1
|
Rudzitis CN, Lakk M, Singh A, Redmon SN, Kirdajova D, Tseng YT, De Ieso ML, Stamer WD, Herberg S, Križaj D. TRPV4 overactivation enhances cellular contractility and drives ocular hypertension in TGFβ2 overexpressing eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622187. [PMID: 39574569 PMCID: PMC11580928 DOI: 10.1101/2024.11.05.622187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The risk for developing primary open-angle glaucoma (POAG) correlates with the magnitude of ocular hypertension (OHT) and the concentration of transforming growth factor-β2 (TGFβ2) in the aqueous humor. Effective treatment of POAG requires detailed understanding of interaction between pressure sensing mechanisms in the trabecular meshwork (TM) and biochemical risk factors. Here, we employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure (IOP) regulation in a mouse model of TGFβ2 -induced OHT. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated OHT in eyes overexpressing TGFβ2. Trpv4-deficient mice resisted TGFβ2-driven increases in IOP. Nocturnal OHT was not additive to TGFβ-evoked OHT. Our study establishes the fundamental role of TGFβ as a modulator of mechanosensing in nonexcitable cells, identifies TRPV4 channel as the final common mechanism for TM contractility and circadian and pathological OHT and offers insights future treatments that can lower IOP in the sizeable cohort of hypertensive glaucoma patients that resist current treatments.
Collapse
Affiliation(s)
- Christopher N. Rudzitis
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | | | | | | | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - David Križaj
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| |
Collapse
|
2
|
Doyle C, Callaghan B, Roodnat AW, Armstrong L, Lester K, Simpson DA, Atkinson SD, Sheridan C, McKenna DJ, Willoughby CE. The TGFβ Induced MicroRNAome of the Trabecular Meshwork. Cells 2024; 13:1060. [PMID: 38920689 PMCID: PMC11201560 DOI: 10.3390/cells13121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is a progressive optic neuropathy with a complex, multifactorial aetiology. Raised intraocular pressure (IOP) is the most important clinically modifiable risk factor for POAG. All current pharmacological agents target aqueous humour dynamics to lower IOP. Newer therapeutic agents are required as some patients with POAG show a limited therapeutic response or develop ocular and systemic side effects to topical medication. Elevated IOP in POAG results from cellular and molecular changes in the trabecular meshwork driven by increased levels of transforming growth factor β (TGFβ) in the anterior segment of the eye. Understanding how TGFβ affects both the structural and functional changes in the outflow pathway and IOP is required to develop new glaucoma therapies that target the molecular pathology in the trabecular meshwork. In this study, we evaluated the effects of TGF-β1 and -β2 treatment on miRNA expression in cultured human primary trabecular meshwork cells. Our findings are presented in terms of specific miRNAs (miRNA-centric), but given miRNAs work in networks to control cellular pathways and processes, a pathway-centric view of miRNA action is also reported. Evaluating TGFβ-responsive miRNA expression in trabecular meshwork cells will further our understanding of the important pathways and changes involved in the pathogenesis of glaucoma and could lead to the development of miRNAs as new therapeutic modalities in glaucoma.
Collapse
Affiliation(s)
- Chelsey Doyle
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Breedge Callaghan
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Anton W. Roodnat
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Lee Armstrong
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Karen Lester
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - David A. Simpson
- Wellcome Wolfson Institute for Experimental Medicine, Queens’ University, Belfast BT9 7BL, UK;
| | - Sarah D. Atkinson
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Carl Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Declan J. McKenna
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Colin E. Willoughby
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| |
Collapse
|
3
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Agarwal R, Iezhitsa I. Advances in targeting the extracellular matrix for glaucoma therapy: current updates. Expert Opin Ther Targets 2023; 27:1217-1229. [PMID: 38069479 DOI: 10.1080/14728222.2023.2293748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
INTRODUCTION Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance. AREAS COVERED This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-β as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM. EXPERT OPINION Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Du J, Qian T, Lu Y, Zhou W, Xu X, Zhang C, Zhang J, Zhang Z. SPARC-YAP/TAZ inhibition prevents the fibroblasts-myofibroblast transformation. Exp Cell Res 2023; 429:113649. [PMID: 37225012 DOI: 10.1016/j.yexcr.2023.113649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/22/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Fibrotic scar is a severe side effect of trabeculectomy, resulting in unsatisfactory outcomes for glaucoma surgery. Accumulating evidence showed human Tenon's fibroblasts (HTFs) play an important role in fibrosis formation. We previously reported that the aqueous level of secreted protein acidic and rich in cysteine (SPARC) was higher in the patients with primary angle closure glaucoma, which was associated with the failure of trabeculectomy. In this study, the potential effect and mechanism of SPARC in promoting fibrosis were explored by using HTFs. METHODS HTFs were employed in this study and examined under a phase-contrast microscope. Cell viability was determined by CCK-8. The expressions of SPARC-YAP/TAZ signaling and the fibrosis-related markers were examined with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence, subcellular fractionation was conducted to further determined the variation of YAP and phosphorylated YAP. The differential gene expressions were analyzed with RNA sequencing (RNAseq), followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Exogenous SPARC induced HTFs-myofibroblast transformation, as evidenced by the increased expression of α-SMA, collagen I and fibronectin in both protein and mRNA levels. SPARC knockdown decreased the expressions of the above genes in TGF-β2-treated HTFs. KEGG analysis showed that the Hippo signaling pathway was mostly enriched. SPARC treatment increased the expressions of YAP, TAZ, CTGF and CYR61 as well as enhanced YAP translocation from cytoplasm to nucleus, and decreased the phosphorylation of YAP and LAST1/2, which was reversed by SPARC knockdown. Knockdown of YAP1 decreased the fibrosis-related markers, such as α-SMA, collagen I and Fibronectin, in SPARC-treated HTFs. CONCLUSIONS SPARC induced HTFs-myofibroblast transformation via activating YAP/TAZ signaling. Targeting SPARC-YAP/TAZ axis in HTFs might provide a novel strategy for inhibiting fibrosis formation after trabeculectomy.
Collapse
Affiliation(s)
- Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Tianwei Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Yi Lu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Wenkai Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhihua Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
6
|
Shao CG, Sinha NR, Mohan RR, Webel AD. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines 2023; 11:657. [PMID: 36979636 PMCID: PMC10045591 DOI: 10.3390/biomedicines11030657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Conjunctival fibrosis remains the major impediment to the success of glaucoma filtration surgery. Anti-metabolites remain the gold standard for mitigating post-surgical fibrosis, but they are associated with high complication rates and surgical failure rates. Establishing a more targeted approach to attenuate conjunctival fibrosis may revolutionize the surgical approach to glaucoma. A new strategy is needed to prevent progressive tissue remodeling and formation of a fibrotic scar, subsequently increasing surgical success and reducing the prevalence of glaucoma-related vision loss. Advancements in our understanding of molecular signaling and biomechanical cues in the conjunctival tissue architecture are broadening the horizon for new therapies and biomaterials for the mitigation of fibrosis. This review aims to highlight the strategies and current state of promising future approaches for targeting fibrosis in glaucoma filtration surgery.
Collapse
Affiliation(s)
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Aaron D. Webel
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
7
|
MAPK Pathways in Ocular Pathophysiology: Potential Therapeutic Drugs and Challenges. Cells 2023; 12:cells12040617. [PMID: 36831285 PMCID: PMC9954064 DOI: 10.3390/cells12040617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous cellular signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Once activated through phosphorylation, these MAPKs in turn phosphorylate and activate transcription factors present either in the cytoplasm or in the nucleus, leading to the expression of target genes and, as a consequence, they elicit various biological responses. The aim of this work is to provide a comprehensive review focusing on the roles of MAPK signaling pathways in ocular pathophysiology and the potential to influence these for the treatment of eye diseases. We summarize the current knowledge of identified MAPK-targeting compounds in the context of ocular diseases such as macular degeneration, cataract, glaucoma and keratopathy, but also in rare ocular diseases where the cell differentiation, proliferation or migration are defective. Potential therapeutic interventions are also discussed. Additionally, we discuss challenges in overcoming the reported eye toxicity of some MAPK inhibitors.
Collapse
|
8
|
Dang X, Fang L, Zhang Q, Liu B, Cheng JC, Sun YP. AREG upregulates secreted protein acidic and rich in cysteine expression in human granulosa cells. Mol Cell Endocrinol 2023; 561:111826. [PMID: 36462647 DOI: 10.1016/j.mce.2022.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
The secreted protein acidic and rich in cysteine (SPARC) is a secreted glycoprotein and the expression of ovarian SPARC peaks during ovulation and luteinization. Besides, SPARC expression was induced by human chorionic gonadotropin (hCG) in rat granulosa cells. Amphiregulin (AREG) is the most abundant epidermal growth factor receptor (EGFR) ligand expressed in human granulosa cells and follicular fluid. AREG mediates the physiological functions of luteinizing hormone (LH)/hCG in the ovary. However, to date, the biological function of SPARC in the human ovary remains undetermined, and whether AREG regulates SPARC expression in human granulosa cells is unknown. In this study, we show that AREG upregulated SPARC expression via EGFR in a human granulosa-like tumor cell line, KGN. Treatment of AREG activated ERK1/2, JNK, p38 MAPK, and PI3K/AKT signaling pathways and all of them were required for the AREG-induced SPARC expression. Using RNA-sequencing, we identified that steroidogenic acute regulatory protein (StAR) was a downstream target gene of SPARC. In addition, we demonstrated that SPARC mRNA levels were positively correlated with the levels of StAR mRNA in the primary culture of human granulosa cells. Moreover, SPARC protein levels were positively correlated with progesterone levels in follicular fluid of in vitro fertilization patients. This study provides the regulatory role of AREG on the expression of SPARC and reveals the novel function of SPARC in progesterone production in granulosa cells.
Collapse
Affiliation(s)
- Xuan Dang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Qian Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
MacDonald WW, Swaminathan SS, Heo JY, Castillejos A, Hsueh J, Liu BJ, Jo D, Du A, Lee H, Kang MH, Rhee DJ. Effect of SPARC Suppression in Mice, Perfused Human Anterior Segments, and Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35671048 PMCID: PMC9187959 DOI: 10.1167/iovs.63.6.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose Secreted protein, acidic and rich in cysteine (SPARC) elevates intraocular pressure (IOP), increases certain structural extracellular matrix (ECM) proteins in the juxtacanalicular trabecular meshwork (JCT), and decreases matrix metalloproteinase (MMP) protein levels in trabecular meshwork (TM) endothelial cells. We investigated SPARC as a potential target for lowering IOP. We hypothesized that suppressing SPARC will decrease IOP, decrease structural JCT ECM proteins, and alter the levels of MMPs and/or their inhibitors. Methods A lentivirus containing short hairpin RNA of human SPARC suppressed SPARC in mouse eyes and perfused cadaveric human anterior segments with subsequent IOP measurements. Immunohistochemistry determined structural correlates. Human TM cell cultures were treated with SPARC suppressing lentivirus. Quantitative reverse transcriptase polymerase chain reaction (PCR), immunoblotting, and zymography determined total RNA, relative protein levels, and MMP enzymatic activity, respectively. Results Suppressing SPARC decreased IOP in mouse eyes and perfused human anterior segments by approximately 20%. Histologically, this correlated to a decrease in collagen I, IV, and VI in both the mouse TM and human JCT regions; in the mouse, fibronectin was also decreased but not in the human. In TM cells, collagen I and IV, fibronectin, MMP-2, and tissue inhibitor of MMP-1 were decreased. Messenger RNA of the aforementioned genes was not changed. Plasminogen activator inhibitor 1 (PAI-1) was upregulated in vitro by quantitative PCR and immunoblotting. MMP-1 activity was reduced in vitro by zymography. Conclusions Suppressing SPARC decreased IOP in mice and perfused cadaveric human anterior segments corresponding to qualitative structural changes in the JCT ECM, which do not appear to be the result of transcription regulation.
Collapse
Affiliation(s)
- William W MacDonald
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Swarup S Swaminathan
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Jae Young Heo
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Alexandra Castillejos
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States
| | - Jessica Hsueh
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Brian J Liu
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Diane Jo
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Annie Du
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Hyunpil Lee
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Min Hyung Kang
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Douglas J Rhee
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
10
|
Keller KE, Peters DM. Pathogenesis of glaucoma: Extracellular matrix dysfunction in the trabecular meshwork-A review. Clin Exp Ophthalmol 2022; 50:163-182. [PMID: 35037377 DOI: 10.1111/ceo.14027] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
The trabecular meshwork regulates aqueous humour outflow from the anterior chamber of the eye. It does this by establishing a tunable outflow resistance, defined by the interplay between cells and their extracellular matrix (ECM) milieu, and the molecular interactions between ECM proteins. During normal tissue homeostasis, the ECM is remodelled and trabecular cell behaviour is modified, permitting increased aqueous fluid outflow to maintain intraocular pressure (IOP) within a relatively narrow physiological pressure. Dysfunction in the normal homeostatic process leads to increased outflow resistance and elevated IOP, which is a primary risk factor for glaucoma. This review delineates some of the changes in the ECM that lead to gross as well as some more subtle changes in the structure and function of the ECM, and their impact on trabecular cell behaviour. These changes are discussed in the context of outflow resistance and glaucoma.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health &Science University, Portland, Oregon, USA
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Fan J, Zhang X, Jiang Y, Chen L, Sheng M, Chen Y. SPARC knockdown attenuated TGF-β1-induced fibrotic effects through Smad2/3 pathways in human pterygium fibroblasts. Arch Biochem Biophys 2021; 713:109049. [PMID: 34624278 DOI: 10.1016/j.abb.2021.109049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Secreted protein acidic and rich in cysteine (SPARC), a matricellular glycoprotein, has been found to regulate processes involved in fibrotic diseases. The aim of this study was to investigate the anti-fibrotic effects of SPARC in primary human pterygium fibroblasts (HPFs) and elucidate the underlying mechanisms. METHODS The expression of SPARC in HPFs was knocked down by RNA interference-based approach. Subsequently, we examined the expression of profibrotic markers induced by transforming growth factor-β1 (TGF-β1), including type 1 collagen (COL1), α-smooth muscle actin (α-SMA), and fibronectin (FN). The changes in signaling pathways and matrix metalloproteinases (MMPs) were also detected by western blotting. The cellular migration ability, proliferation ability, apoptosis, and contractile phenotype were detected using the wound healing assay, Cell Counting Kit-8 assay, flow cytometry, and collagen gel contraction assay, respectively. The interaction between SPARC and TGF-β RII was detected by Co-IP RESULTS: Silencing of SPARC inhibited the basal and TGF-β1-induced expression of COL1, α-SMA, and FN in HPFs, and suppressed the expression of p-Smad2, p-Smad3, Smad4 and MMP2, MMP9. The downregulation of SPARC also attenuated the cell migration and contractile phenotype of HPFs. SPARC could bind to TGF-βRII under TGF-β1 treatment. However, knockdown of SPARC did not affect the proliferation and apoptosis of HPFs. CONCLUSION SPARC knockdown attenuated the fibrotic effect induced by TGF-β1 at least in part by inactivating the Smad2/3 pathways in HPFs. Therefore, SPARC may be a promising therapeutic target for the treatment of pterygium.
Collapse
Affiliation(s)
- Jianwu Fan
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China; Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Li Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Minjie Sheng
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| |
Collapse
|
12
|
Pouw AE, Greiner MA, Coussa RG, Jiao C, Han IC, Skeie JM, Fingert JH, Mullins RF, Sohn EH. Cell-Matrix Interactions in the Eye: From Cornea to Choroid. Cells 2021; 10:687. [PMID: 33804633 PMCID: PMC8003714 DOI: 10.3390/cells10030687] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-β, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.
Collapse
Affiliation(s)
- Andrew E. Pouw
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Razek G. Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ian C. Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliott H. Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Secreted protein acidic and rich in cysteine (SPARC) knockout mice have greater outflow facility. PLoS One 2020; 15:e0241294. [PMID: 33147244 PMCID: PMC7641442 DOI: 10.1371/journal.pone.0241294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates intraocular pressure (IOP) by altering extracellular matrix (ECM) homeostasis within the trabecular meshwork (TM). We hypothesized that the lower IOP previously observed in SPARC -/- mice is due to a greater outflow facility. Methods Mouse outflow facility (Clive) was determined by multiple flow rate infusion, and episcleral venous pressure (Pe) was estimated by manometry. The animals were then euthanized, eliminating aqueous formation rate (Fin) and Pe. The C value was determined again (Cdead) while Fin was reduced to zero. Additional mice were euthanized for immunohistochemistry to analyze ECM components of the TM. Results The Clive and Cdead of SPARC -/- mice were 0.014 ± 0.002 μL/min/mmHg and 0.015 ± 0.002 μL/min/mmHg, respectively (p = 0.376, N/S). Compared to the Clive = 0.010 ± 0.002 μL/min/mmHg and Cdead = 0.011 ± 0.002 μL/min/mmHg in the WT mice (p = 0.548, N/S), the Clive and Cdead values for the SPARC -/- mice were higher. Pe values were estimated to be 8.0 ± 0.2 mmHg and 8.3 ± 0.7 mmHg in SPARC -/- and WT mice, respectively (p = 0.304, N/S). Uveoscleral outflow (Fu) was 0.019 ± 0.007 μL/min and 0.022 ± 0.006 μL/min for SPARC -/- and WT mice, respectively (p = 0.561, N/S). Fin was 0.114 ± 0.002 μL/min and 0.120 ± 0.016 μL/min for SPARC -/- and WT mice (p = 0.591, N/S). Immunohistochemistry demonstrated decreases of collagen types IV and VI, fibronectin, laminin, PAI-1, and tenascin-C within the TM of SPARC -/- mice (p < 0.05). Conclusions The lower IOP of SPARC -/- mice is due to greater aqueous humor outflow facility through the conventional pathway. Corresponding changes in several matricellular proteins and ECM structural components were noted in the TM of SPARC -/- mice.
Collapse
|
14
|
Yemanyi F, Vranka J, Raghunathan VK. Glucocorticoid-induced cell-derived matrix modulates transforming growth factor β2 signaling in human trabecular meshwork cells. Sci Rep 2020; 10:15641. [PMID: 32973273 PMCID: PMC7518434 DOI: 10.1038/s41598-020-72779-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/28/2020] [Indexed: 01/11/2023] Open
Abstract
Aberrant remodeling of trabecular meshwork (TM) extracellular matrix (ECM) may induce ocular hypertensive phenotypes in human TM (hTM) cells to cause ocular hypertension, via a yet unknown mechanism. Here, we show that, in the absence of exogenous transforming growth factor-beta2 (TGFβ2), compared with control matrices (VehMs), glucocorticoid-induced cell-derived matrices (GIMs) trigger non-Smad TGFβ2 signaling in hTM cells, correlated with overexpression/activity of structural ECM genes (fibronectin, collagen IV, collagen VI, myocilin), matricellular genes (connective tissue growth factor [CTGF], secreted protein, acidic and rich in cysteine), crosslinking genes/enzymes (lysyl oxidase, lysyl oxidase-like 2–4, tissue transglutaminase-2), and ECM turnover genes/enzymes (matrix metalloproteinases-MMP2,14 and their inhibitors-TIMP2). However, in the presence of exogenous TGFβ2, VehMs and GIMs activate Smad and non-Smad TGFβ2 signaling in hTM cells, associated with overexpression of α-smooth muscle actin (α-SMA), and differential upregulation of aforementioned ECM genes/proteins with new ones emerging (collagen-I, thrombospondin-I, plasminogen activator inhibitor, MMP1, 9, ADAMTS4, TIMP1); with GIM-TGFβ2-induced changes being mostly more pronounced. This suggests dual glaucomatous insults potentiate profibrotic signaling/phenotypes. Lastly, we demonstrate type I TGFβ receptor kinase inhibition abrogates VehM-/GIM- and/or TGFβ2-induced upregulation of α-SMA and CTGF. Collectively, pathological TM microenvironments are sufficient to elicit adverse cellular responses that may be ameliorated by targeting TGFβ2 pathway.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA. .,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Luis J, Eastlake K, Khaw PT, Limb GA. Galectins and their involvement in ocular disease and development. Exp Eye Res 2020; 197:108120. [PMID: 32565112 DOI: 10.1016/j.exer.2020.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
Galectins are carbohydrate binding proteins with high affinity to ß-galactoside containing glycoconjugates. Understanding of the functions of galectins has grown steadily over the past decade, as a result of substantial advancements in the field of glycobiology. Galectins have been shown to be versatile molecules that participate in a range of important biological systems, including inflammation, neovascularisation and fibrosis. These processes are of particular importance in ocular tissues, where a major theme of recent research has been to divert diseases away from pathways which result in loss of function into pathways of repair and regeneration. This review summarises our current understanding of galectins in the context important ocular diseases, followed by an update on current clinical studies and future directions.
Collapse
Affiliation(s)
- Joshua Luis
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.
| | - Karen Eastlake
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - G Astrid Limb
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
16
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Zhu YS, Gu Y, Jiang C, Chen L. Osteonectin regulates the extracellular matrix mineralization of osteoblasts through P38 signaling pathway. J Cell Physiol 2019; 235:2220-2231. [PMID: 31489629 DOI: 10.1002/jcp.29131] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Osteonectin binds strongly to type I collagen and hydroxyapatite and plays a crucial role in extracellular matrix mineralization. Previous studies have also shown that p38 signaling pathway is an important regulator for osteoblast mineralization. This study focused on the role of osteonectin in regulating extracellular matrix mineralization via the p38 signaling pathway. Osteoblasts were isolated and cultured from parietal bones of neonatal Sprague-Dawley rats. The gene and protein expressions of noncollagen proteins (BSP, bone sialoprotein; OCN, osteocalcin; OPN, osteopontin), p38 mitogen-activated protein kinase, and SIBLINGs (Small Integrin-Binding LIgand N-linked Glycoproteins) members (DMP1, dentine matrix protein 1, DSPP, dentin sialophosphoprotein, and MEPE, matrix extracellular phosphoglycoprotein) were detected by reverse-transcription quantitative polymerase chain reaction and western blot analysis. Alizarin red staining, intracellular calcium assay, and transmission electron microscopy were used to detect mineralization. Initially, by adding osteonectin at different concentrations in osteoblasts and detecting the above mineralization indexes, 1 µg/ml was determined to be the optima osteonectin concentration, which significantly increased gene expressions of BSP, OPN, OCN, DMP1, MEPE, DSPP, and p38 in osteoblasts, p38 and p-p38 protein expressions were also significantly increased, mineralized nodules were significantly enhanced; when added with SB203580 (a specific inhibitor for p38) these effects were inhibited. Furthermore, osteoblasts transfected with Ad-p38 also significantly upregulated the protein and gene expressions of noncollagens and SIBLINGs members, whereas transfection of p38-rhRNA showed the opposite effect. Our data suggest that osteonectin regulates the extracellular matrix mineralization of osteoblasts through the P38 signaling pathway.
Collapse
Affiliation(s)
- Yun-Sen Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chang Jiang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Guo T, Guo L, Fan Y, Fang L, Wei J, Tan Y, Chen Y, Fan X. Aqueous humor levels of TGFβ2 and SFRP1 in different types of glaucoma. BMC Ophthalmol 2019; 19:170. [PMID: 31382918 PMCID: PMC6683533 DOI: 10.1186/s12886-019-1183-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To assess bioactive transforming growth factor-β2 (TGFβ2) and secreted frizzled-related protein-1 (SFRP1) levels in aqueous humor (AH) of different types of glaucoma. METHODS AH samples were obtained immediately before ophthalmic surgery with a 27-gauge needle attached to a microsyringe from 126 eyes (105 patients) divided into five groups: cataract (control), primary open-angle glaucoma (POAG), chronic angle-closure glaucoma (CACG), primary angle-closure suspects (PACS), and acute angle-closure glaucoma (AACG). Bioactive TGFβ2 and SFRP1 levels were assayed by ELISA. RESULTS The concentration of TGFβ2 in AH of POAG patients, but not CACG, PACS, or AACG patients, was significantly higher than control eyes. However, within the AACG group, although the TGFβ2 levels in AH did not differ significantly from the control level when all AACG patients were grouped together, there were differences when the AACG patients were divided into high and normal intraocular pressure (IOP); TGFβ2 of AACG patients with high IOP (> 21 mmHg) was significantly higher than those with normal IOP. AH levels of SFRP1 were not significantly different among the groups. However, a statistical significant, negative correlation between SFRP1 and IOP existed in the POAG group. POAG patients with high IOP had lower levels of SFRP1 than those with normal IOP. In contrast, a significant, positive correlation between SFRP1 level and IOP was detected in the AACG group. AACG patients with high IOP had a higher level of SFRP1 than those with normal IOP. Concentrations of TGFβ2 and SFRP1 did not correlate significantly with each other, or with age. CONCLUSIONS These results indicate that AH levels of TGFβ2 and SFRP1 showed different profiles in different types of glaucomas.
Collapse
Affiliation(s)
- Tao Guo
- Department of Ophthalmology Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Li Guo
- Bengbu Medical College, Bengbu, 233030, Anhui province, China.,Department of Ophthalmology, Luan Affiliated Hospital of Anhui Medicine University, Luan, 237000, Anhui province, China
| | - Yuchen Fan
- Bengbu Medical College, Bengbu, 233030, Anhui province, China
| | - Li Fang
- Department of Ophthalmology Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jiahong Wei
- Bengbu Medical College, Bengbu, 233030, Anhui province, China
| | - Ye Tan
- Department of Ophthalmology, Shanghai Pudong District Gongli Hospital, Shanghai, 201201, China
| | - Yuhong Chen
- Department of Ophthalmology Eye & ENT Hospital Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Xianqun Fan
- Department of Ophthalmology Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
19
|
Abstract
Transforming growth factor-β (TGF-β) may play a role in the pathogenesis of primary open-angle glaucoma (POAG). Elevated levels of TGF-β are found in the aqueous humor and in reactive optic nerve astrocytes in patients with glaucoma. In POAG, aqueous humor outflow resistance at the trabecular meshwork (TM) leads to increased intraocular pressure and retinal ganglion cell death. It is hypothesized that TGF-β increases outflow resistance by altering extracellular matrix homeostasis and cell contractility in the TM through interactions with other proteins and signaling molecules. TGF-β may also be involved in damage to the optic nerve head. Current available therapies for POAG focus exclusively on lowering intraocular pressure without addressing extracellular matrix homeostasis processes in the TM. The purpose of this review is to discuss possible therapeutic strategies targeting TGF-β in the treatment of POAG. Herein, we describe the current understanding of the role of TGF-β in POAG pathophysiology, and examine ways TGF-β may be targeted at the levels of production, activation, downstream signaling, and homeostatic regulation.
Collapse
|
20
|
Toris CB, Gelfman C, Whitlock A, Sponsel WE, Rowe-Rendleman CL. Making Basic Science Studies in Glaucoma More Clinically Relevant: The Need for a Consensus. J Ocul Pharmacol Ther 2017; 33:501-518. [PMID: 28777040 DOI: 10.1089/jop.2017.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glaucoma is a chronic, progressive, and debilitating optic neuropathy that causes retinal damage and visual defects. The pathophysiologic mechanisms of glaucoma remain ill-defined, and there is an indisputable need for contributions from basic science researchers in defining pathways for translational research. However, glaucoma researchers today face significant challenges due to the lack of a map of integrated pathways from bench to bedside and the lack of consensus statements to guide in choosing the right research questions, techniques, and model systems. Here, we present the case for the development of such maps and consensus statements, which are critical for faster development of the most efficacious glaucoma therapy. We underscore that interrogating the preclinical path of both successful and unsuccessful clinical programs is essential to defining future research. One aspect of this is evaluation of available preclinical research tools. To begin this process, we highlight the utility of currently available animal models for glaucoma and emphasize that there is a particular need for models of glaucoma with normal intraocular pressure. In addition, we outline a series of discoveries from cell-based, animal, and translational research that begin to reveal a map of glaucoma from cell biology to physiology to disease pathology. Completion of these maps requires input and consensus from the global glaucoma research community. This article sets the stage by outlining various approaches to such a consensus. Together, these efforts will help accelerate basic science research, leading to discoveries with significant clinical impact for people with glaucoma.
Collapse
Affiliation(s)
- Carol B Toris
- 1 Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio
| | | | | | - William E Sponsel
- 3 WESMD Professional Association , San Antonio, Texas.,4 Department of Biomedical Engineering, University of Texas San Antonio , San Antonio, Texas.,5 Department of Vision Sciences, University of the Incarnate Word , San Antonio, Texas
| | | |
Collapse
|
21
|
Epigenetics and Signaling Pathways in Glaucoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5712341. [PMID: 28210622 PMCID: PMC5292191 DOI: 10.1155/2017/5712341] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022]
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. This neurodegenerative disease becomes more prevalent with aging, but predisposing genetic and environmental factors also contribute to increased risk. Emerging evidence now suggests that epigenetics may also be involved, which provides potential new therapeutic targets. These three factors work through several pathways, including TGF-β, MAP kinase, Rho kinase, BDNF, JNK, PI-3/Akt, PTEN, Bcl-2, Caspase, and Calcium-Calpain signaling. Together, these pathways result in the upregulation of proapoptotic gene expression, the downregulation of neuroprotective and prosurvival factors, and the generation of fibrosis at the trabecular meshwork, which may block aqueous humor drainage. Novel therapeutic agents targeting these pathway members have shown preliminary success in animal models and even human trials, demonstrating that they may eventually be used to preserve retinal neurons and vision.
Collapse
|
22
|
Pervan CL. Smad-independent TGF-β2 signaling pathways in human trabecular meshwork cells. Exp Eye Res 2016; 158:137-145. [PMID: 27453344 DOI: 10.1016/j.exer.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/06/2016] [Accepted: 07/18/2016] [Indexed: 10/24/2022]
Abstract
Aberrant expression and signaling of Transforming Growth Factor (TGF)-β is strongly associated with development of elevated intraocular pressure (IOP) and primary open-angle glaucoma (POAG). In cells of the trabecular meshwork, a key component of the conventional outflow pathway, TGF-β is well-known to promote expression of multiple ocular hypertensive mediators, including genes associated with fibrosis as well as cellular contractility. These effects are mediated by induction of canonical (Smad) as well as non-canonical (MAPK, Rho GTPase) signaling cascades. In the present review, we will highlight the non-canonical, Smad-independent signaling pathways activated by TGF-β2 in human TM cells, as well as the genes known to be induced by non-canonical TGF-β2 signaling.
Collapse
Affiliation(s)
- Cynthia L Pervan
- Research Service (151), Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA; Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
23
|
Scavelli K, Chatterjee A, Rhee DJ. Secreted Protein Acidic and Rich in Cysteine in Ocular Tissue. J Ocul Pharmacol Ther 2015; 31:396-405. [PMID: 26167673 DOI: 10.1089/jop.2015.0057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also known as osteonectin or BM-40, is the prototypical matricellular protein. Matricellular proteins are nonstructural secreted proteins that provide an integration between cells and their surrounding extracellular matrix (ECM). Regulation of the ECM is important in maintaining the physiologic function of tissues. Elevated levels of SPARC have been identified in a variety of diseases involving pathologic tissue remodeling, such as hepatic fibrosis, systemic sclerosis, and certain carcinomas. Within the eye, SPARC has been identified in the trabecular meshwork, lens, and retina. Studies have begun to show the role of SPARC in these tissues and its possible role, specifically in primary open-angle glaucoma, cataracts, and proliferative vitreoretinopathy. SPARC may, therefore, be a therapeutic target in the treatment of certain ocular diseases. Further investigation into the mechanism of action of SPARC will be necessary in the development of SPARC-targeted therapy.
Collapse
Affiliation(s)
- Kurt Scavelli
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| | - Ayan Chatterjee
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| | - Douglas J Rhee
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| |
Collapse
|
24
|
Elevation of intraocular pressure in rodents using viral vectors targeting the trabecular meshwork. Exp Eye Res 2015; 141:33-41. [PMID: 26025608 DOI: 10.1016/j.exer.2015.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/20/2015] [Accepted: 04/05/2015] [Indexed: 01/30/2023]
Abstract
Rodents are increasingly being used as glaucoma models to study ocular hypertension, optic neuropathy, and retinopathy. A number of different techniques are used to elevate intraocular pressure in rodent eyes by artificially obstructing the aqueous outflow pathway. Another successful technique to induce ocular hypertension is to transduce the trabecular meshwork of rodent eyes with viral vectors expressing glaucoma associated transgenes to provide more relevant models of glaucomatous damage to the trabecular meshwork. This technique has been used to validate newly discovered glaucoma pathogenesis pathways as well as to develop rodent models of primary open angle glaucoma. Ocular hypertension has successfully been induced by adenovirus 5 mediated delivery of mutant MYOC, bioactivated TGFβ2, SFRP1, DKK1, GREM1, and CD44. Advantages of this approach are: selective tropism for the trabecular meshwork, the ability to use numerous mouse strains, and the relatively rapid onset of IOP elevation. Disadvantages include mild-to-moderate ocular inflammation induced by the Ad5 vector and sometimes transient transgene expression. Current efforts are focused at discovering less immunogenic viral vectors that have tropism for the trabecular meshwork and drive sufficient transgene expression to induce ocular hypertension. This viral vector approach allows rapid proof of concept studies to study glaucomatous damage to the trabecular meshwork without the expensive and time-consuming generation of transgenic mouse lines.
Collapse
|
25
|
Wallace DM, Pokrovskaya O, O'Brien CJ. The Function of Matricellular Proteins in the Lamina Cribrosa and Trabecular Meshwork in Glaucoma. J Ocul Pharmacol Ther 2015; 31:386-95. [PMID: 25848892 DOI: 10.1089/jop.2014.0163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To review the current literature regarding the role of matricellular proteins in glaucoma, specifically in the lamina cribrosa (LC) region of the optic nerve head (ONH) and the trabecular meshwork (TM). METHODS A literature search was performed for published articles describing the expression and function of matricellular proteins such as thrombospondin (TSP), connective tissue growth factor (CTGF), secreted protein acidic and rich in cysteine (SPARC), and periostin in glaucoma. RESULTS In glaucoma, there are characteristic extracellular matrix (ECM) changes associated with optic disc cupping in the ONH and subsequent visual field defects. Matricellular proteins are a family of nonstructural secreted glycoproteins, which enable cells to communicate with their surrounding ECM, including CTGF, also known as CCN2, TSPs, SPARC, periostin, osteonectin, and tenascin-C and -X, and other ECM proteins. Such proteins appear to play a role in fibrosis and increased ECM deposition. Importantly, most are widely expressed in tissues particularly in the TM and ONH, and deficiency of TSP1 and SPARC has been shown to lower intraocular pressure in mouse models of glaucoma through enhanced outflow facility. CONCLUSION This article highlights the role of matricellular proteins in glaucoma pathology. The potential role of these proteins in glaucoma is emerging as some have an association with the pathophysiology of the TM and LC region and might therefore be potential targets for therapeutic intervention in glaucoma.
Collapse
Affiliation(s)
- Deborah M Wallace
- 1 School of Medicine and Medical Science, University College Dublin , Dublin, Ireland .,2 Department of Ophthalmology, Mater Misericordiae University Hospital , Dublin, Ireland
| | - Olya Pokrovskaya
- 1 School of Medicine and Medical Science, University College Dublin , Dublin, Ireland .,2 Department of Ophthalmology, Mater Misericordiae University Hospital , Dublin, Ireland
| | - Colm J O'Brien
- 1 School of Medicine and Medical Science, University College Dublin , Dublin, Ireland .,2 Department of Ophthalmology, Mater Misericordiae University Hospital , Dublin, Ireland
| |
Collapse
|
26
|
p38 MAP kinase inhibitor suppresses transforming growth factor-β2-induced type 1 collagen production in trabecular meshwork cells. PLoS One 2015; 10:e0120774. [PMID: 25799097 PMCID: PMC4370581 DOI: 10.1371/journal.pone.0120774] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/26/2015] [Indexed: 11/25/2022] Open
Abstract
Glaucoma is an age-related neurodegenerative disease of retinal ganglion cells, and appropriate turnover of the extracellular matrix in the trabecular meshwork is important in its pathology. Here, we report the effects of Rho-associated kinase (ROCK) and p38 MAP kinase on transforming growth factor (TGF)-β2–induced type I collagen production in human trabecular meshwork cells. TGF-β2 increased RhoA activity, actin polymerization, and myosin light chain 2 phosphorylation. These effects were significantly inhibited by Y-27632, but not SB203580. TGF-β2 also increased promoter activity, mRNA synthesis, and protein expression of COL1A2. These effects were significantly inhibited by SB203580, but not Y-27632. Additionally, Y-27632 did not significantly inhibit TGF-β2–induced promoter activation, or phosphorylation or nuclear translocation of Smad2/3, whereas SB203580 partially suppressed these processes. Collectively, TGF-β2–induced production of type 1 collagen is suppressed by p38 inhibition and accompanied by partial inactivation of Smad2/3, in human trabecular meshwork cells.
Collapse
|
27
|
Villarreal G, Chatterjee A, Oh SS, Oh DJ, Kang MH, Rhee DJ. Canonical wnt signaling regulates extracellular matrix expression in the trabecular meshwork. Invest Ophthalmol Vis Sci 2014; 55:7433-40. [PMID: 25352117 DOI: 10.1167/iovs.13-12652] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Canonical Wnt signaling has emerged as a critical regulator of aqueous outflow facility and intraocular pressure (IOP). In this study, we examine the role of canonical Wnt signaling on extracellular matrix (ECM) expression in the trabecular meshwork (TM) and explore the molecular mechanisms involved. METHODS β-catenin localization in human TM tissue was examined using immunofluorescent staining. Primary human TM cells were incubated with lithium chloride (LiCl) and the effect on active β-catenin expression was assessed by immunoblot. Adenovirus expressing a dominant-negative TCF4 mutant that lacks a β-catenin binding domain was used. Changes in the levels of the microRNA-29 (miR-29) family and ECM proteins were determined by real-time quantitative PCR and immunoblot analysis, respectively. RESULTS β-catenin was expressed throughout the TM, with localization primarily to the plasma membrane. Incubation of TM cells with lithium chloride increased the expression of active β-catenin. Lithium chloride treatment upregulated miR-29b expression, and suppressed the levels of various ECM proteins under both basal and TGF-β2 stimulatory conditions. Infection of TM cells with a dominant-negative TCF4 mutant induced ECM levels without a significant change in the expression of the miR-29 family. CONCLUSIONS Collectively, our data identify the canonical Wnt signaling pathway as an important modulator of ECM expression in the TM and provide a mechanistic framework for its regulation of outflow facility and IOP.
Collapse
Affiliation(s)
- Guadalupe Villarreal
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Ayan Chatterjee
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Sarah S Oh
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Dong-Jin Oh
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Min Hyung Kang
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Douglas J Rhee
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
28
|
Abstract
Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems.
Collapse
|
29
|
Abstract
In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
30
|
Swaminathan SS, Oh DJ, Kang MH, Shepard AR, Pang IH, Rhee DJ. TGF-β2-mediated ocular hypertension is attenuated in SPARC-null mice. Invest Ophthalmol Vis Sci 2014; 55:4084-97. [PMID: 24906856 DOI: 10.1167/iovs.13-12463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Transforming growth factor-β2 (TGF-β2) has been implicated in the pathogenesis of primary open-angle glaucoma through extracellular matrix (ECM) alteration among various mechanisms. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates ECM within the trabecular meshwork (TM), and is highly upregulated by TGF-β2. We hypothesized that, in vivo, SPARC is a critical regulatory node in TGF-β2-mediated ocular hypertension. METHODS Empty (Ad.empty) or TGF-β2-containing adenovirus (Ad.TGF-β2) was injected intravitreally into C57BL6-SV129 WT and SPARC-null mice. An initial study was performed to identify a stable period for IOP measurement under isoflurane. The IOP was measured before injection and every other day for two weeks using rebound tonometry. Additional mice were euthanized at peak IOP for immunohistochemistry. RESULTS The IOP was stable under isoflurane during minutes 5 to 8. The IOP was significantly elevated in Ad.TGF-β2-injected (n = 8) versus Ad.empty-injected WT (n = 8) mice and contralateral uninjected eyes during days 4 to 11 (P < 0.03). The IOPs were not significantly elevated in Ad.TGF-β2-injected versus Ad.empty-injected SPARC-null mice. However, on day 8, the IOP of Ad.TGF-β2-injected SPARC-null eyes was elevated compared to that of contralateral uninjected eyes (P = 0.0385). Immunohistochemistry demonstrated that TGF-β2 stimulated increases in collagen IV, fibronectin, plasminogen activator inhibitor-1 (PAI-1), connective tissue growth factor (CTGF), and SPARC in WT mice, but only PAI-1 and CTGF in SPARC-null mice (P < 0.05). CONCLUSIONS SPARC is essential to the regulation of TGF-β2-mediated ocular hypertension. Deletion of SPARC significantly attenuates the effects of TGF-β2 by restricting collagen IV and fibronectin expression. These data provide further evidence that SPARC may have an important role in IOP regulation and possibly glaucoma pathogenesis.
Collapse
Affiliation(s)
- Swarup S Swaminathan
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Dong-Jin Oh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Min Hyung Kang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Allan R Shepard
- Ophthalmology Research/Glaucoma Research, Novartis Institutes for Biomedical Research, Fort Worth, Texas, United States
| | - Iok-Hou Pang
- Department of Pharmaceutical Sciences and North Texas Eye Research Institute, University of North Texas Health Sciences Center, Fort Worth, Texas, United States
| | - Douglas J Rhee
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
31
|
Chatterjee A, Villarreal G, Rhee DJ. Matricellular proteins in the trabecular meshwork: review and update. J Ocul Pharmacol Ther 2014; 30:447-63. [PMID: 24901502 DOI: 10.1089/jop.2014.0013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide, and intraocular pressure (IOP) is an important modifiable risk factor. IOP is a function of aqueous humor production and aqueous humor outflow, and it is thought that prolonged IOP elevation leads to optic nerve damage over time. Within the trabecular meshwork (TM), the eye's primary drainage system for aqueous humor, matricellular proteins generally allow cells to modulate their attachments with and alter the characteristics of their surrounding extracellular matrix (ECM). It is now well established that ECM turnover in the TM affects outflow facility, and matricellular proteins are emerging as significant players in IOP regulation. The formalized study of matricellular proteins in TM has gained increased attention. Secreted protein acidic and rich in cysteine (SPARC), myocilin, connective tissue growth factor (CTGF), and thrombospondin-1 and -2 (TSP-1 and -2) have been localized to the TM, and a growing body of evidence suggests that these matricellular proteins play an important role in IOP regulation and possibly the pathophysiology of POAG. As evidence continues to emerge, these proteins are now seen as potential therapeutic targets. Further study is warranted to assess their utility in treating glaucoma in humans.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| | | | | |
Collapse
|
32
|
Wallace DM, Murphy-Ullrich JE, Downs JC, O'Brien CJ. The role of matricellular proteins in glaucoma. Matrix Biol 2014; 37:174-82. [PMID: 24727033 DOI: 10.1016/j.matbio.2014.03.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/12/2023]
Abstract
Glaucoma is an optic neuropathy affecting approximately 60million people worldwide and is the second most common cause of irreversible blindness. Elevated intraocular pressure (IOP) is the main risk factor for developing glaucoma and is caused by impaired aqueous humor drainage through the trabecular meshwork (TM) and Schlemm's canal (SC). In primary open angle glaucoma (POAG), this elevation in IOP in turn leads to deformation at the optic nerve head (ONH) specifically at the lamina cribrosa (LC) region where there is also a deposition of extracellular matrix (ECM) molecules such as collagen and fibronectin. Matricellular proteins are non-structural secreted glycoproteins that help cells communicate with their surrounding ECM. This family of proteins includes connective tissue growth factor (CTGF), also known as CCN2, thrombospondins (TSPs), secreted protein acidic and rich in cysteine (SPARC), periostin, osteonectin, and Tenascin-C and -X and other ECM proteins. All members appear to play a role in fibrosis and increased ECM deposition. Most are widely expressed in tissues particularly in the TM and ONH and deficiency of TSP1 and SPARC have been shown to lower IOP in mouse models of glaucoma through enhanced outflow facility. The role of these proteins in glaucoma is emerging as some have an association with the pathophysiology of the TM and LC regions and might therefore be potential targets for therapeutic intervention in glaucoma.
Collapse
Affiliation(s)
- Deborah M Wallace
- UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; Dept. of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | - J Crawford Downs
- Department of Ophthalmology, Center for Ocular Biomechanics and Biotransport, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Colm J O'Brien
- UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; Dept. of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
33
|
Chatterjee A, Villarreal G, Oh DJ, Kang MH, Rhee DJ. AMP-activated protein kinase regulates intraocular pressure, extracellular matrix, and cytoskeleton in trabecular meshwork. Invest Ophthalmol Vis Sci 2014; 55:3127-39. [PMID: 24713487 DOI: 10.1167/iovs.13-12755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE In this study, we investigate how adenosine monophosphate-activated protein kinase (AMPK) affects extracellular matrix (ECM) and cellular tone in the trabecular meshwork (TM), and examine how deletion of its catalytic α2 subunit affects IOP and aqueous humor clearance in mice. METHODS Human TM tissue was examined for expression of AMPKα1 and AMPKα2, genomically distinct isoforms of the AMPK catalytic subunit. Primary cultured human TM cells were treated for 24 hours with the AMPK activator 5-amino-1-β-Dffff-ribofuranosyl-imidazole-4-carboxamide (AICAR), under basal or TGF-β2 stimulatory conditions. Conditioned media (CM) was probed for secreted protein acidic and rich in cysteine (SPARC), thrombospondin-1 (TSP-1), and ECM proteins, and cells were stained for F-actin. Cells underwent adenoviral infection with a dominant negative AMPKα subunit (ad.DN.AMPKα) and were similarly analyzed. Intraocular pressure, central corneal thickness (CCT), and aqueous clearance were measured in AMPKα2-null and wild-type (WT) mice. RESULTS Both AMPKα1 and AMPKα2 are expressed in TM. AICAR activated AMPKα and suppressed the expression of various ECM proteins under basal and TGF-β2 stimulatory conditions. AICAR decreased F-actin staining and increased the phospho-total RhoA ratio (Ser188). Transforming growth factor-β2 transiently dephosphorylated AMPKα. Infection with ad.DN.AMPKα upregulated various ECM proteins, decreased the phospho-total RhoA ratio, and increased F-actin staining. AMPKα2-null mice exhibited 6% higher IOP and decreased aqueous clearance compared with WT mice, without significant differences in CCT or angle morphology. CONCLUSIONS Collectively, our data identify AMPK as a critical regulator of ECM homeostasis and cytoskeletal arrangement in the TM. Mice that are AMPKα2-null exhibit higher IOPs and decreased aqueous clearance than their WT counterparts.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Guadalupe Villarreal
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Dong-Jin Oh
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Min Hyung Kang
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Douglas J Rhee
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
34
|
Villarreal G, Chatterjee A, Oh SS, Oh DJ, Rhee DJ. Pharmacological regulation of SPARC by lovastatin in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2014; 55:1657-65. [PMID: 24474275 DOI: 10.1167/iovs.13-12712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Statins have been shown to increase aqueous outflow facility. The matricellular protein SPARC (secreted protein acidic and rich in cysteine) is a critical mediator of aqueous outflow and intraocular pressure (IOP). Here, we examine the effects of lovastatin on SPARC expression in trabecular meshwork (TM) cells, exploring the molecular mechanisms involved. METHODS Primary cultured human TM cells were incubated for 24, 48, and 72 hours with 10 μM lovastatin. In separate cultures, media was supplemented with either farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP) for the duration of the 72-hour time point experiment. Trabecular meshwork cells were also pretreated for 24 hours with lovastatin followed by 24-hour stimulation with 3 ng/mL TGF-β2. Cell lysates and media were harvested and relative mRNA and protein level changes were determined. Krüppel-like factor 4 (KLF4) localization in normal human anterior segments was examined by immunofluorescence. Adenovirus expressing human KLF4 was used and relative changes in SPARC mRNA and protein levels were assessed. RESULTS Incubating TM cells with lovastatin suppressed SPARC mRNA and protein levels. This effect was reversed upon media supplementation with GGPP but not FPP. Pretreating cells with lovastatin inhibited TGF-β2 induction of SPARC. The KLF4 transcription factor was expressed throughout the TM and the inner and outer walls of Schlemm's canal. Lovastatin treatment upregulated KLF4 mRNA and protein levels. Overexpression of KLF4 downregulated SPARC expression. CONCLUSIONS Collectively, our data identify lovastatin as an important pharmacological suppressor of SPARC expression in TM cells, and provide further insight into the molecular mechanisms mediating statin enhancement of aqueous outflow facility.
Collapse
Affiliation(s)
- Guadalupe Villarreal
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
35
|
Gagen D, Faralli JA, Filla MS, Peters DM. The role of integrins in the trabecular meshwork. J Ocul Pharmacol Ther 2013; 30:110-20. [PMID: 24266581 DOI: 10.1089/jop.2013.0176] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Integrins are a family of heterodimeric transmembrane receptors that mediate adhesion to the extracellular matrix (ECM). However, integrins are not just adhesion receptors. They can act as "bidirectional signal transducers" that coordinate a large number of cellular activities in response to the extracellular environment and intracellular signaling events. Among the activities regulated by integrins are cell adhesion, assembly of the ECM, growth factor signaling, apoptosis, organization of the cytoskeleton, and cytoskeleton-mediated processes such as contraction, endocytosis, and phagocytosis. Integrins regulate these activities through a complex network of intracellular signaling kinases and adaptor proteins that associate with the transmembrane and cytoplasmic domains of the integrin subunits. In this review, we will discuss how some of the known integrin-mediated activities can control the function of the trabecular meshwork. We will also discuss how integrin activity is a tightly regulated process that involves conformation changes within the heterodimer which are mediated by specific integrin-binding proteins.
Collapse
Affiliation(s)
- Debjani Gagen
- 1 Department of Pathology and Laboratory Medicine, Medical Science Center, University of Wisconsin , Madison, Wisconsin
| | | | | | | |
Collapse
|