with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhiwei Zha
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Qiumeng Chen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Decheng Xiao
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Chengjie Pan
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Wei Xu
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Liangliang Shen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| | - Jianliang Shen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| | - Wei Chen
- Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liangliang Shen, ; Jianliang Shen, ; Wei Chen,
| |
Collapse
|
8
|
A new non-human primate model of desiccating stress-induced dry eye disease. Sci Rep 2022; 12:7957. [PMID: 35562371 PMCID: PMC9106732 DOI: 10.1038/s41598-022-12009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Dry eye disease (DED), a multifactorial ocular surface disease, is estimated to affect up to 34% of individuals over 50 years old. Although numerous animal models, including rodents and rabbits, have been developed to mimic the pathophysiologic mechanisms involved in dry eye, there is a lack of non-human primate (NHP) models, critical for translational drug studies. Here, we developed a novel desiccating stress-induced dry eye disease model using Rhesus macaque monkeys. The monkeys were housed in a controlled environment room for 21 to 36 days under humidity, temperature, and airflow regulation. Following desiccating stress, NHPs demonstrated clinical symptoms similar to those of humans, as shown by increased corneal fluorescein staining (CFS) and decreased tear-film breakup time (TFBUT). Moreover, corticosteroid treatment significantly reduced CFS scoring, restored TFBUT, and prevented upregulation of tear proinflammatory cytokines as observed in dry eye patients following steroid treatment. The close resemblance of clinical symptoms and treatment responses to those of human DED patients provides great translational value to the NHP model, which could serve as a clinically relevant animal model to study the efficacy of new potential treatments for DED.
Collapse
|
9
|
Qin D, Deng Y, Wang L, Yin H. Therapeutic Effects of Topical Application of Lycium barbarum Polysaccharide in a Murine Model of Dry Eye. Front Med (Lausanne) 2022; 9:827594. [PMID: 35360713 PMCID: PMC8961801 DOI: 10.3389/fmed.2022.827594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo evaluate the safety and efficacy of Lycium barbarum polysaccharide (LBP) eye drops in a murine model of dry eye disease (DED).MethodsSix- to eight-week-old female C57BL/6 mice were subjected to a combination of desiccating stress (DS) and topical benzalkonium chloride (BAC) to induce DED. Five microliters of LBP eye drops (0.625, 2.5, or 12.5 mg/ml) or PBS was applied topically 3 times per day for 10 days to subsequently test their efficacy. Tear secretion, tear breakup time (TBUT), corneal irregularity, and corneal fluorescein staining scores were measured on days 3 and 10 after treatment. The expression of tumor necrosis factor-alpha (TNF-α) in the cornea was assessed by quantitative (q) RT–PCR on days 10. The ocular irritation of LBP eye drops of corresponding concentrations was evaluated on 10- to 12-week-old female Sprague–Dawley rats.ResultsCompared with PBS-treated groups, mice treated with 0.625, 2.5, and 12.5 mg/ml LBP showed a significant improvement in the clinical signs of DED in a dose-dependent manner, including corneal epithelial integrity, corneal regularity, and tear production, as well as significant inhibition of inflammatory cell infiltration and TNF-α expression levels in the cornea. All corresponding concentrations of LBP eye drops revealed no obvious ocular irritation.ConclusionTopical application of LBP could ameliorate dry eye in a murine model of DED without obvious ocular irritation.
Collapse
|
10
|
Chen Y, Wang S, Alemi H, Dohlman T, Dana R. Immune regulation of the ocular surface. Exp Eye Res 2022; 218:109007. [PMID: 35257715 PMCID: PMC9050918 DOI: 10.1016/j.exer.2022.109007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 01/01/2023]
Abstract
Despite constant exposure to various environmental stimuli, the ocular surface remains intact and uninflamed while maintaining the transparency of the cornea and its visual function. This 'immune privilege' of the ocular surface is not simply a result of the physical barrier function of the mucosal lining but, more importantly, is actively maintained through a variety of immunoregulatory mechanisms that prevent the disruption of immune homeostasis. In this review, we focus on essential molecular and cellular players that promote immune quiescence in steady-state conditions and suppress inflammation in disease-states. Specifically, we examine the interactions between the ocular surface and its local draining lymphoid compartment, by encompassing the corneal epithelium, corneal nerves and cornea-resident myeloid cells, conjunctival goblet cells, and regulatory T cells (Treg) in the context of ocular surface autoimmune inflammation (dry eye disease) and alloimmunity (corneal transplantation). A better understanding of the immunoregulatory mechanisms will facilitate the development of novel, targeted immunomodulatory strategies for a broad range of ocular surface inflammatory disorders.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
11
|
Chen X, Wu J, Lin X, Wu X, Yu X, Wang B, Xu W. Tacrolimus Loaded Cationic Liposomes for Dry Eye Treatment. Front Pharmacol 2022; 13:838168. [PMID: 35185587 PMCID: PMC8855213 DOI: 10.3389/fphar.2022.838168] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Eye drops are ophthalmic formulations routinely used to treat dry eye. However, the low ocular bioavailability is an obvious drawback of eye drops owing to short ocular retention time and weak permeability of the cornea. Herein, to improve the ocular bioavailability of eye drops, a cationic liposome eye drop was constructed and used to treat dry eye. Tacrolimus liposomes exhibit a diameter of around 300 nm and a surface charge of +30 mV. Cationic liposomes could interact with the anionic ocular surface, extending the ocular retention time and improving tacrolimus amount into the cornea. The cationic liposomes notably prolonged the ocular retention time of eye drops, leading to an increased tacrolimus concentration in the ocular surface. The tacrolimus liposomes were also demonstrated to reduce reactive oxygen species and dry eye-related inflammation factors. The use of drug-loaded cationic liposomes is a good formulation in the treatment of ocular disease; the improved ocular retention time and biocompatibility give tremendous scope for application in the treatment of ocular disease, with further work in the area recommended.
Collapse
Affiliation(s)
- Xiang Chen
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xueqi Lin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xingdi Wu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuewen Yu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Wen Xu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Wang J, Gong J, Yang Q, Wang L, Jian Y, Wang P. Interleukin-17 Receptor E and C-C Motif Chemokine Receptor 10 Identify Heterogeneous T Helper 17 Subsets in a Mouse Dry Eye Disease Model. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:332-343. [PMID: 35144761 DOI: 10.1016/j.ajpath.2021.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/09/2023]
Abstract
Dry eye disease (DED) features the inflammatory response of the ocular surface. Pro-inflammatory T helper 17 (Th17) cells are important for the pathogenesis of DED. In the present study a mouse DED model was used to discover two Th17 subsets in draining lymph nodes and conjunctivae based on the expression of IL-17 receptor E (IL-17RE) and CCR10: IL-17RElowCCR10- Th17 and IL-17REhighCCR10+ Th17. IL-17REhighCCR10+ Th17 expressed more retinoic acid-related orphan receptor gamma t but fewer T-box-expressed-in-T-cells than IL-17RElowCCR10- Th17. In addition, the former expressed higher IL-17A, IL-21, and IL-22 but fewer IFN-γ than the latter. Further analysis showed that IL-17REhighCCR10+ Th17 did not express IFN-γ in vivo, whereas IL-17RElowCCR10- Th17 contained IFN-γ-expressing Th17/Th1 cells. Moreover, IL-17REhighCCR10+ Th17 possessed more phosphorylated p38 mitogen-activated protein kinase (MAPK) and Jnk than IL-17RElowCCR10- Th17, suggesting higher activation of MAPK signaling in IL-17REhighCCR10+ Th17. In vitro treatment with IL-17C effectively maintained IL-17A expression in Th17 cells through p38 MAPK rather than Jnk MAPK. Furthermore, the adoptive transfer of the two Th17 subpopulations indicated their equivalent pathogenicity in DED. Interestingly, IL-17REhighCCR10+ Th17 cells were able to phenotypically polarize to IL-17RElowCCR10- Th17 cells in vivo. In conclusion, the current study revealed novel Th17 subsets with differential phenotypes, functions, and signaling status in DED, thus deepening the understanding of Th17 pathogenicity, and exhibited Th17 heterogeneity in DED.
Collapse
Affiliation(s)
- Junling Wang
- The Eye Research Institute at Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, China
| | - Jin Gong
- The Eye Research Institute at Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, China
| | - Qingguo Yang
- The Eye Research Institute at Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, China
| | - Linglin Wang
- The Eye Research Institute at Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, China
| | - Yan Jian
- The Eye Research Institute at Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, China
| | - Ping Wang
- The Eye Research Institute at Renhe Hospital of China Three Gorges University, Yichang City, Hubei Province, China.
| |
Collapse
|
13
|
The link module of human TSG-6 (Link_TSG6) promotes wound healing, suppresses inflammation and improves glandular function in mouse models of Dry Eye Disease. Ocul Surf 2021; 24:40-50. [PMID: 34968766 DOI: 10.1016/j.jtos.2021.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the potential of the Link_TSG6 polypeptide comprising the Link module of human TSG-6 (TNF-stimulated gene/protein-6) as a novel treatment for dry eye disease (DED). METHODS We analyzed the therapeutic effects of topical application of Link_TSG6 in two murine models of DED, the NOD.B10.H2b mouse model and the desiccating stress model. The effects of Link_TSG6 on the ocular surface and DED were compared with those of full-length TSG-6 (FL_TSG6) and of 0.05% cyclosporine (Restasis®). Additionally, the direct effect of Link_TSG6 on wound healing of the corneal epithelium was evaluated in a mouse model of corneal epithelial debridement. RESULTS Topical Link_TSG6 administration dose-dependently reduced corneal epithelial defects in DED mice while increasing tear production and conjunctival goblet cell density. At the highest dose, no corneal lesions remained in ∼50% of eyes treated. Also, Link_TSG6 significantly suppressed the levels of inflammatory cytokines at the ocular surface and inhibited the infiltration of T cells in the lacrimal glands and draining lymph nodes. Link_TSG6 was more effective in decreasing corneal epithelial defects than an equimolar concentration of FL_TSG6. Link_TSG6 was significantly more potent than Restasis® at ameliorating clinical signs and reducing inflammation. Link_TSG6 markedly and rapidly facilitated epithelial healing in mice with corneal epithelial debridement wounds. CONCLUSION Link_TSG6 holds promise as a novel therapeutic agent for DED through its effects on the promotion of corneal epithelial healing and tear secretion, the preservation of conjunctival goblet cells and the suppression of inflammation.
Collapse
|
14
|
Huang W, Tourmouzis K, Perry H, Honkanen RA, Rigas B. Animal models of dry eye disease: Useful, varied and evolving (Review). Exp Ther Med 2021; 22:1394. [PMID: 34650642 PMCID: PMC8506913 DOI: 10.3892/etm.2021.10830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Dry eye disease (DED), which is a prevalent disease that still lacks successful treatment options, remains a major challenge in ophthalmology. Multiple animal models of DED have been used to decipher its pathophysiology and to develop novel treatments. These models use mice, rats, rabbits, cats, dogs and non-human primates. Each model assesses aspects of DED by focusing on elements of the lacrimal functional unit, which controls the homeostasis of the tear film. The present review outlines representative DED animal models and assesses their contribution to the study of DED. Murine models are the most extensively used, followed by rabbit models; the latter offer the advantage of larger eyes, a favorable biochemical profile for drug studies, experimental ease and relatively low cost, contrasting with non-human primates, which, although closer to humans, are not as accessible and are expensive. No comprehensive ‘ideal’ animal model encompassing all aspects of human DED exists nor is it feasible. Investigators often choose an animal model based on their experimental needs and the following four features of a given model: The size of the eye, its biochemical composition, the available research reagents and cost. As research efforts in DED expand, more refined animal models are needed to supplement the enormous contribution made to date by existing models.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | | | - Henry Perry
- Ophthalomology Consultants of Long Island, Westbury, NY 11590, USA
| | - Robert A Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Basil Rigas
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
15
|
Chen Y, Dana R. Autoimmunity in dry eye disease - An updated review of evidence on effector and memory Th17 cells in disease pathogenicity. Autoimmun Rev 2021; 20:102933. [PMID: 34509656 DOI: 10.1016/j.autrev.2021.102933] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
The classic Th1/Th2 dogma has been significantly reshaped since the subsequent introduction of several new T helper cell subsets, among which the most intensively investigated during the last decade is the Th17 lineage that demonstrates critical pathogenic roles in autoimmunity and chronic inflammation - including the highly prevalent dry eye disease. In this review, we summarize current concepts of Th17-mediated disruption of ocular surface immune homeostasis that leads to autoimmune inflammatory dry eye disease, by discussing the induction, activation, differentiation, migration, and function of effector Th17 cells in disease development, highlighting the phenotypic and functional plasticity of Th17 lineage throughout the disease initiation, perpetuation and sustention. Furthermore, we emphasize the most recent advance in Th17 memory formation and function in the chronic course of dry eye disease, a major area to be better understood for facilitating the development of effective treatments in a broader field of autoimmune diseases that usually present a chronic course with recurrent episodes of flare in the target tissues or organs.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Lee SJ, Im ST, Wu J, Cho CS, Jo DH, Chen Y, Dana R, Kim JH, Lee SM. Corneal lymphangiogenesis in dry eye disease is regulated by substance P/neurokinin-1 receptor system through controlling expression of vascular endothelial growth factor receptor 3. Ocul Surf 2021; 22:72-79. [PMID: 34311077 DOI: 10.1016/j.jtos.2021.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the role of substance P (SP)/neurokinin-1 receptor (NK1R) system in the regulation of pathologic corneal lymphangiogenesis in dry eye disease (DED). METHODS Immunocytochemistry, angiogenesis assay, and Western blot analysis of human dermal lymphatic endothelial cells (HDLECs) were conducted to assess the involvement of SP/NK1R system in lymphangiogenesis. DED was induced in wild-type C57BL/6 J mice using controlled-environment chamber without scopolamine. Immunohistochemistry, corneal fluorescein staining, and phenol red thread test were used to evaluate the effect of SP signaling blockade in the corneal lymphangiogenesis. The expression of lymphangiogenic factors in the corneal and conjunctival tissues of DED mouse model was quantified by real-time polymerase chain reaction. RESULTS NK1R expression and pro-lymphangiogenic property of SP/NK1R system in HDLECs were confirmed by Western blot analysis and angiogenesis assay. Blockade of SP signaling with L733,060, an antagonist of NK1R, or NK1R-targeted siRNA significantly inhibited lymphangiogenesis and expression of vascular endothelial growth factor (VEGF) receptor 3 stimulated by SP in HDLECs. NK1R antagonist also suppressed pathological corneal lymphangiogenesis and ameliorated the clinical signs of dry eye in vivo. Furthermore, NK1R antagonist effectively suppressed the lymphangiogenic factors, including VEGF-C, VEGF-D, and VEGF receptor 3 in the corneal and conjunctival tissues of DED. CONCLUSIONS SP/NK1R system promotes lymphangiogenesis in vitro and NK1R antagonism suppresses pathologic corneal lymphangiogenesis in DED in vivo.
Collapse
Affiliation(s)
- Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Taek Im
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Wu
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea.
| | - Sang-Mok Lee
- Department of Cornea, External Disease & Refractive Surgery, HanGil Eye Hospital, Incheon, Republic of Korea; Department of Ophthalmology, Catholic Kwandong University College of Medicine, Gangneung-si, Republic of Korea.
| |
Collapse
|
17
|
Singh RB, Blanco T, Mittal SK, Alemi H, Chauhan SK, Chen Y, Dana R. Pigment Epithelium-Derived Factor Enhances the Suppressive Phenotype of Regulatory T Cells in a Murine Model of Dry Eye Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:720-729. [PMID: 33453179 PMCID: PMC8027920 DOI: 10.1016/j.ajpath.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a widely expressed 50-kDa glycoprotein belonging to the serine protease inhibitor family, with well-established anti-inflammatory functions. Recently, we demonstrated the immunoregulatory role played by PEDF in dry eye disease (DED) by suppressing the maturation of antigen-presenting cells at the ocular surface following exposure to the desiccating stress. In this study, we evaluated the effect of PEDF on the immunosuppressive characteristics of regulatory T cells (Tregs), which are functionally impaired in DED. In the presence of PEDF, the in vitro cultures prevented proinflammatory cytokine (associated with type 17 helper T cells)-induced loss of frequency and suppressive phenotype of Tregs derived from normal mice. Similarly, PEDF maintained the in vitro frequency and enhanced the suppressive phenotype of Tregs derived from DED mice. On systemically treating DED mice with PEDF, moderately higher frequencies and significantly enhanced suppressive function of Tregs were observed in the draining lymphoid tissues, leading to the efficacious amelioration of the disease. Our results demonstrate that PEDF promotes the suppressive capability of Tregs and attenuates their type 17 helper T-cell-mediated dysfunction in DED, thereby playing a role in the suppression of DED.
Collapse
Affiliation(s)
- Rohan B Singh
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sharad K Mittal
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hamid Alemi
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Yihe Chen
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
18
|
Yang FM, Fan D, Yang XQ, Zhu FH, Shao MJ, Li Q, Liu YT, Lin ZM, Cao SQ, Tang W, He SJ, Zuo JP. The artemisinin analog SM934 alleviates dry eye disease in rodent models by regulating TLR4/NF-κB/NLRP3 signaling. Acta Pharmacol Sin 2021; 42:593-603. [PMID: 32747720 PMCID: PMC8114933 DOI: 10.1038/s41401-020-0484-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/15/2020] [Indexed: 01/22/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder of the tears and ocular surface characterized by manifestations of dryness and irritation. Although the pathogenesis is not fully illuminated, it is recognized that inflammation has a prominent role in the development and deterioration of DED. β-aminoarteether maleate (SM934) is a water-soluble artemisinin derivative with anti-inflammatory and immunosuppressive activities. In this study, we established scopolamine hydrobromide (SCOP)-induced rodent model as well as benzalkonium chloride (BAC)-induced rat model to investigate the therapeutic potential of SM934 for DED. We showed that topical application of SM934 (0.1%, 0.5%) significantly increased tear secretion, maintained the number of conjunctival goblet cells, reduced corneal damage, and decreased the levels of inflammatory mediators (TNF-α, IL-6, IL-10, or IL-1β) in conjunctiva in SCOP-induced and BAC-induced DED models. Moreover, SM934 treatment reduced the accumulation of TLR4-expressing macrophages in conjunctiva, and suppressed the expression of inflammasome components, i.e., myeloid differentiation factor88 (MyD88), Nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), and cleaved caspase 1. In LPS-treated RAW 264.7 cells, we demonstrated that pretreatment with SM934 (10 μM) impeded the upregulation of TLR4 and downstream NF-κB/NLRP3 signaling proteins. Collectively, artemisinin analog SM934 exerts therapeutic benefits on DED by simultaneously reserving the structural integrity of ocular surface and preventing the corneal and conjunctival inflammation, suggested a further application of SM934 in ophthalmic therapy, especially for DED.
Collapse
Affiliation(s)
- Fang-Ming Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Di Fan
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Qian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng-Hua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mei-Juan Shao
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qian Li
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Ting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze-Min Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Qi Cao
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Jun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Ping Zuo
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Spatial Distribution of Mast Cells Regulates Asymmetrical Angiogenesis at the Ocular Surface. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1108-1117. [PMID: 33705754 DOI: 10.1016/j.ajpath.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022]
Abstract
Mast cells, historically known for their function as effector cells in the induction of allergic diseases, reside in all vascularized tissues of the body, particularly, in proximity to blood and lymphatic vessels. Despite being neighboring sentinel cells to blood vessels, whether the spatial distribution of mast cells regulates the degree of angiogenesis remains to be investigated. Herein, an asymmetrical distribution of mast cells was shown at the murine ocular surface, with the higher number of mast cells distributed along the nasal limbus of the cornea compared with the temporal side. Using a well-characterized murine model of suture-induced corneal neovascularization, insult to the nasal side was shown to result in more extensive angiogenesis compared with that to the temporal side. To directly assess the impact of the spatial distribution of mast cell on angiogenesis, neovascularization was induced in mast cell-deficient mice (cKitw-sh). Unlike the wild-type (C57BL/6) mice, cKitw-sh mice did not show disproportionate growth of corneal blood vessels following the temporal and nasal insult. Moreover, cromolyn-mediated pharmacologic blockade of mast cells at the ocular surface attenuated the asymmetrical nasal and temporal neovascularization, suggesting that spatial distribution of mast cells significantly contributes to angiogenic response at the ocular surface.
Collapse
|
20
|
Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease. Ocul Surf 2021; 20:70-85. [PMID: 33412338 DOI: 10.1016/j.jtos.2020.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the expression of pigment epithelium-derived factor (PEDF) in ocular surface in dry eye disease (DED) and its anti-inflammatory roles and mechanisms, clinically and by experiments in vivo and in vitro. METHODS A cross-sectional study was conducted to detect the expression of PEDF in tears of dry eye patients by enzyme-linked immunosorbent assay (ELISA). Using dry eye mouse model and human corneal epithelial cells (hCECs) stimulated by hyperosmolarity or inflammatory cytokines, expression of PEDF in corneal epithelial cells, stroma and conjunctiva was quantified by real-time polymerase chain reaction, ELISA and Western blot. Next, either dry eye mice or hyperosmotic hCECs were treated with recombinant PEDF or neutralizing antibodies, and the expressions of inflammatory cytokines and immune cells were detected. Finally, Western blot was performed on MAPK and NF-κB to investigate the signaling pathways by which PEDF played its roles. RESULTS Concentrations of PEDF were increased in tears of dry eye patients. Increased PEDF was observed in corneal epithelial cells (CECs) rather than corneal stroma or conjunctiva in dry eye mice. Furthermore, hCECs exposed to hyperosmolarity showed upregulation of PEDF. In vivo and in vitro studies showed that PEDF suppressed the expression of inflammatory cytokines including IL-1β, IL-6, TNF-α and IL-17A, as well as the percentage of Th17 cells in DED. Further investigation showed that PEDF inhibited the phosphorylation of MAPK p38 and JNK in hyperosmotic hCECs. CONCLUSIONS CECs derived PEDF is increased in DED. PEDF plays anti-inflammatory and immunoregulatory roles in the pathogenesis of DED.
Collapse
|
21
|
Taketani Y, Marmalidou A, Dohlman TH, Singh RB, Amouzegar A, Chauhan SK, Chen Y, Dana R. Restoration of Regulatory T-Cell Function in Dry Eye Disease by Antagonizing Substance P/Neurokinin-1 Receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1859-1866. [PMID: 32473919 DOI: 10.1016/j.ajpath.2020.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Substance P (SP) is a tachykinin neuropeptide, implicated in the pathogenesis of various inflammatory conditions and a critical mediator in pain transmission. Recently, the role of SP was described in the pathogenesis of dry eye disease (DED) through its role in the maturation of antigen-presenting cells at the ocular surface after exposure to desiccating stress. However, the effect of SP on regulatory T cells (Tregs), which are functionally impaired in DED, remains unclear. This study examined the phenotypic and functional changes in Tregs in response to SP in DED. The in vitro cultures of normal Tregs in the presence of SP led to a significant reduction in both Treg frequencies and their suppressive function, which was prevented by the addition of an SP receptor (neurokinin-1 receptor) antagonist. Furthermore, in vivo treatment with the neurokinin-1 receptor antagonist in DED mice effectively restored Treg function, suppressed pathogenic T helper 17 response, and significantly ameliorated the disease. Our results show that a significant increase in SP levels promotes Treg dysfunction in DED, and blockade of SP effectively restores Treg function and suppresses DED severity.
Collapse
Affiliation(s)
- Yukako Taketani
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Anna Marmalidou
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Thomas H Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
22
|
Fan NW, Dohlman TH, Foulsham W, McSoley M, Singh RB, Chen Y, Dana R. The role of Th17 immunity in chronic ocular surface disorders. Ocul Surf 2020; 19:157-168. [PMID: 32470612 DOI: 10.1016/j.jtos.2020.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022]
Abstract
Th17 cells have been implicated in the pathogenesis of numerous inflammatory and autoimmune conditions. At the ocular surface, Th17 cells have been identified as key effector cells in chronic ocular surface disease. Evidence from murine studies indicates that following differentiation and expansion, Th17 cells migrate from the lymphoid tissues to the eye, where they release inflammatory cytokines including, but not limited to, their hallmark cytokine IL-17A. As the acute phase subsides, a population of long-lived memory Th17 cells persist, which predispose hosts both to chronic inflammation and severe exacerbations of disease; of great interest is the small subset of Th17/1 cells that secrete both IL-17A and IFN-γ in acute-on-chronic disease exacerbation. Over the past decade, substantial progress has been made in deciphering how Th17 cells interact with the immune and neuroimmune pathways that mediate chronic ocular surface disease. Here, we review (i) the evidence for Th17 immunity in chronic ocular surface disease, (ii) regulatory mechanisms that constrain the Th17 immune response, and (iii) novel therapeutic strategies targeting Th17 cells.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Thomas H Dohlman
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Matthew McSoley
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
23
|
Pigment Epithelium-derived Factor secreted by corneal epithelial cells regulates dendritic cell maturation in dry eye disease. Ocul Surf 2020; 18:460-469. [PMID: 32387568 DOI: 10.1016/j.jtos.2020.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE In this study, we quantify Pigment Epithelium-derived Factor (PEDF) secreted by corneal epithelial cells and evaluate its immunomodulatory functions in a murine model of dry eye disease (DED). METHODS We induced DED in female C57BL/6 mice using a controlled environment chamber for 14 days. We quantified mRNA expression of Serpinf1 gene and PEDF protein synthesis by corneal epithelial cells (CEpCs) using RT-PCR and ELISA. CEpCs from normal or DED mice were cultured with IFNγ-stimulated-dendritic cells (DCs) for 24 h, and expression of MHC-II and CD86 by DCs was determined using flow cytometry. Next, we either added recombinant PEDF (rPEDF) or anti-PEDF antibody to co-culture, and DC expression of the above maturation markers was quantified. Lastly, we treated DED mice with either topical rPEDF, anti-PEDF Ab or murine serum albumin (MSA), and DC maturation, expression of pro-inflammatory cytokines, and DED severity were investigated. RESULTS Serpinf1 mRNA expression and PEDF protein production levels by CEpCs were upregulated in DED. CEpCs from DED mice exhibited an enhanced suppressive effect on the expression of MHC-II and CD86 by DCs, compared to normal mice. This effect was abolished by blocking endogenous PEDF with anti-PEDF Ab or enhanced by supplementing with rPEDF. Treatment with anti-PEDF antibody blocked the effect of endogenous-PEDF and increased DC maturation, expression of pro-inflammatory cytokines in conjunctivae, and exacerbated disease severity in DED mice. Conversely, topical rPEDF enhanced the suppressive effect of endogenous PEDF on DC maturation, decreased expression of pro-inflammatory cytokines in conjunctivae, and reduced disease severity. CONCLUSIONS The results from our study elucidate the role of PEDF in impeding DC maturation, and suppression of ocular surface inflammation, explicating a promising therapeutic potential of PEDF in limiting the corneal epitheliopathy as a consequence of DED.
Collapse
|
24
|
Liu L, Dana R, Yin J. Sensory neurons directly promote angiogenesis in response to inflammation via substance P signaling. FASEB J 2020; 34:6229-6243. [PMID: 32162744 DOI: 10.1096/fj.201903236r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Blood vessels and nerves travel together to supply most tissues in the body. However, there is a knowledge gap in the mechanisms underlying the direct regulation of angiogenesis by nerves. In the current study, we examined the regulation of angiogenesis by sensory nerves in response to inflammation using the cornea, a normally avascular and densely innervated ocular tissue, as a model. We used desiccating stress as an inflammatory stimulus in vivo and found that sub-basal and epithelial nerve densities in the cornea were reduced in dry eye disease (DED). We established a co-culture system of trigeminal ganglion sensory neurons and vascular endothelial cells (VEC) and found that neurons isolated from mice with DED directly promoted VEC proliferation and tube formation compared with normal controls. In addition, these neurons expressed and secreted higher levels of substance P (SP), a proinflammatory neuropeptide. SP potently promoted VEC activation in vitro and blockade of SP signaling with spantide I, an antagonist of SP receptor Neurokinin-1, significantly reduced corneal neovascularization in vivo. Spantide I and siRNA knockdown of SP abolished the promotion of VEC activation by DED neurons in vitro. Taken together, our data suggested that sensory neurons directly promote angiogenesis via SP signaling in response to inflammation in the cornea.
Collapse
Affiliation(s)
- Lingjia Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,School of Medicine, Nankai University, Tianjin, China
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Wang T, Li W, Cheng H, Zhong L, Deng J, Ling S. The Important Role of the Chemokine Axis CCR7-CCL19 and CCR7-CCL21 in the Pathophysiology of the Immuno-inflammatory Response in Dry Eye Disease. Ocul Immunol Inflamm 2019; 29:266-277. [PMID: 31702421 DOI: 10.1080/09273948.2019.1674891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: To explore whether CCR7-CCL19 and CCR7-CCL21 affect the pathophysiology of the dry eye disease (DED) immuno-inflammatory response using a murine model.Methods: The mRNA expression levels of CCR7, CCL19, CCL21 and VEGF-C within corneas in DED mice were detected by real-time PCR. Immunofluorescence and flow cytometric analyses were performed to mark dendritic cells (DCs) and detect correlations among CCR7, CCL19, CCL21 and lymphatic vessels.Results: CCR7, CCL19 and CCL21 expression was dramatically increased during the development of DED. In addition, CCR7, which is expressed in DCs, was located inside and around lymphatic vessels and colocalized with CCL19 or CCL21. Positive correlations were observed between CCR7 and CCL19 (P < .01, r = 0.862), CCL21 (P < .01, r = 0.759), and VEGF-C (P < .05, r = 0.607).Conclusions: Our study revealed that both the CCR7-CCL19 and CCR7-CCL21 chemokine axis are important for DC migration to lymphatic vessels, but CCL19 may have a greater effect on DED than CCL21.
Collapse
Affiliation(s)
- Ting Wang
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Huanhuan Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Lei Zhong
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Juan Deng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
26
|
Maruoka S, Inaba M, Ogata N. Activation of Dendritic Cells in Dry Eye Mouse Model. Invest Ophthalmol Vis Sci 2019; 59:3269-3277. [PMID: 29971446 DOI: 10.1167/iovs.17-22550] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The immune system plays a major role in the pathogenesis of dry eye diseases (DED), and dendritic cells (DCs) are known to be important initiators of acquired immunity. Thus, the purpose of this study was to determine the contribution of DCs to the development of DED. Methods Mouse dry eye model was induced by subcutaneous injections of scopolamine and was euthanized at the baseline, and 2, 4, and 7 days postinjection. The activation of the DCs was determined by the mixed leukocyte reaction (MLR), and the number of activated CD86+ DCs in the lymph nodes was determined by flow cytometry. Upregulation of cytokines in the culture supernatant of MLR was determined by ELISA. Results Significantly increased superficial corneal punctate lesions and decreased number of goblet cells in the conjunctiva were observed in scopolamine-injected mice. The number of activated CD86+ DCs was significantly increased in the cervical lymph nodes but not in the inguinal lymph nodes of the dry eye mice. The stimulatory activity of the DCs derived from the cervical lymph nodes of dry eye mice was significantly higher than that of control mice, and upregulations of IL-17, IL-2, and IL-4 were observed in the culture supernatant of MLR. These results indicate that the DCs of the cervical lymph nodes were activated by the scopolamine injections. Conclusions Our results indicate that DCs in our dry eye model were sufficiently activated to stimulate the T cells that participate in the onset and progression of DED.
Collapse
Affiliation(s)
- Shinji Maruoka
- Department of Ophthalmology, Nara Medical University, Nara, Japan
| | - Muneo Inaba
- Department of Ophthalmology, Nara Medical University, Nara, Japan.,Department of Internal Medicine I, Kansai Medical University, Osaka, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University, Nara, Japan
| |
Collapse
|
27
|
Shah M, Cabrera-Ghayouri S, Christie LA, Held KS, Viswanath V. Translational Preclinical Pharmacologic Disease Models for Ophthalmic Drug Development. Pharm Res 2019; 36:58. [PMID: 30805711 PMCID: PMC6394514 DOI: 10.1007/s11095-019-2588-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
Preclinical models of human diseases are critical to our understanding of disease etiology, pathology, and progression and enable the development of effective treatments. An ideal model of human disease should capture anatomical features and pathophysiological mechanisms, mimic the progression pattern, and should be amenable to evaluating translational endpoints and treatment approaches. Preclinical animal models have been developed for a variety of human ophthalmological diseases to mirror disease mechanisms, location of the affected region in the eye and severity. These models offer clues to aid in our fundamental understanding of disease pathogenesis and enable progression of new therapies to clinical development by providing an opportunity to gain proof of concept (POC). Here, we review preclinical animal models associated with development of new therapies for diseases of the ocular surface, glaucoma, presbyopia, and retinal diseases, including diabetic retinopathy and age-related macular degeneration (AMD). We have focused on summarizing the models critical to new drug development and described the translational features of the models that contributed to our understanding of disease pathogenesis and establishment of preclinical POC.
Collapse
Affiliation(s)
- Mihir Shah
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Sara Cabrera-Ghayouri
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Lori-Ann Christie
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Katherine S Held
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Veena Viswanath
- Biological Research, Allergan plc, 2525 Dupont Drive, Irvine, California, 92612, USA.
| |
Collapse
|
28
|
Leger AJ, Caspi RR. Visions of Eye Commensals: The Known and the Unknown About How the Microbiome Affects Eye Disease. Bioessays 2018; 40:e1800046. [PMID: 30289987 PMCID: PMC6354774 DOI: 10.1002/bies.201800046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Until recently, the ocular surface is thought by many to be sterile and devoid of living microbes. It is now becoming clear that this may not be the case. Recent and sophisticated PCR analyses have shown that microbial DNA-based "signatures" are present within various ethnic, geographic, and contact lens wearing communities. Furthermore, using a mouse model of ocular surface disease, we have shown that the microbe, Corynebacterium mastitidis (C. mast), can stably colonize the ocular mucosa and that a causal relationship exists between ocular C. mast colonization and beneficial local immunity. While this constitutes proof-of-concept that a bona fide ocular microbiome that tunes immunity can exist at the ocular surface, there remain numerous unanswered questions to be addressed before microbiome-modulating therapies may be successfully developed. Here, the authors will briefly outline what is currently known about the local ocular microbiome as well as microbiomes associated with other sites, and how those sites may play a role in ocular surface immunity. Understanding how commensal microbes affect the ocular surface immune homeostasis has the potential revolutionize how we think about treating ocular surface disease.
Collapse
Affiliation(s)
- Anthony J. Leger
- Laboratory of Immunology National Eye Institute, Bethesda, MD 20892, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, PA 15213, USA,
| | - Rachel R. Caspi
- Laboratory of Immunology National Eye Institute, Bethesda, MD 20892, USA,
| |
Collapse
|
29
|
Abengózar-Vela A, Schaumburg CS, Stern ME, Calonge M, Enríquez-de-Salamanca A, González-García MJ. Topical Quercetin and Resveratrol Protect the Ocular Surface in Experimental Dry Eye Disease. Ocul Immunol Inflamm 2018; 27:1023-1032. [PMID: 30096001 DOI: 10.1080/09273948.2018.1497664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose: To determine the anti-inflammatory effect of quercetin (QCT), resveratrol (RES), and their combination in a dry eye disease (DED) model. Methods: 0.01% QCT, 0.1% RES, 0.01% QCT + 0.1% RES (QCT + RES) or vehicle were topically applied in a desiccating stress (DS) mice model. CD4+ T cells isolated from DS-exposed mice were transferred to athymic recipient mice. Corneal fluorescein staining, tear production, and tear cytokine levels were evaluated in DS-exposed mice, and conjunctival CD4+ T cell infiltration was evaluated in recipient mice. Results: QCT (p < 0.001) and QCT + RES (p < 0.05) reduced corneal staining in DS-exposed mice. IL-1α tear concentration was reduced by QCT, RES, and QCT + RES (p < 0.05, 0.01 and 0.01, respectively) compared to DS + vehicle mice. CD4+ T cells increased in recipients of DS-exposed mice (p < 0.05) and were lower in recipients of QCT- and RES-treated mice (p < 0.05). Conclusion: The anti-inflammatory effect of QCT, RES, and QCT + RES on DED-experimental model suggests that their topical application could be used for DED treatment.
Collapse
Affiliation(s)
| | - Chris S Schaumburg
- Biological Sciences, Inflammation Research Program, Allergan, Inc ., Irvine , CA , USA
| | - Michael E Stern
- Biological Sciences, Inflammation Research Program, Allergan, Inc ., Irvine , CA , USA
| | - Margarita Calonge
- IOBA, University of Valladolid , Valladolid , Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Valladolid , Spain
| | - Amalia Enríquez-de-Salamanca
- IOBA, University of Valladolid , Valladolid , Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Valladolid , Spain
| | - María Jesús González-García
- IOBA, University of Valladolid , Valladolid , Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Valladolid , Spain
| |
Collapse
|
30
|
Tan X, Chen Y, Foulsham W, Amouzegar A, Inomata T, Liu Y, Chauhan SK, Dana R. The immunoregulatory role of corneal epithelium-derived thrombospondin-1 in dry eye disease. Ocul Surf 2018; 16:470-477. [PMID: 30055331 DOI: 10.1016/j.jtos.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE In this study, we examine the expression of corneal epithelium-derived thrombospondin-1 (TSP-1) and its immunomodulatory functions in a validated murine model of dry eye disease (DED). METHODS DED was induced in female C57BL/6 using a controlled environment chamber (CEC) for 14 days. mRNA and protein expression of TSP-1 by corneal epithelial cells was quantified using real-time PCR and flow cytometry. Corneal epithelial cells from either naïve or DED mice were cultured with bone marrow derived dendritic cells (BMDCs) in the presence of IFNγ for 48 h, and BMDC expression of MHC-II and CD86 was determined using flow cytometry. Next, either recombinant TSP-1 or anti-TSP-1 antibody was added to the co-culture, and BMDC expression of above activation markers was evaluated. Finally, either DED mice were topically treated with either recombinant TSP-1 or human serum albumin (HSA), and maturation of corneal DCs, expression of inflammatory cytokines, and DED severity were investigated. RESULTS mRNA expression of TSP-1 by the corneal epithelium was upregulated in DED. Corneal epithelial cells derived from mice with DED demonstrated an enhanced capacity in suppressing BMDC expression of MHC-II and CD86 relative to wild type mice, and this effect was abrogated by TSP-1 blockade and potentiated by recombinant TSP-1. Finally, topical application of recombinant TSP-1 significantly suppressed corneal DC maturation and mRNA expression of pro-inflammatory cytokines, and ameliorated disease severity in mice with DED. CONCLUSIONS Our study elucidates the function of epithelium-derived TSP-1 in inhibiting DC maturation and shows its translational potential to limit corneal epitheliopathy in DED.
Collapse
Affiliation(s)
- Xuhua Tan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Takenori Inomata
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Immune Privilege and Eye-Derived T-Regulatory Cells. J Immunol Res 2018; 2018:1679197. [PMID: 29888291 PMCID: PMC5985108 DOI: 10.1155/2018/1679197] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF-β), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2α), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.
Collapse
|
32
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1019] [Impact Index Per Article: 145.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Chen Y, Chauhan SK, Shao C, Omoto M, Inomata T, Dana R. IFN-γ-Expressing Th17 Cells Are Required for Development of Severe Ocular Surface Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28637904 DOI: 10.4049/jimmunol.1602144] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th17 cells are critical effectors mediating the ocular surface autoimmunity in dry eye disease (DED). Increased IFN-γ has also been implicated in DED; however, it remains unclear to what extent Th1 cells contribute to DED pathogenesis. In this study, we investigated the cellular source of IFN-γ and assessed its contribution to corneal epitheliopathy in DED mice. We discovered a significant IL-17A+IFN-γ+ (Th17/1) population and determined that these cells are derived from Th17 precursors. Adoptive transfer of Th17/1, but not Th1, cells confers the disease to naive recipients as effectively as do Th17 cells alone. DED-induced IL-12 and IL-23 are required for in vivo transition of pathogenic Th17 cells to IFN-γ producers. Furthermore, using IFN-γ-deficient Th17 cells, we demonstrate the disease-amplifying role of Th17-derived IFN-γ in DED pathogenesis. These results clearly demonstrate that Th17 cells mediate ocular surface autoimmunity through both IL-17A and IFN-γ.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Chunyi Shao
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Masahiro Omoto
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Takenori Inomata
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
34
|
Gehlsen U, Braun T, Notara M, Krösser S, Steven P. A semifluorinated alkane (F4H5) as novel carrier for cyclosporine A: a promising therapeutic and prophylactic option for topical treatment of dry eye. Graefes Arch Clin Exp Ophthalmol 2017; 255:767-775. [PMID: 28091781 PMCID: PMC5364248 DOI: 10.1007/s00417-016-3572-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/20/2016] [Accepted: 12/22/2016] [Indexed: 12/04/2022] Open
Abstract
Purpose Cyclosporine A (Cs) has been used as effective topical therapy for inflammatory dry eye disease since more than a decade. However, due to its lipophilic character, Cs is formulated as emulsions or oily solutions for topical application. This experimental study aimed to test if the use of semifluorinated alkanes (SFAs) as a preservative-free, well-tolerated non-stinging or burning vehicle maintains or even improves the benefits of Cs in the topical therapy of dry-eye disease. Methods Desiccating stress was applied to C57BL/6 mice for 14 consecutive days to induce experimental dry-eye. Cs dissolved in SFA (perfluorobutylpentane = F4H5with 0.5% Ethanol), F4H5 with 0.5% ethanol only, 0.05% Cs (Restasis®), and dexamethasone (Monodex®) were applied three times daily beginning either at day 4 or day 11 of desiccating stress for up to 3 weeks after end of dry-eye induction. Results In comparison to other groups, Cs/F4H5 demonstrated high efficacy and earlier reduction of corneal staining. In this study, Cs/F4H5 had the ability to maintain conjunctival goblet cell density once applied on day 4. Flow cytometry analysis from cervical lymphnodes demonstrated a significantly lower CD4+ and CD8+ T-cells in the Cs/F4H5 group following 3 weeks of therapy than at baseline, but no difference in regulatory T cells from regional lymphnodes were seen. Conclusions Overall, compared to a commercially available Cs formulation (Restasis®) and dexamethasone, Cs/F4H5 was shown to be equally effective but with a significantly faster therapeutic response in reducing signs of dry-eye disease in an experimental mouse model.
Collapse
Affiliation(s)
- Uta Gehlsen
- Department of Ophthalmology, Medical Faculty, University of Cologne, Kerpenerstrasse 62, 50937, Cologne, Germany.,Cluster of Excellence: Cellular Stress Response in Aging-Associated Diseases (CECAD), University Cologne, Cologne, Germany
| | - Tobias Braun
- Department of Ophthalmology, Medical Faculty, University of Cologne, Kerpenerstrasse 62, 50937, Cologne, Germany.,Cluster of Excellence: Cellular Stress Response in Aging-Associated Diseases (CECAD), University Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Medical Faculty, University of Cologne, Kerpenerstrasse 62, 50937, Cologne, Germany
| | | | - Philipp Steven
- Department of Ophthalmology, Medical Faculty, University of Cologne, Kerpenerstrasse 62, 50937, Cologne, Germany. .,Cluster of Excellence: Cellular Stress Response in Aging-Associated Diseases (CECAD), University Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Mashaghi A, Hong J, Chauhan SK, Dana R. Ageing and ocular surface immunity. Br J Ophthalmol 2017; 101:1-5. [PMID: 27378485 PMCID: PMC5583682 DOI: 10.1136/bjophthalmol-2015-307848] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/26/2016] [Accepted: 06/19/2016] [Indexed: 12/22/2022]
Abstract
The prevalence of ocular surface immunopathologies is enhanced in the elderly. This increased prevalence has been attributed to age-related dysregulation of innate and adaptive immune system responses. Age-related changes in ocular surface immunity have similar and distinct characteristics to those changes seen in other mucosal tissues. This mini review provides a brief outline of key findings in the field of ocular ageing, draws comparisons with other mucosal tissues and, finally, discusses age-related changes in the context of immunopathogenesis of infectious keratitis and dry eye disease, two of the most common inflammatory disorders of the ocular surface.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiaxu Hong
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Kwon JW, Choi JA, Shin EY, La TY, Jee DH, Chung YW, Cho YK. Effect of trapping vascular endothelial growth factor-A in a murine model of dry eye with inflammatory neovascularization. Int J Ophthalmol 2016; 9:1541-1548. [PMID: 27990354 DOI: 10.18240/ijo.2016.11.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/27/2016] [Indexed: 01/17/2023] Open
Abstract
AIM To evaluate whether trapping vascular endothelial growth factor A (VEGF-A) would suppress angiogenesis and inflammation in dry eye corneas in a murine corneal suture model. METHODS We established two groups of animals, one with non-dry eyes and the other with induced dry eyes. In both groups, a corneal suture model was used to induce inflammation and neovascularization. Each of two groups was again divided into three subgroups according to the treatment; subgroup I (aflibercept), subgroup II (dexamethasone) and subgroup III (phosphate buffered saline, PBS). Corneas were harvested and immunohistochemical staining was performed to compare the extents of neovascularization and CD11b+ cell infiltration. Real-time polymerase chain reaction was performed to quantify the expression of inflammatory cytokines and VEGF-A in the corneas. RESULTS Trapping VEGF-A with aflibercept resulted in significantly decreased angiogenesis and inflammation compared with the dexamethasone and PBS treatments in the dry eye corneas (all P<0.05), but with no such effects in non-dry eyes. The anti-inflammatory and anti-angiogenic effects of VEGF-A trapping were stronger than those of dexamethasone in both dry eye and non-dry eye corneas (all P<0.05). The levels of RNA expression of VEGF-A, TNF-alpha, and IL-6 in the aflibercept subgroup were significantly decreased compared with those in the PBS subgroup in the dry eye group. CONCLUSION Compared with non-dry eye corneas, dry eye corneas have greater amounts of inflammation and neovascularization and also have a more robust response to anti-inflammatory and anti-angiogenic agents after ocular surface surgery. Trapping VEGF-A is effective in decreasing both angiogenesis and inflammation in dry eye corneas after ocular surface surgery.
Collapse
Affiliation(s)
- Jin Woo Kwon
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Ji-Dong, Paldal-Gu, Suwon, Gyeonggi-Do 16247, South Korea
| | - Jin A Choi
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Ji-Dong, Paldal-Gu, Suwon, Gyeonggi-Do 16247, South Korea
| | - Eun Young Shin
- Research Institute of Medical Science, St. Vincent's Hospital, The Catholic University of Korea, 93 Ji-Dong, Paldal-Gu, Suwon, Gyeonggi-Do16247, South Korea
| | - Tae Yoon La
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Ji-Dong, Paldal-Gu, Suwon, Gyeonggi-Do 16247, South Korea
| | - Dong Hyun Jee
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Ji-Dong, Paldal-Gu, Suwon, Gyeonggi-Do 16247, South Korea
| | - Yeon Woong Chung
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Ji-Dong, Paldal-Gu, Suwon, Gyeonggi-Do 16247, South Korea
| | - Yang Kyung Cho
- Department of Ophthalmology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Ji-Dong, Paldal-Gu, Suwon, Gyeonggi-Do 16247, South Korea
| |
Collapse
|
37
|
Guzmán M, Keitelman I, Sabbione F, Trevani AS, Giordano MN, Galletti JG. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye. Exp Eye Res 2016; 151:19-22. [PMID: 27443502 DOI: 10.1016/j.exer.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/06/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease.
Collapse
Affiliation(s)
- Mauricio Guzmán
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Irene Keitelman
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Florencia Sabbione
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Analía S Trevani
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Mirta N Giordano
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Jeremías G Galletti
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Relationship Between Dynamic Changes in Expression of IL-17/IL-23 in Lacrimal Gland and Ocular Surface Lesions in Ovariectomized Mice. Eye Contact Lens 2016; 44:35-43. [PMID: 27341090 DOI: 10.1097/icl.0000000000000289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE An ovariectomized mouse model was constructed to observe the dynamic effects of hormone changes on the expression of interleukin (IL)-17A and IL-23 in the lacrimal glands. METHODS The ovariectomized mouse model was constructed by bilateral ovary removal. The concentrations of serum estradiol and testosterone in mouse cardiac blood were detected by radioimmunoassay. Mice in both groups underwent the phenol red cotton thread test and corneal fluorescein staining to assess the ocular surface, whereas Th17 cells in blood and spleen were detected by flow cytometry. IL-17A and IL-23 expression in the lacrimal glands was detected by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time fluorescence quantitative polymerase chain reaction. RESULTS Serum estradiol and testosterone levels were significantly lower in the ovariectomized group compared with those in the control group. There was lymphocytic infiltration in the lacrimal gland of the ovariectomized group mice. At 6 months after the surgery, aqueous tear production was significantly lower, and statistically significant corneal fluorescein staining was found in the ovariectomized group, compared with that in the control group. In the ovariectomized group, IL-17A and the IL-23 expression in the lacrimal glands and the Th17 expression in the blood and spleen were significantly higher than in the control group. CONCLUSION The hormone levels are significantly reduced and lymphocytic infiltration in the lacrimal gland in ovariectomized mice, whereas the frequency of Th17 cells in the blood and spleen and IL-17A and IL-23 expression in the lacrimal glands are increased, leading to reduced tear production and positive fluorescein staining in the cornea.
Collapse
|
39
|
Farid M, Agrawal A, Fremgen D, Tao J, Chuyi H, Nesburn AB, BenMohamed L. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease. Ocul Immunol Inflamm 2016; 24:327-47. [PMID: 25535823 PMCID: PMC4478284 DOI: 10.3109/09273948.2014.986581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED.
Collapse
Affiliation(s)
- Marjan Farid
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Daniel Fremgen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Jeremiah Tao
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - He Chuyi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology, University of California Irvine, School of Medicine, Irvine, California, USA
- Biochemistry and Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
40
|
Kwon JW, Chung YW, Choi JA, La TY, Jee DH, Cho YK. Comparison of postoperative corneal changes between dry eye and non-dry eye in a murine cataract surgery model. Int J Ophthalmol 2016; 9:218-24. [PMID: 26949638 DOI: 10.18240/ijo.2016.02.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/10/2015] [Indexed: 01/17/2023] Open
Abstract
AIM To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. METHODS We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9(th) postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. RESULTS Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). CONCLUSION In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue.
Collapse
Affiliation(s)
- Jin Woo Kwon
- Department of Ophthalmology, St.Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 442723, Gyeonggi-Do, Korea
| | - Yeon Woong Chung
- Department of Ophthalmology, St.Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 442723, Gyeonggi-Do, Korea
| | - Jin A Choi
- Department of Ophthalmology, St.Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 442723, Gyeonggi-Do, Korea
| | - Tae Yoon La
- Department of Ophthalmology, St.Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 442723, Gyeonggi-Do, Korea
| | - Dong Hyun Jee
- Department of Ophthalmology, St.Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 442723, Gyeonggi-Do, Korea
| | - Yang Kyung Cho
- Department of Ophthalmology, St.Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 442723, Gyeonggi-Do, Korea
| |
Collapse
|
41
|
Guzmán M, Keitelman I, Sabbione F, Trevani AS, Giordano MN, Galletti JG. Desiccating stress-induced disruption of ocular surface immune tolerance drives dry eye disease. Clin Exp Immunol 2016; 184:248-56. [PMID: 26690299 DOI: 10.1111/cei.12759] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Dry eye is an allegedly autoimmune disorder for which the initiating mechanisms and the targeted antigens in the ocular surface are not known, yet there is extensive evidence that a localized T helper type 1 (Th1)/Th17 effector T cell response is responsible for its pathogenesis. In this work, we explore the reconciling hypothesis that desiccating stress, which is usually considered an exacerbating factor, could actually be sufficient to skew the ocular surface's mucosal response to any antigen and therefore drive the disease. Using a mouse model of dry eye, we found that desiccating stress causes a nuclear factor kappa B (NF-κB)- and time-dependent disruption of the ocular surface's immune tolerance to exogenous ovalbumin. This pathogenic event is mediated by increased Th1 and Th17 T cells and reduced regulatory T cells in the draining lymph nodes. Conversely, topical NF-κB inhibitors reduced corneal epithelial damage and interleukin (IL)-1β and IL-6 levels in the ocular surface of mice under desiccating stress. The observed effect was mediated by an augmented regulatory T cell response, a finding that highlights the role of mucosal tolerance disruption in dry eye pathogenesis. Remarkably, the NF-κB pathway is also involved in mucosal tolerance disruption in other ocular surface disorders. Together, these results suggest that targeting of mucosal NF-κB activation could have therapeutic potential in dry eye.
Collapse
Affiliation(s)
- M Guzmán
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - I Keitelman
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - F Sabbione
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - A S Trevani
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - M N Giordano
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - J G Galletti
- Immunology Laboratory, Institute of Experimental Medicine, National Academy of Medicine/CONICET, Buenos Aires, Argentina
| |
Collapse
|
42
|
α-Melanocyte-stimulating hormone ameliorates ocular surface dysfunctions and lesions in a scopolamine-induced dry eye model via PKA-CREB and MEK-Erk pathways. Sci Rep 2015; 5:18619. [PMID: 26685899 PMCID: PMC4685655 DOI: 10.1038/srep18619] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022] Open
Abstract
Dry eye is a highly prevalent, chronic, and multifactorial disease that compromises quality of life and generates socioeconomic burdens. The pathogenic factors of dry eye disease (DED) include tear secretion abnormalities, tear film instability, and ocular surface inflammation. An effective intervention targeting the pathogenic factors is needed to control this disease. Here we applied α-Melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced dry eye rat model. The results showed that α-MSH at different doses ameliorated tear secretion, tear film stability, and corneal integrity, and corrected overexpression of proinflammatory factors, TNF-α, IL-1β, and IFN-γ, in ocular surface of the dry eye rats. Moreover, α-MSH, at 10(-4) μg/μl, maintained corneal morphology, inhibited apoptosis, and restored the number and size of conjunctival goblet cells in the dry eye rats. Mechanistically, α-MSH activated both PKA-CREB and MEK-Erk pathways in the dry eye corneas and conjunctivas; pharmacological blockade of either pathway abolished α-MSH's protective effects, suggesting that both pathways are necessary for α-MSH's protection under dry eye condition. The peliotropic protective functions and explicit signaling mechanism of α-MSH warrant translation of the α-MSH-containing eye drop into a novel and effective intervention to DED.
Collapse
|
43
|
Lai CT, Yao WC, Lin SY, Liu HY, Chang HW, Hu FR, Chen WL. Changes of Ocular Surface and the Inflammatory Response in a Rabbit Model of Short-Term Exposure Keratopathy. PLoS One 2015; 10:e0137186. [PMID: 26334533 PMCID: PMC4559311 DOI: 10.1371/journal.pone.0137186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022] Open
Abstract
Purpose To evaluate the ocular surface change and the inflammatory response in a rabbit model of short-term exposure keratopathy. Methods Short term exposure keratopathy by continuous eyelid opening was induced in New Zealand white rabbits for up to 4 hours. Ultrasound pachymetry was used to detect central total corneal thickness. In vivo confocal microscopy and impression cytology were performed to evaluate the morphology of ocular surface epithelium and the infiltration of inflammatory cells. Immunohistochemistry for macrophage,neutrophil, CD4(+) T cells, and CD8(+) T cells were performed to classify the inflammatory cells. Scanning electron microscopy(SEM) was performed to detect ocular surface change.The concentrations of IL-8, IL-17, Line and TNF-αwere analyzed by multiplex immunobead assay. TUNEL staining was performed to detect cellular apoptosis. Results Significant decrease ofcentral total cornealthickness were found within the first 5 minutes and remained stable thereafter, while there were no changes of corneal epithelial thickness.No significant change of corneal, limbal and conjunctival epithelial morphology was found by in vivo confocal microscopy except the time dependent increase of superficial cellular defects in the central cornea. Impression cytology also demonstrated time dependent increase of sloughing superficial cells of the central cornea. Aggregations ofinflammatory cells were found at 1 hour in the limbal epithelium, 2 hours in the perilimbal conjunctival epithelium, and 3 hours in the peripheral corneal epithelium.In eyes receiving exposure for 4 hours, the infiltration of the inflammatory cells can still be detected at 8 hours after closing eyes.Immunohistochemical study demonstrated the cells to be macrophages, neutrophils, CD4-T cells and CD-8 T cells.SEM demonstrated time-depending increase of intercellular border and sloughing of superficial epithelial cells in corneal surface. Time dependent increase of IL-8, IL-17 and TNF-α in tear was found.TUNEL staining revealed some apoptotic cells in the corneal epithelium and superficial stroma at 3 hours after exposure. Conclusions Short term exposure keratopathy can cause significant changes to the ocular surface and inflammatory response. Decrease of central total corneal thickness, aggregation of inflammatory cells, and cornea epithelial cell and superficial keratocyte apoptosis were found no less than 4 hours following the insult.
Collapse
Affiliation(s)
- Chun-Ting Lai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chieng Yao
- Department of Anesthesia, Min-Sheng General Hospital, Tao-Yuan City, Taiwan
| | - Szu-Yuan Lin
- Deparment of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
| | - Hsin-Yu Liu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huai-Wen Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Center of Corneal Tissue Engineering and Stem Cell Biology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Center of Corneal Tissue Engineering and Stem Cell Biology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
44
|
Uehara H, Das SK, Cho YK, Archer B, Ambati BK. Comparison of the Anti-angiogenic and Anti-inflammatory Effects of Two Antibiotics: Clarithromycin Versus Moxifloxacin. Curr Eye Res 2015; 41:474-84. [PMID: 26125497 DOI: 10.3109/02713683.2015.1037926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Clarithromycin is a 14-membered ring macrolide antibiotic with anti-inflammatory as well as antibacterial activity, and has been used worldwide. Moxifloxacin is a leading fourth generation quinolone antibiotic that has been used worldwide perioperatively. We intended to evaluate whether clarithromycin can suppress angiogenesis and inflammation in the cornea, and to compare the anti-inflammatory and anti-angiogenic effects of the two antibiotics, clarithromycin and moxifloxacin. METHODS We made a murine corneal suture model and tested the anti-inflammatory and anti-angiogenic effects of clarithromycin (5 mg/ml) and moxifloxacin (5 mg/ml) in two randomly divided groups. Dexamethasone (5 mg/ml) was used as a positive control. After making two sutures on the cornea, we performed subconjunctival injections (10 μl) on each group on the day of suture, and every day thereafter until the 8th day post-suture. After harvesting corneas on the 8th post-suture day for immunohistochemical staining, we compared neovascularization (NV), lymphangiogenesis (LY) and inflammatory cell infiltration among the groups. RESULTS Clarithromycin suppressed NV, LY and inflammatory infiltration, compared with phosphate-buffered saline (PBS). However, moxifloxacin did not suppress NV, LY, or inflammatory infiltration, compared with PBS. Comparison between clarithromycin and moxifloxacin, clarithromycin showed a tendency of decreasing LY (p = 0.063) and had less inflammatory cell infiltration (p < 0.05) than did the moxifloxacin group. The anti-(lymph)angiogenic and anti-inflammatory effects of clarithromycin were as high as those of dexamethasone. CONCLUSION Clarithromycin suppressed LY and inflammation in the cornea, and its anti-inflammatory effect was significantly superior to that of moxifloxacin.
Collapse
Affiliation(s)
- Hironori Uehara
- a Moran Eye Center, University of Utah , Salt Lake City , UT , USA and
| | - Subrata K Das
- a Moran Eye Center, University of Utah , Salt Lake City , UT , USA and
| | - Yang Kyung Cho
- b Department of Ophthalmology , St. Vincent's Hospital, College of Medicine, The Catholic University of Korea , Suwon , Republic of Korea
| | - Bonnie Archer
- a Moran Eye Center, University of Utah , Salt Lake City , UT , USA and
| | | |
Collapse
|
45
|
Extraorbital lacrimal gland excision: a reproducible model of severe aqueous tear-deficient dry eye disease. Cornea 2015; 33:1336-41. [PMID: 25255136 DOI: 10.1097/ico.0000000000000264] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of this study was to establish and characterize extraorbital lacrimal gland excision (LGE) as a model of aqueous tear-deficient dry eye disease in mice. METHODS Female C57BL/6 mice at 6 to 8 weeks of age were randomized to extraorbital LGE, sham surgery, or scopolamine groups. Mice that underwent extraorbital LGE or sham surgery were housed in the standard vivarium. Scopolamine-treated mice were housed in a controlled environment chamber that allowed for the continuous regulation of airflow (15 L/min), relative humidity (30%), and temperature (21-23°C). Clinical disease severity was assessed over the course of 14 days using the phenol red thread test and corneal fluorescein staining. Real-time polymerase chain reaction was performed to assess corneal mRNA expression of interleukin 1β, tumor necrosis factor α, and matrix metalloproteinase 9. Flow cytometry was used to assess T helper cell frequencies in the conjunctivae and draining lymph nodes. RESULTS Extraorbital LGE markedly reduced aqueous tear secretion as compared with the sham procedure and induced a more consistent decrease in aqueous tear secretion than was observed in mice that received scopolamine while housed in the controlled environment chamber. Extraorbital LGE significantly increased corneal fluorescein staining scores as compared with those of both the sham surgery and scopolamine-treated groups. Extraorbital LGE significantly increased the corneal expression of interleukin 1β, tumor necrosis factor α, and matrix metalloproteinase 9. Further, extraorbital LGE increased T helper 17-cell frequencies in the conjunctivae and draining lymph nodes. CONCLUSIONS Extraorbital LGE induces aqueous tear-deficient dry eye disease in mice as evidenced by decreased aqueous tear secretion, increased corneal epitheliopathy, and induced ocular surface inflammation and immunity.
Collapse
|
46
|
Kodati S, Chauhan SK, Chen Y, Dohlman TH, Karimian P, Saban D, Dana R. CCR7 is critical for the induction and maintenance of Th17 immunity in dry eye disease. Invest Ophthalmol Vis Sci 2014; 55:5871-7. [PMID: 25139737 DOI: 10.1167/iovs.14-14481] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE We characterized antigen-presenting cell (APC)-relevant chemokine receptor expression in dry eye disease (DED), and investigated the effect of topical CC chemokine receptor (CCR)-7 blockade specifically on Th17 cell immunity and dry eye disease severity. METHODS We induced DED in female C57BL/6 mice. Chemokine receptor expression by corneal APCs was characterized using immunohistochemistry. To determine the functional role of CCR7 in DED, mice were treated topically with either anti-CCR7, a control isotype antibody, or left untreated, and clinical disease severity, Th17 responses, and molecular markers of DED were quantified. RESULTS Frequencies of CD11b(+) cells and their chemokine expression were increased in the cornea of DED mice. Mice treated topically with anti-CCR7 antibody displayed a significant reduction in clinical disease severity and Th17 response compared to the isotype and untreated groups. Topical CCR7 blockade was effective in ameliorating DED in its acute and chronic stages. CONCLUSIONS Our findings suggest that CCR7-mediated trafficking of APCs drives the induction and maintenance of Th17 immunity in DED and that CCR7 blockade is effective in suppressing the immunopathogenic mechanisms in DED.
Collapse
Affiliation(s)
- Shilpa Kodati
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Sunil K Chauhan
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Yihe Chen
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Thomas H Dohlman
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Parisa Karimian
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Daniel Saban
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Reza Dana
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
47
|
Dry Eye Predisposes to Corneal Neovascularization and Lymphangiogenesis After Corneal Injury in a Murine Model. Cornea 2014; 33:621-7. [DOI: 10.1097/ico.0000000000000107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|