1
|
Gabison EE, Rousseau A, Labetoulle M, Gazzah A, Besse B. Ocular adverse events associated with antibody-drug conjugates used in cancer: Focus on pathophysiology and management strategies. Prog Retin Eye Res 2024; 103:101302. [PMID: 39303762 DOI: 10.1016/j.preteyeres.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Antibody-drug conjugates (ADCs) are designed to maximize cancer cell death with lower cytotoxicity toward noncancerous cells and are an increasingly valuable option for targeted cancer therapies. However, anticancer treatment with ADCs may be associated with ocular adverse events (AEs) such as dry eye, conjunctivitis, photophobia, blurred vision, and corneal abnormalities. While the pathophysiology of ADC-related ocular AEs has not been fully elucidated, most ocular AEs are attributed to off-target effects. Product labelling for approved ADCs includes drug-specific guidance for dose modification and management of ocular AEs; however, limited data are available regarding effective strategies to minimize and mitigate ocular AEs. Overall, the majority of ocular AEs are reversible through dose modification or supportive care. Eye care providers play key roles in monitoring patients receiving ADC therapy for ocular signs and symptoms to allow for the early detection of ADC-related ocular AEs and to ensure the timely administration of appropriate treatment. Therefore, awareness is needed to help ophthalmologists to identify treatment-related ocular AEs and provide effective management in collaboration with oncologists as part of the patient's cancer care team. This review provides an overview of ocular AEs that may occur with approved and investigational ADC anticancer treatments, including potential underlying mechanisms for ADC-related ocular AEs. It also discusses clinical management practices relevant to ophthalmologists for prevention, monitoring, and management of ADC-related ocular AEs. In collaboration with oncologists, ophthalmologists play a vital role in caring for patients with cancer by assisting with the prompt recognition, mitigation, and management of treatment-related ocular AEs.
Collapse
Affiliation(s)
- Eric E Gabison
- Service d'Ophtalmologie, Hôpital Fondation Rothschild, Paris, France.
| | - Antoine Rousseau
- Department of Ophthalmology, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares en Ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Ophthalmology Department III, Hôpital des Quinze-Vingts, Paris, France; Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Marc Labetoulle
- Department of Ophthalmology, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares en Ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Ophthalmology Department III, Hôpital des Quinze-Vingts, Paris, France; Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Paris-Saclay University, Cancer Medicine Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
2
|
Rangaswamy D, Nagaraju SP, Bhojaraja MV, Swaminathan SM, Prabhu RA, Rao IR, Shenoy SV. Ocular and systemic vascular endothelial growth factor ligand inhibitor use and nephrotoxicity: an update. Int Urol Nephrol 2024; 56:2635-2644. [PMID: 38498275 PMCID: PMC11266217 DOI: 10.1007/s11255-024-03990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Tumor growth is intricately linked to the process of angiogenesis, with a key role played by vascular endothelial growth factor (VEGF) and its associated signaling pathways. Notably, these pathways also play a pivotal "housekeeping" role in renal physiology. Over the past decade, the utilization of VEGF signaling inhibitors has seen a substantial rise in the treatment of diverse solid organ tumors, diabetic retinopathy, age-related macular degeneration, and various ocular diseases. However, this increased use of such agents has led to a higher frequency of encountering renal adverse effects in clinical practice. This review comprehensively addresses the incidence, pathophysiological mechanisms, and current evidence concerning renal adverse events associated with systemic and intravitreal antiangiogenic therapies targeting VEGF-A and its receptors (VEGFR) and their associated signaling pathways. Additionally, we briefly explore strategies for mitigating potential risks linked to the use of these agents and effectively managing various renal adverse events, including but not limited to hypertension, proteinuria, renal dysfunction, and electrolyte imbalances.
Collapse
Affiliation(s)
- Dharshan Rangaswamy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ravindra A Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Dong S, Chen L, Sauer A, Dittus L. LC/MS Assessment of Glycoform Clearance of A Biotherapeutic MAb in Rabbit Ocular Tissues. J Pharm Sci 2023; 112:2285-2291. [PMID: 37062414 DOI: 10.1016/j.xphs.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Many biotherapeutics such as monoclonal antibodies (mAbs) consist of various glycoforms, which can have different PK properties upon administration to animals and human. As a result, it is necessary to monitor the abundance of glycoforms and limit lot-to-lot variability during the manufacturing process. However, limited information is known about the clearance of mAb glycoforms from ocular space upon intravitreal injection. We present here an assessment of glycoform clearance of a biotherapeutic mAb (IgG1) from rabbit vitreous humor, aqueous humor and retina tissue using LC/MS. The results show that G0, G0F and G1F have similar T1/2, while mannose-5 has a longer T1/2 and is cleared slower in rabbit ocular space, which contradicted with what has been reported in the literature in which Mann5 was cleared faster systematically.
Collapse
Affiliation(s)
- Shiyu Dong
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT, USA
| | - Linzhi Chen
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT, USA.
| | - Achim Sauer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG. Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Lars Dittus
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG. Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
4
|
Bussing D, Li Y, Guo L, Verma A, Sullivan JM, Shah DK. Pharmacokinetics of Monoclonal Antibody and Antibody Fragments in The Mouse Eye Following Intravitreal Administration. J Pharm Sci 2023; 112:2276-2284. [PMID: 37062415 DOI: 10.1016/j.xphs.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Mice are rarely used in pharmacokinetic (PK) studies of ocular therapeutics due to the small size of their eyes and challenges in drug administration, tissue collection, and analysis of drug concentrations. Therefore, ocular PK of protein therapeutics in mouse eye following intravitreal (IVT) administration is not known. Here, we have presented the first of its kind investigation, to study the PK of 4 different size non-binding protein therapeutics in mouse plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) following IVT administration. Administered proteins include trastuzumab (150 kDa) and F(ab)2 (100 kDa), Fab, and scFv (27 kDa) fragments of trastuzumab. An imaging and injection apparatus suitable for performing small (50 nL) IVT injections in mice was developed, and techniques for enucleation of the eye and dissection of ocular tissues were developed. Furthermore, a sensitive enzyme-linked immunosorbent assay (ELISA) for detection of proteins in very small amounts of ocular tissues were developed. It was observed that elimination from the vitreous chamber was the primary driver of PK in the cornea/ICB, retina, posterior cup, and plasma. Trastuzumab displays first-order kinetics in the vitreous humor with a half-life of 18.8 h. F(ab)2, Fab, and ScFv show biphasic PK profiles with distribution phases becoming more rapid as molecular weight decreases, and terminal elimination becoming longer as molecular weight decreases, with terminal half-lives of 16.3, 20.6, and 48.9 h, respectively. The mean residence times of trastuzumab, F(ab)2, Fab, and scFv in the vitreous humor were 26.0, 12.2, 10.7, and 8.16 h, respectively. It was found that the mean residence time in vitreous humor doubles with an increase in molecular weight of ∼69 kDa. Interestingly, the PK of proteins measured in the un-injected eye suggest the presence of a pathway for drug transfer between the eyes, which needs to be further validated. Overall, the findings presented here pave the way for drug discovery and development studies of protein therapeutics for ophthalmic indications in mice.
Collapse
Affiliation(s)
- David Bussing
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Leiming Guo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Ashwni Verma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Jack M Sullivan
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, Buffalo, New York, USA; VA Western NY Healthcare System, Buffalo, New York, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
5
|
Cañedo-Solares I, Correa D, Luna-Pastén H, Ortiz-Alegría LB, Gómez-Chávez F, Xicoténcatl-García L, García LD, Canfield-Rivera CE. Maternal anti-Toxoplasma gondii antibodies IgG2, IgG3 and IgG1 are markers of vertical transmission and clinical evolution of toxoplasmosis in the offspring. Acta Trop 2023; 243:106943. [PMID: 37172708 DOI: 10.1016/j.actatropica.2023.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Toxoplasma gondii can be transmitted vertically during pregnancy and may cause neurological, ocular, and even systemic damage to the offspring. Congenital toxoplasmosis (CT) can be diagnosed during gestation and/or after birth in the postnatal period. The timely diagnosis is highly relevant for efficient clinical management. The most common laboratory methods for diagnosing CT are based on Toxoplasma-specific humoral immune responses. However, these methods are of low sensitivity or specificity. In a previous study with a small number of cases, the comparison of anti-T. gondii IgG subclasses between mothers and their offspring showed promising results for CT diagnosis and prognosis. Thus, in this work, we analyzed specific IgG subclasses and IgA in 40 T. gondii-infected mothers and their children, of which 27 were congenitally infected and 13 uninfected. A higher frequency of anti-Toxoplasma IgG2, IgG3, IgG4, and IgA antibodies was observed in mothers and congenitally infected offspring. Of these, IgG2 or IgG3 were statistically the most conspicuous. In the CT group, maternal IgG3 antibodies were significantly associated with severe disease of the infants and IgG1 and IgG3 with disseminated disease. The results support that maternal anti-T. gondii IgG3, IgG2 and IgG1 are markers of congenital transmission and severity/spread of disease in the offspring.
Collapse
Affiliation(s)
- Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México.
| | - Dolores Correa
- Dirección de Investigación / Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac, México.
| | - Hector Luna-Pastén
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México
| | - Luz Belinda Ortiz-Alegría
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México; Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, ENMyH - IPN, México
| | - Lizbeth Xicoténcatl-García
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, México
| | - Luisa Díaz- García
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Secretaría de Salud, México
| | | |
Collapse
|
6
|
Ebrahimi M, Balibegloo M, Rezaei N. Monoclonal antibodies in diabetic retinopathy. Expert Rev Clin Immunol 2022; 18:163-178. [PMID: 35105268 DOI: 10.1080/1744666x.2022.2037420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR), as one of the main complications of diabetes, is among the leading causes of blindness and visual impairment worldwide. AREAS COVERED Current clinical therapies include photocoagulation, vitrectomy, and anti-vascular endothelial growth factor (VEGF) therapies. Bevacizumab and ranibizumab are two monoclonal antibodies (mAbs) inhibiting angiogenesis. Intravitreal ranibizumab and bevacizumab can decrease the rate of blindness and retinal thickness, and improve visual acuity whether as monotherapy or combined with other treatments. They can increase the efficacy of other treatments and decrease their adverse events. Although administered intravitreally, they also might enter the circulation and cause systemic effects. This study is aimed to review our current knowledge about mAbs, bevacizumab and ranibizumab, in DR including superiorities, challenges, and limitations. Meanwhile, we tried to shed light on new ideas to overcome these limitations. Our latest search was done in April 2021 mainly through PubMed and Google Scholar. Relevant clinical studies were imported. EXPERT OPINION Future direction includes detection of more therapeutic targets considering other components of DR pathophysiology and shared pathogenesis of DR and neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, the treat-and-extend regimen, and new ways of drug delivery and other routes of ocular drug administration.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA),Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Balibegloo
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA),Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA),Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Effects of Intravitreal Aflibercept on the Systemic Insulin-like Growth Factor-I and Vascular Endothelial Growth Factor-A in Patients with Diabetic Retinopathy and Age-Related Macular Degeneration. J Ophthalmol 2021; 2021:7058505. [PMID: 34956670 PMCID: PMC8694974 DOI: 10.1155/2021/7058505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose To analyze the effect of intravitreal aflibercept injections on systemic levels of insulin-like growth factor-1 and vascular endothelial growth factor-A in patients with diabetic retinopathy and age-related macular degeneration. Methods Vascular endothelial growth factor-A and insulin-like growth factor-1 levels were determined before and one week and four weeks after intravitreal injection of aflibercept (2.0 mg/50 μl) for 19 patients with age-related macular degeneration (mean age, 76 ± 11 years) and 18 patients with diabetic retinopathy (mean age, 64 ± 14 years). Twenty-two healthy individuals were enrolled as controls. Results A significant decline in systemic vascular endothelial growth factor-A level, from 43 (30–57) pg/ml at baseline to 8 (8–8) pg/ml (p < 0.001) at week one and 17 (8–25) pg/ml (p=0.0054) at week four, was observed in the age-related macular degeneration group. In the diabetic retinopathy group, vascular endothelial growth factor-A levels declined from 53 (35–117) pg/ml to 2 (1–5) pg/ml (p < 0.0001) one week after injection and 16 (13–22) pg/ml four weeks after injection (p=0.0327). At baseline, systemic insulin-like growth factor-1 concentration was higher in the diabetic retinopathy group (57 [37–99] pg/ml) than in the age-related macular degeneration group (35 [24–51] pg/ml) (p=0.0056). A subgroup analysis showed that patients in the proliferative diabetic retinopathy subgroup had significantly higher systemic insulin-like growth factor-1 concentrations (71 [44.7–243] pg/ml) than those in the nonproliferative diabetic retinopathy subgroup (43 [29–66] pg/ml) (p=0.0048). Conclusions The difference between the baseline systemic insulin-like growth factor-1 levels of the age-related macular degeneration and diabetic retinopathy groups and the higher insulin-like growth factor-1 levels in the proliferative diabetic retinopathy subgroup one week after aflibercept therapy suggest that insulin-like growth factor-1 may play a role in the pathomechanism of diabetic retinopathy.
Collapse
|
8
|
Angermann R, Rauchegger T, Nowosielski Y, Seifarth C, Egger S, Kralinger MT, Kieselbach GF, Zehetner C. Systemic counterregulatory response of angiopoietin-2 after aflibercept therapy for nAMD: a potential escape mechanism. Acta Ophthalmol 2021; 99:e869-e875. [PMID: 33326179 PMCID: PMC8519089 DOI: 10.1111/aos.14691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Purpose To analyse the effect of intravitreal aflibercept injections on systemic angiopoietin‐2 (Ang2) and vascular endothelial growth factor (VEGF)‐A levels in patients with neovascular age‐related macular degeneration (nAMD). Methods In a prospective, randomized study, aflibercept (2.0 mg/50 µl) or ranibizumab (0.5 mg/50 µl) was administered intravitreally to 38 treatment‐naive patients. Blood samples were taken before, 7 days after, and 28 days after the first intravitreal therapy. Cytokine levels were measured by enzyme‐linked immunosorbent assay. Twenty‐two age‐ and sex‐matched individuals served as controls. Results At baseline, there were no significant differences of systemic Ang2 and VEGF‐A levels among the treatment and control groups. After intravitreal aflibercept administration, median (interquartile range: IQR) systemic Ang2 was significantly upregulated from 1819 pg/ml (1262–3099) to 2123 pg/ml (1441–3769; p = 0.011) 7 days after the drug injection and remained non‐significantly elevated at 1944 pg/ml (1431–2546 pg/ml; p = 0.653) 28 days after the drug injection. Median (IQR) systemic VEGF‐A levels were significantly reduced from 43 pg/ml (30–57) to 8 pg/ml (8–8; p < 0.0001) 7 days and 16 pg/ml (8–26; p = 0.001) 28 days after the injection in the aflibercept group. There were no significant effects on systemic VEGF‐A and Ang2 levels in the ranibizumab group at any time point following the first injection. Conclusion In this study, we report significant systemic upregulation of Ang2 after intravitreal aflibercept administration. This counterregulatory response may represent a potential escape mechanism from antiangiogenic therapy.
Collapse
Affiliation(s)
- Reinhard Angermann
- Department of Ophthalmology Medical University Innsbruck Innsbruck Austria
- Department of Ophthalmology Paracelsus Medical University Salzburg Salzburg Austria
| | - Teresa Rauchegger
- Department of Ophthalmology Medical University Innsbruck Innsbruck Austria
| | - Yvonne Nowosielski
- Department of Ophthalmology Medical University Innsbruck Innsbruck Austria
| | - Christof Seifarth
- Department of Ophthalmology Medical University Innsbruck Innsbruck Austria
| | - Stefan Egger
- Department of Ophthalmology Paracelsus Medical University Salzburg Salzburg Austria
| | | | | | - Claus Zehetner
- Department of Ophthalmology Medical University Innsbruck Innsbruck Austria
| |
Collapse
|
9
|
Abstract
Purpose Growing evidence suggests different systemic exposure of anti-vascular endothelial growth factor (anti-VEGF) agents with repeated intravitreal application. Since the penetration of anti-VEGF agents through vascular barrier was reported, the interaction of anti-VEGF with nonresident platelets has become a topic of interest. The purpose of this study was to evaluate, with the help of visualization techniques, whether platelets take up the anti-VEGF agents ranibizumab, aflibercept, and bevacizumab. Methods The uptake of anti-VEGF agents with or without VEGF treatment was investigated using immunofluorescence and immunogold staining in human platelets. The role of actin filaments and clathrin-coated vesicles in the transport of ranibizumab, aflibercept, and bevacizumab was evaluated by two pharmacologic inhibitors: staurosporine (protein kinase C inhibitor) and cytochalasin D. Results All three anti-VEGF agents were taken up by platelets and colocalized with VEGF. Ranibizumab and aflibercept were mainly detected in alpha-granules; however, bevacizumab was equally localized in alpha-granules and in platelet vesicles. Both staurosporine and cytochalasin D completely inhibited the uptake of aflibercept into platelets. Both pharmacological inhibitors also decreased the transport of ranibizumab and bevacizumab into platelets. Bevacizumab was significantly more frequently colocalized within clathrin-coated vesicles than ranibizumab and aflibercept. Conclusion All three anti-VEGF agents are taken up by platelets and internalized in alpha-granules, which may result in a higher local exposure of anti-VEGF after the activation of platelets, potentially contributing to arterial thromboembolic events. Clathrin-coated vesicles seem to be more prominent in the transport of bevacizumab than ranibizumab and aflibercept. Nevertheless, whether the different localization and transport of bevacizumab are truly related to specific differences of receptor-mediated endocytosis has to be revealed by further research.
Collapse
|
10
|
Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, Shen S, Madsen M, Morris ME. Immunoglobulin G Is a Novel Substrate for the Endocytic Protein Megalin. AAPS JOURNAL 2021; 23:40. [PMID: 33677748 DOI: 10.1208/s12248-021-00557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
Therapeutic immunoglobulin G (IgG) antibodies comprise the largest class of protein therapeutics. Several factors that influence their overall disposition have been well-characterized, including target-mediated mechanics and convective flow. What remains poorly defined is the potential for non-targeted entry into various tissues or cell types by means of uptake via cell surface receptors at those sites. Megalin and cubilin are large endocytic receptors whose cooperative function plays important physiological roles at the tissues in which they are expressed. One such example is the kidney, where loss of either results in significant declines in proximal tubule protein reabsorption. Due to their diverse ligand profile and broad tissue expression, megalin and cubilin represent potential candidates for receptor-mediated uptake of IgG into various epithelia. Therefore, the objective of the current work was to determine if IgG was a novel ligand of megalin and/or cubilin. Direct binding was measured for human IgG with both megalin and the cubilin/amnionless complex. Additional work focusing on the megalin-IgG interaction was then conducted to build upon these findings. Cell uptake studies using megalin ligands for competitive inhibition or proximal tubule cells stably transduced with megalin-targeted shRNA constructs supported a role for megalin in the endocytosis of human IgG. Furthermore, a pharmacokinetic study using transgenic mice with a kidney-specific mosaic knockout of megalin demonstrated increased urinary excretion of human IgG in megalin knockout mice when compared to wild-type controls. These findings indicate that megalin is capable of binding and internalizing IgG via a high affinity interaction.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Lee D Chaves
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.,Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Benjamin M Yee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Mette Madsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C., Denmark
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
11
|
Nirmal J, Barathi VA, Dickescheid A, Wey YS, Nirmal S, Raja MM, Venkatraman S, Agrawal R. Potential of subconjunctival aflibercept in treating choroidal neovascularization. Exp Eye Res 2020; 199:108187. [PMID: 32795527 DOI: 10.1016/j.exer.2020.108187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
The study aimed to evaluate the intraocular pharmacokinetics and efficacy of aflibercept after subconjunctival injection in animal models for treating choroidal neovascularization (CNV) associated with Age-Related Macular Degeneration (AMD). New Zealand albino rabbits received aflibercept (2000 μg/50 μl) in one eye, and the other eye was used as control. At 7, 14, 21 and 28 days, the animals were sacrificed to dissect the ocular tissues, and serum was collected at 1hr, 3 h, 1, 7, 14, 21 and 28 days. The concentration of aflibercept in various ocular tissues and serum were measured using the immunoassay technique. The concentration maximum (Cmax) at the Retinal Pigment Epithelium (RPE)-choroid complex and retina in treated eyes was 261.55 and 33.83 ng/gm, respectively. The area under the curve (AUC0-last) for RPE-Choroid and retina were 2094.02 and 290.33 days. ng/gm respectively. The time maximum (Tmax) for the ocular tissues was reached on day 7. In the vitreous humour, a lower level of aflibercept was retrieved. The Cmax (1766.84 ng/mL) in the serum was reached on day 1, followed by a decline in the concentration till the end of the study period. In treated eyes, the levels of aflibercept in most of the ocular tissues were maintained for at least 21 days above the invitro IC50 concentration. The results of the efficacy study show that subconjunctival aflibercept could reach the therapeutic target to inhibit CNV. The subconjunctival aflibercept could be a less invasive route for treating CNV with AMD.
Collapse
Affiliation(s)
- Jayabalan Nirmal
- Translational Pharmaceutics Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Hyderabad, India; Nanyang Technological University-Northwestern Institute for Nanomedicine, School of Material Science & Engineering, Nanyang Technological University, Singapore.
| | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore
| | - Andreas Dickescheid
- Nanyang Technological University-Northwestern Institute for Nanomedicine, School of Material Science & Engineering, Nanyang Technological University, Singapore
| | | | - Sonali Nirmal
- Nanyang Technological University-Northwestern Institute for Nanomedicine, School of Material Science & Engineering, Nanyang Technological University, Singapore
| | - Miguel Moreno Raja
- Nanyang Technological University-Northwestern Institute for Nanomedicine, School of Material Science & Engineering, Nanyang Technological University, Singapore
| | - Subbu Venkatraman
- Nanyang Technological University-Northwestern Institute for Nanomedicine, School of Material Science & Engineering, Nanyang Technological University, Singapore
| | - Rupesh Agrawal
- Nanyang Technological University-Northwestern Institute for Nanomedicine, School of Material Science & Engineering, Nanyang Technological University, Singapore; Singapore Eye Research Institute, Singapore; Tan Tock Seng Hospital, Singapore.
| |
Collapse
|
12
|
Deissler HL, Sommer K, Lang GK, Lang GE. Transport and fate of aflibercept in VEGF-A 165-challenged retinal endothelial cells. Exp Eye Res 2020; 198:108156. [PMID: 32712182 DOI: 10.1016/j.exer.2020.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/26/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Retinal vessels are at least in part involved in clearing of Fc terminus-containing proteins from the vitreous. In vitro, the Fc fusion protein aflibercept is transported through a monolayer of unchallenged immortalized bovine retinal endothelial cells (iBREC), mediated by the neonatal Fc receptor (FcRn), but part of the Fc fusion protein is also degraded. Aflibercept's target VEGF-A not only enhances the permeability of REC by destabilization of tight junctions (TJs) thereby allowing for paracellular flow, it may also lower the intracellular stability of the Fc fusion protein by changing its binding properties to the FcRn. Therefore, we investigated the transport and fate of aflibercept in VEGF-A165-challenged iBREC. All cell culture media were supplemented with 5% fetal bovine serum (FBS) as its absence results in accumulation of aflibercept in iBREC due to deregulated expression of transport proteins. Early after exposure of a confluent iBREC monolayer cultivated on gold electrodes to 5% FBS, the cell index (CI) - assessed as a measure of barrier function, cell viability and cell adhesion - transiently declined but recovered again within a few hours to high values. These values remained stable for several days associated with a strong expression of the TJ-protein claudin-1, indicative of a functional barrier formed by the iBREC monolayer. Transient changes of the plasma membrane localizations of claudin-5 and vascular endothelial cadherin - both important for regulation of paracellular flow - accompanied the transient reduction of the CI not prevented by VEGF-binding proteins. Treatment of iBREC with 50 ng/ml VEGF-A165 for one day resulted in a strong and persistent decline of the CI associated with a low expression level of the TJ-protein claudin-1; reversion to normal values was complete one day after aflibercept's addition at a final concentration of 250 μg/ml. Expressions of other proteins involved in regulation of paracellular flow or transcellular transport were not significantly changed. More aflibercept passed through the monolayer of iBREC cultivated on permeable membrane inserts pretreated with VEGF-A for one day, but this was not affected by a FcRn-inhibiting antibody. Subcellular localization of aflibercept was hardly changed in VEGF-A-exposed iBREC 3 h after its addition to the cells; inhibition of (non)-lysosomal or proteasomal proteases then only weakly affected the amount of internalized aflibercept. iBREC also internalized VEGF-A which was barely detectable as early as 2 h after addition of aflibercept. In contrast, blocking the tyrosine kinase activity of VEGF receptor(s) did not prevent VEGF-A's uptake. Inhibition of cellular proteases strongly increased the amount of internalized VEGF-A in the absence and presence of the Fc fusion protein. We therefore conclude that a FcRn-mediated transport plays a minor role in aflibercept's passage through a leaky barrier of REC. Even early after addition of aflibercept to VEGF-A-exposed iBREC, the levels of free intracellular VEGF-A are low, as aflibercept likely prevents binding of VEGF-A to its receptor. Interestingly, the growth factor's detrimental effects still persist for nearly one day.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany.
| | - Katrin Sommer
- Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Gerhard K Lang
- Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Gabriele E Lang
- Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| |
Collapse
|
13
|
A new method for pharmaceutical compounding and storage of anti-VEGF biologics for intravitreal use in silicone oil-free prefilled plastic syringes. Sci Rep 2019; 9:18021. [PMID: 31792234 PMCID: PMC6888834 DOI: 10.1038/s41598-019-54226-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Intravitreal injections of antibody-based biologics targeting vascular endothelial growth factor (VEGF) are highly effective and have markedly decreased the risk of visual impairment associated with prevalent retinal diseases, such as neovascular age-related macular degeneration and diabetes macular oedema. The diseases are chronic in their nature, and most patients need long-term therapy to suppress disease activity. We previously reported a compounding method for repackaging and storage of aflibercept (Eylea), a commonly used anti-VEGF biologic, in silicone oil-coated plastic syringes without compromising drug stability or activity. In addition to improving safety and time spent per patient, compounding of anti-VEGF biologics enables single-dose vials to be split into multiple syringes, thereby considerably reducing waste and drug expenses. However, symptomatic silicone oil droplets may deposit in the eye’s vitreous body after repetitive injections. To fully avoid this complication, we here report on a novel pharmaceutical compounding method using silicone oil-free syringes and a 33 G × 9 mm Low Dead Space Needle hub injection needle. We evaluate the method for three anti-VEGF biologics commonly used in ophthalmology: aflibercept, ranibizumab (Lucentis) and bevacizumab (Avastin). Our results show that compounding and storage for one week does not compromise the functional activity of the biologics and allows for safe and cost-effective compounding of anti-VEGF biologics for intravitreal injections in prefilled silicone oil-free syringes.
Collapse
|
14
|
Leipold D, Prabhu S. Pharmacokinetic and Pharmacodynamic Considerations in the Design of Therapeutic Antibodies. Clin Transl Sci 2018; 12:130-139. [PMID: 30414357 PMCID: PMC6440574 DOI: 10.1111/cts.12597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
The design and development of therapeutic monoclonal antibodies (mAbs) through optimizing their pharmacokinetic (PK) and pharmacodynamic (PD) properties is crucial to improve efficacy while minimizing adverse events. Many of these properties are interdependent, which highlights the inherent challenges in therapeutic antibody design, where improving one antibody property can sometimes lead to changes in others. Here, we discuss optimization approaches for PK/PD properties of therapeutic mAbs.
Collapse
Affiliation(s)
- Douglas Leipold
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| |
Collapse
|
15
|
Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation. Graefes Arch Clin Exp Ophthalmol 2018; 257:83-94. [PMID: 30367290 PMCID: PMC6323079 DOI: 10.1007/s00417-018-4166-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Intravitreal injection of the VEGF-binding protein aflibercept is widely used to treat various ocular diseases. In vitro, immortalized bovine retinal endothelial cells (iBREC) take up and transport aflibercept through the cell layer in a serum-dependent manner, likely mediated through the neonatal Fc receptor (FcRn), but degradation of the Fc domain-containing protein might be a competing intracellular process. Therefore, aflibercept's associations with proteins either involved in FcRn-mediated transport or in the lysosomal pathway were studied. METHODS Confluent iBREC pre-cultivated with or without FBS were exposed for 4 h to in vivo achievable 250 μg/ml aflibercept, before cells were harvested for immunofluorescence staining or preparation of protein extracts. Intracellular localization of aflibercept and putative co-localizations with proteins involved in transport of IgG/FcRn complexes, i.e., endosomal Rab4 and Rab11, components of the cytoskeleton, motor proteins, or with marker proteins characteristic of multivesicular bodies or lysosomes were assessed by co-immunofluorescence stainings. Amounts of expressed endogenous proteins and of internalized aflibercept were determined by Western blot analyses. RESULTS Aflibercept-specific perinuclear staining overlapped with that of the motor protein dynein whereas double staining with an anti-kinesin antibody resulted in a patchy pattern. In addition, aflibercept was typically present close to microtubules and often co-localized with α-tubulin. Rab4 and Rab11 stainings partly overlapped with the perinuclear staining of aflibercept whereas co-localization with Rab7 (in late endosomes/lysosomes) was only rarely seen. Interestingly, aflibercept but not the IgG bevacizumab broadly co-localized with the cation-independent mannose 6-phosphate receptor characteristic of multivesicular endosomes. In accordance with partial degradation beside transcytosis, the amount of intracellular aflibercept increased when cells were treated with protease inhibitors MG-132 or MG-101. Serum-deprived iBREC expressed less Rab11 and dynein but slightly more Rab4. CONCLUSION After uptake by iBREC, aflibercept is present in organelles associated with FcRn-mediated transport, but part of the protein is subject to degradation. Transport inhibition of aflibercept during cultivation without FBS is likely a consequence of an attenuated exocytosis due to decreased expression of Rab11.
Collapse
|
16
|
Li T, Balthasar JP. FcRn Expression in Wildtype Mice, Transgenic Mice, and in Human Tissues. Biomolecules 2018; 8:biom8040115. [PMID: 30326650 PMCID: PMC6316262 DOI: 10.3390/biom8040115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Quantitative real-time PCR and Western blot methods were developed to assess neonatal Fc-receptor (FcRn) mRNA and protein expression in human FcRn transgenic mice, Swiss Webster mice, and in select human tissues. Additionally, FcRn turnover was evaluated via pulse-chase. FcRn mRNA expression was significantly higher in transgenic mice when compared to mouse FcRn mRNA in Swiss Webster mice and it ranged from 184-fold higher in the kidney to 109,000-fold higher in the skin. FcRn protein expression was found to be 13-fold lower in kidney to 5.6-fold higher in lung obtained from transgenic mice compared to FcRn protein expression in lung samples obtained from Swiss Webster mice. FcRn protein expression in human liver and small intestine tissues matched more closely with FcRn expression in Swiss Webster mice but were significantly lower when compared to values found from Swiss Webster and transgenic mice. Although FcRn mRNA expression correlated significantly with protein expression (p < 0.0005), the correlation coefficient was only 0.113. As such, the measurement of FcRn protein may be preferred to FcRn mRNA for quantitative applications. Significant differences were found in FcRn expression in transgenic mice, Swiss Webster mice, and human tissues, which may have implications for the use of mouse models in the assessment of monoclonal antibody disposition, efficacy, and safety.
Collapse
Affiliation(s)
- Tommy Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
17
|
Richter WF, Christianson GJ, Frances N, Grimm HP, Proetzel G, Roopenian DC. Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. MAbs 2018; 10:803-813. [PMID: 29621428 DOI: 10.1080/19420862.2018.1458808] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The neonatal Fc receptor (FcRn) has been demonstrated to contribute to a high bioavailability of monoclonal antibodies (mAbs). In this study, we explored the cellular sites of FcRn-mediated protection after subcutaneous (SC) and intravenous (IV) administration. SC absorption and IV disposition kinetics of a mAb were studied in hFcRn transgenic (Tg) bone marrow chimeric mice in which hFcRn was restricted to radioresistant cells or hematopoietic cells. SC bioavailabilities close to 90% were observed in hFcRn Tg mice and chimeric mice with hFcRn expression in hematopoietic cells, whereas SC bioavailabilities were markedly lower when FcRn was missing in hematopoietic cells. Our study demonstrates: 1) FcRn in radiosensitive hematopoietic cells is required for high SC bioavailability, indicating first-pass catabolism after SC administration by hematopoietic cells; 2) FcRn-mediated transcytosis or recycling by radioresistent cells is not required for high SC bioavailability; and 3) after IV administration hematopoietic and radioresistent cells contribute about equally to clearance of the mAb. A pharmacokinetic model was devised to describe a mixed elimination via radioresistent and hematopoietic cells from vascular and extravascular compartments, respectively. Overall, the study indicates a relevant role of hematopoietic cells for first-pass clearance of mAbs after SC administration and confirms their role in the overall clearance of mAbs.
Collapse
Affiliation(s)
- Wolfgang F Richter
- a Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse , Basel , Switzerland
| | | | - Nicolas Frances
- a Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse , Basel , Switzerland
| | - Hans Peter Grimm
- a Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse , Basel , Switzerland
| | | | | |
Collapse
|
18
|
Khalili H, Brocchini S, Khaw PT, Filippov SK. Comparative thermodynamic analysis in solution of a next generation antibody mimetic to VEGF. RSC Adv 2018; 8:35787-35793. [PMID: 35547916 PMCID: PMC9088213 DOI: 10.1039/c8ra07059h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022] Open
Abstract
An antibody mimetic known as Fab–PEG–Fab (FpF) is a stable bivalent molecule that may have some potential therapeutic advantages over IgG antibodies due to differences in their binding kinetics as determined by surface plasmon resonance. Here we describe the thermodynamic binding properties to vascular endothelial growth factor (VEGF) of the FpF antibody mimetics derived from bevacizumab and ranibizumab. Bevacizumab is an IgG antibody and ranibizumab is an antibody fragment (Fab). Both are used clinically to target VEGF to inhibit angiogenesis. FpFbeva displayed comparable binding affinity (KD) and binding thermodynamics (ΔH = −25.7 kcal mole−1 and ΔS = 14 kcal mole−1) to bevacizumab (ΔH = −25 kcal mole−1, ΔS = 13.3 kcal mole−1). FpFrani interactions with VEGF were characterised by large favourable enthalpy (ΔH = −42 kcal mole−1) and unfavourable entropy (ΔS = 31 kcal mole−1) changes compared to ranibizumab (ΔH = −18.5 kcal mole−1 and ΔS = 6.7 kcal mole−1), which being a Fab, is mono-valent. A large negative entropy change resulting in binding of bivalent FpF to homodimer VEGF might be due to the conformational change of the flexible regions of the FpF upon ligand binding. Mono-valent Fab (i.e. ranibizumab or the Fab derived from bevacizumab) displayed a larger degree of freedom (smaller unfavourable entropy) upon binding to homodimer VEGF. Our report describes the first comprehensive enthalpy and entropy compensation analysis for FpF antibody mimetics. While the FpFs displayed similar thermodynamics and binding affinity to the full IgG (i.e. bevacizumab), their enhanced protein stability, slower dissociation rate and lack of Fc effector functions could make FpF a potential next-generation therapy for local tissue-targeted indications. ITC illustrated similar binding thermodynamics for anti-VEGF IgG and FpFs. Bivalent FpFrani displayed larger enthalpy and entropy than monovalent ranibizumab.![]()
Collapse
Affiliation(s)
- Hanieh Khalili
- UEL School of Health
- Sport and Bioscience
- London
- UK
- UCL School of Pharmacy
| | - Steve Brocchini
- UCL School of Pharmacy
- London
- UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust
- UCL Institute of Ophthalmology
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust
- UCL Institute of Ophthalmology
- London
- UK
| | | |
Collapse
|
19
|
Abstract
Blockade of vascular endothelial growth factor (VEGF) signaling, whether via sequestration of free VEGF or via inhibition of the tyrosine kinases activated by VEGF, is associated with decreased nitric oxide (NO) and prostaglandin-I 2 (PG-I 2) production along with vascular endothelial cell death. Systemic administration of drugs that block VEGF signaling (eg, for cancer treatment) is associated with systemic complications such as hypertension and thrombosis. Evidence regarding the risk of systemic serious adverse events after intravitreal injection of anti-VEGF agents in patients with diabetic macular edema or neovascular age-related macular degeneration is inconsistent, in part because of study design limitations (eg, bias of ascertainment through strict enrollment criteria and/or inadequate power to identify the risk of low frequency events). Studies involving patients at high risk of arteriothrombotic events (eg, patients with diabetic macular edema) who have high exposure to intravitreal anti-VEGF therapy (eg, monthly aflibercept or ranibizumab injection) demonstrate an increased risk of all-cause mortality compared with randomized controls. The pharmacokinetics of anti-VEGF drug clearance from the systemic circulation and the documented sustained reduction in free plasma VEGF levels after intravitreal aflibercept and bevacizumab injection are consistent with these findings. Although the frequency of systemic serious adverse events after intravitreal anti-VEGF therapy is low, some patients may be at higher risk (eg, those with recent stroke or multiple strokes), and physicians may wish to take special measures with these patients to minimize the risk of systemic complications.
Collapse
Affiliation(s)
- Marco A Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
20
|
Waltl I, Zehetner C, Seifarth C, Handle F, Kieselbach GF, Angermann R, Kralinger MT. Effects of Intravitreal Aflibercept on Galectin-1 and Vascular Endothelial Growth Factor-A Plasma Levels in Patients with Diabetic Retinopathy. Curr Eye Res 2017; 43:368-375. [PMID: 29172741 DOI: 10.1080/02713683.2017.1403632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To analyze the interaction between aflibercept and galectin-1 and evaluate the plasma levels of galectin-1 and vascular endothelial growth factor (VEGF)-A after intravitreal injection of aflibercept in patients with diabetic retinopathy (DR). METHODS Interaction of galectin-1 with aflibercept was determined via immunoprecipitation. Seventeen patients with type 2 diabetes and diabetic macular edema (DME) were each treated with a single intravitreal injection of aflibercept (2.0 mg, 50 µL) monthly for three consecutive months. Plasma galectin-1 and VEGF-A levels were measured just before an injection was administered, 1 week after the first injection, and 2 months after the last injection. Nineteen age- and sex-matched healthy participants served as controls. RESULTS Irrespective of the tested galectin-1 concentration, 24% of added galectin-1 was precipitated by aflibercept. Baseline plasma concentrations of galectin-1 were 22.0 and 23.0 ng/mL in the control and aflibercept-treated groups, respectively. Systemic galectin-1 levels increased to 27.0 and 24.0 ng/mL at 7 days and 4 weeks, respectively, after treatment. At week 8, plasma galectin-1 levels significantly increased to 36.0 ng/mL. This level persisted for 20 weeks. Systemic VEGF-A levels significantly reduced to below the minimum detectable dose in 16 DME patients at 7 days after treatment. This level persisted for 4 weeks. Plasma VEGF-A levels were reduced at weeks 8 (p = 0.099) and 20 (p = 0.023). Decreased plasma VEGF-A levels were observed in all patients after treatment. CONCLUSION We confirmed that physiological aflibercept levels precipitate galectin-1 in in vitro assays. Additionally, systemic upregulation of galectin-1 might be induced by intravitreal aflibercept, which may be relevant in the clinical outcomes of DR treatment.
Collapse
Affiliation(s)
- Inga Waltl
- a Department of Ophthalmology , Medical University Innsbruck , Innsbruck , Austria
| | - Claus Zehetner
- a Department of Ophthalmology , Medical University Innsbruck , Innsbruck , Austria
| | - Christof Seifarth
- a Department of Ophthalmology , Medical University Innsbruck , Innsbruck , Austria
| | - Florian Handle
- b Department of Urology, Division of Experimental Urology , Medical University Innsbruck , Innsbruck , Austria
| | - Gerhard F Kieselbach
- a Department of Ophthalmology , Medical University Innsbruck , Innsbruck , Austria
| | - Reinhard Angermann
- a Department of Ophthalmology , Medical University Innsbruck , Innsbruck , Austria
| | - Martina T Kralinger
- a Department of Ophthalmology , Medical University Innsbruck , Innsbruck , Austria
| |
Collapse
|
21
|
Wilcox CR, Holder B, Jones CE. Factors Affecting the FcRn-Mediated Transplacental Transfer of Antibodies and Implications for Vaccination in Pregnancy. Front Immunol 2017; 8:1294. [PMID: 29163461 PMCID: PMC5671757 DOI: 10.3389/fimmu.2017.01294] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022] Open
Abstract
At birth, neonates are particularly vulnerable to infection and transplacental transfer of immunoglobulin G (IgG) from mother to fetus provides crucial protection in the first weeks of life. Transcytosis of IgG occurs via binding with the neonatal Fc receptor (FcRn) in the placental synctiotrophoblast. As maternal vaccination becomes an increasingly important strategy for the protection of young infants, improving our understanding of transplacental transfer and the factors that may affect this will become increasingly important, especially in low-income countries where the burden of morbidity and mortality is highest. This review highlights factors of relevance to maternal vaccination that may modulate placental transfer—IgG subclass, glycosylation of antibody, total maternal IgG concentration, maternal disease, infant gestational age, and birthweight—and outlines the conflicting evidence and questions that remain regarding the complexities of these relationships. Furthermore, the intricacies of the Ab–FcRn interaction remain poorly understood and models that may help address future research questions are described.
Collapse
Affiliation(s)
- Christopher R Wilcox
- National Institute of Health Research Wellcome Trust Clinical Research Facility, Southampton, United Kingdom
| | - Beth Holder
- Paediatrics Section, Division of Infectious Diseases, Centre for International Child Health, Imperial College London, London, United Kingdom
| | - Christine E Jones
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
22
|
Royer DJ, Carr MM, Gurung HR, Halford WP, Carr DJJ. The Neonatal Fc Receptor and Complement Fixation Facilitate Prophylactic Vaccine-Mediated Humoral Protection against Viral Infection in the Ocular Mucosa. THE JOURNAL OF IMMUNOLOGY 2017; 199:1898-1911. [PMID: 28760885 DOI: 10.4049/jimmunol.1700316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
The capacity of licensed vaccines to protect the ocular surface against infection is limited. Common ocular pathogens, such as HSV-1, are increasingly recognized as major contributors to visual morbidity worldwide. Humoral immunity is an essential correlate of protection against HSV-1 pathogenesis and ocular pathology, yet the ability of Ab to protect against HSV-1 is deemed limited due to the slow IgG diffusion rate in the healthy cornea. We show that a live-attenuated HSV-1 vaccine elicits humoral immune responses that are unparalleled by a glycoprotein subunit vaccine vis-à-vis Ab persistence and host protection. The live-attenuated vaccine was used to assess the impact of the immunization route on vaccine efficacy. The hierarchical rankings of primary immunization route with respect to efficacy were s.c. ≥ mucosal > i.m. Prime-boost vaccination via sequential s.c. and i.m. administration yielded greater efficacy than any other primary immunization route alone. Moreover, our data support a role for complement in prophylactic protection, as evidenced by intracellular deposition of C3d in the corneal epithelium of vaccinated animals following challenge and delayed viral clearance in C3-deficient mice. We also identify that the neonatal Fc receptor (FcRn) is upregulated in the cornea following infection or injury concomitant with increased Ab perfusion. Lastly, selective small interfering RNA-mediated knockdown of FcRn in the cornea impeded protection against ocular HSV-1 challenge in vaccinated mice. Collectively, these findings establish a novel mechanism of humoral protection in the eye involving FcRn and may facilitate vaccine and therapeutic development for other ocular surface diseases.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Hem R Gurung
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - William P Halford
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
23
|
de Zafra CL, Sasseville VG, Matsumoto S, Freichel C, Milton M, MacLachlan TK, Farman C, Raymond I, Gupta S, Newton R, Atzpodien EA, Thackaberry EA. Inflammation and immunogenicity limit the utility of the rabbit as a nonclinical species for ocular biologic therapeutics. Regul Toxicol Pharmacol 2017; 86:221-230. [DOI: 10.1016/j.yrtph.2017.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/01/2022]
|
24
|
Latvala S, Jacobsen B, Otteneder MB, Herrmann A, Kronenberg S. Distribution of FcRn Across Species and Tissues. J Histochem Cytochem 2017; 65:321-333. [PMID: 28402755 DOI: 10.1369/0022155417705095] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The neonatal Fc receptor (FcRn) is a major histocompatibility complex class I type molecule that binds to, transports, and recycles immunoglobulin G (IgG) and albumin, thereby protecting them from lysosomal degradation. Therefore, besides the knowledge of FcRn affinity, FcRn protein expression is critical in understanding the pharmacokinetic behavior of Fc-containing biotherapeutics such as monoclonal antibodies. The goal of this investigation was to achieve for the first time a comparative assessment of FcRn distribution across a variety of tissues and species. FcRn was mapped in about 20 tissues including placenta from human and the most frequently used species in non-clinical safety testing of monoclonal antibodies (mouse, rat, cynomolgus monkey). In addition, the FcRn expression pattern was characterized in two humanized transgenic mouse lines (Tg32 and Tg276) expressing human FcRn under different promoters, and in the severe combined immunodeficient (SCID) mouse. Consecutive sections were stained with specific markers, namely, anti-CD68 for macrophages and anti-von Willebrand Factor for endothelial cells. Overall, the FcRn expression pattern was comparable across species and tissues with consistent expression of FcRn in endothelial cells and interstitial macrophages, Kupffer cells, alveolar macrophages, enterocytes, and choroid plexus epithelium. The human FcRn transgenic mouse Tg276 showed a different and much more widespread staining pattern of FcRn. In addition, immunodeficiency and lack of IgG in SCID mice had no negative effect on FcRn expression compared with wild-type mice.
Collapse
Affiliation(s)
- Sari Latvala
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| | - Bjoern Jacobsen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| | - Michael B Otteneder
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| | - Annika Herrmann
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (SL, BJ, MBO, AH, SK)
| |
Collapse
|
25
|
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2016; 57:134-185. [PMID: 28028001 DOI: 10.1016/j.preteyeres.2016.12.001] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.
Collapse
Affiliation(s)
- Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna-Kaisa Rimpelä
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Emma Heikkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Otto K Kari
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Eva Ramsay
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tatu Lajunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mechthild Schmitt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Laura Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Dominique Richardson
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tiina Turunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Itkonen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marco Casteleijn
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
26
|
Khalili H, Lee RW, Khaw PT, Brocchini S, Dick AD, Copland DA. An anti-TNF-α antibody mimetic to treat ocular inflammation. Sci Rep 2016; 6:36905. [PMID: 27874029 PMCID: PMC5118814 DOI: 10.1038/srep36905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Infliximab is an antibody that neutralizes TNF-α and is used principally by systemic administration to treat many inflammatory disorders. We prepared the antibody mimetic Fab-PEG-Fab (FpFinfliximab) for direct intravitreal injection to assess whether such formulations have biological activity and potential utility for ocular use. FpFinfliximab was designed to address side effects caused by antibody degradation and the presence of the Fc region. Surface plasmon resonance analysis indicated that infliximab and FpFinfliximab maintained binding affinity for both human and murine recombinant TNF-α. No Fc mediated RPE cellular uptake was observed for FpFinfliximab. Both Infliximab and FpFinfliximab suppressed ocular inflammation by reducing the number of CD45+ infiltrate cells in the EAU mice after a single intravitreal injection at the onset of peak disease. These results offer an opportunity to develop and formulate for ocular use, FpF molecules designed for single and potentially multiple targets using bi-specific FpFs.
Collapse
Affiliation(s)
- Hanieh Khalili
- UCL School of Pharmacy, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,University of East London, School of Health, Sport and Bioscience, Water lane, Stratford campus, London, E15 4LZ, UK
| | - Richard W Lee
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Steve Brocchini
- UCL School of Pharmacy, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| | - David A Copland
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
27
|
Deissler HL, Lang GK, Lang GE. Neonatal Fc receptor FcRn is involved in intracellular transport of the Fc fusion protein aflibercept and its transition through retinal endothelial cells. Exp Eye Res 2016; 154:39-46. [PMID: 27836572 DOI: 10.1016/j.exer.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/18/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Abstract
Retinal endothelial cells (REC) likely contribute to the clearance of intravitreally injected IgG. Because this is of high relevance to the pharmacokinetic assessment of the widely used therapeutic Fc fusion protein aflibercept, we studied its transport through immortalized bovine REC (iBREC) in detail. For shuttling of IgG or Fc fusion proteins like aflibercept, endothelial cells use the highly conserved neonatal Fc receptor (FcRn) also expressed in iBREC where it is down regulated by serum depletion. Therefore, we focused on studying intracellular localization and transport of aflibercept under conditions affecting its interaction with the FcRn. Intracellular localization of aflibercept was assessed by Western-blot analyses of subcellular protein fractions or by immunofluorescence staining. After uptake in a temperature-dependent process, aflibercept co-localized with early endosomes, which harbor FcRn. Similar amounts of aflibercept were co-extracted with proteins from membranes/organelles irrespectively of the amount of FBS in the culture medium. Lowering the concentration of FBS resulted in a strong, but reversible association with cytoskeletal proteins suggesting a block in intracellular transport. In accordance with this finding, aflibercept's transport through an iBREC monolayer grown on porous membrane inserts was markedly delayed in the absence of FBS in the culture medium indicating that aflibercept is taken up but not exocytosed under these conditions. Transcytosis of aflibercept was also strongly delayed by inhibition of phosphatidylinositol 3-kinase with LY294002, which affects FcRn-mediated IgG transport. A similar inhibition of aflibercept's transport was observed with IgG-binding proteins (i.e. protein A or protein G) that block interaction between FcRn and aflibercept. Interfering with aflibercept's binding to the FcRn with protein A (or protein G) or the inhibitory FcRn-specific monoclonal antibody 1G3 resulted in a reduced amount of intracellular aflibercept. Taken together, our results strongly suggest that FcRn is involved in transport of aflibercept through REC in vitro.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, University of Ulm, Prittwitzstrasse 43, 89075 Ulm, Germany.
| | - Gerhard K Lang
- Department of Ophthalmology, University of Ulm, Prittwitzstrasse 43, 89075 Ulm, Germany
| | - Gabriele E Lang
- Department of Ophthalmology, University of Ulm, Prittwitzstrasse 43, 89075 Ulm, Germany
| |
Collapse
|
28
|
Pharmacology of the retinal pigment epithelium, the interface between retina and body system. Eur J Pharmacol 2016; 787:84-93. [PMID: 27044435 DOI: 10.1016/j.ejphar.2016.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
The retinal pigment epithelium (RPE) is a close, interactive partner to the photoreceptors as well as an interface with the endothelium of the choroid and thus with the body's circulatory system. To fulfill these roles, the RPE communicates with neighboring tissue by secretion of a large variety of factors and is able to react to secreted factors via a plethora of transmembrane receptors. Clinically relevant local pharmacological effects are caused by anti-VEGF-A treatment in choroidal neovascularization or by carboanhydrase inhibitors reducing fluid accumulation in the macula. Being exposed to the bloodstream, the RPE reacts to systemic disease, such as diabetes or hypertension, but also to systemic pharmacological intervention, for example to hypotensive drugs acting on the renin-angiotensin-system. Sustained pharmacological treatments, in particular, cause side effects at the RPE with consequences for both RPE function and photoreceptor survival. Among these are systemic inhibition of angiotensin-converting enzyme, insulin treatment in diabetes and anti-VEGF-A therapy. Given the special anatomical and functional relationships of the RPE, pharmacological intervention targeting either the eye or the body systemically should take potential alteration of RPE and subsequently photoreceptor function into account.
Collapse
|
29
|
Martins JP, Kennedy PJ, Santos HA, Barrias C, Sarmento B. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol Ther 2016; 161:22-39. [PMID: 27016466 DOI: 10.1016/j.pharmthera.2016.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Advances in the understanding of neonatal Fc receptor (FcRn) biology and function have demonstrated that this receptor, primarily identified for the transfer of passive immunity from mother infant, is involved in several biological and immunological processes. In fact, FcRn is responsible for the long half-life of IgG and albumin in the serum, by creating an intracellular protein reservoir, which is protected from lysosomal degradation and, importantly, trafficked across the cell. Such discovery has led researchers to hypothesize the role for this unique receptor in the controlled delivery of therapeutic agents. A great amount of FcRn-based strategies are already under extensive investigation, in which FcRn reveals to have profound impact on the biodistribution and half-life extension of therapeutic agents. This review summarizes the main findings on FcRn biology, function and distribution throughout different tissues, together with the main advances on the FcRn-based therapeutic opportunities and model systems, which indicate that this receptor is a potential target for therapeutic regimen modification.
Collapse
Affiliation(s)
- João Pedro Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
| | - Patrick J Kennedy
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal; Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI -00014 Helsinki, Finland
| | - Cristina Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal.
| |
Collapse
|
30
|
Correspondence. Retina 2016; 36:e14-5. [DOI: 10.1097/iae.0000000000000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Reply. Retina 2016; 36:e15. [DOI: 10.1097/iae.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Dithmer M, Hattermann K, Pomarius P, Aboul Naga SH, Meyer T, Mentlein R, Roider J, Klettner A. The role of Fc-receptors in the uptake and transport of therapeutic antibodies in the retinal pigment epithelium. Exp Eye Res 2016; 145:187-205. [PMID: 26773870 DOI: 10.1016/j.exer.2015.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/11/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
In the ophthalmological clinic, intravitreally applied antibodies or Fc-containing fusion proteins are frequently used, but the biology and pharmacokinetics of these therapeutics in the retina are not well understood. We have previously shown intracellular uptake of Fc-containing molecules in RPE cells. In this study, we investigated the involvement of Fc-receptors, both Fcγ-receptors and the neonatal Fc-receptor (FcRn) in the uptake and intracellular trafficking of the VEGF-antagonists bevacizumab, aflibercept and the anti-CD20 antibody rituximab in three different model systems, primary porcine RPE cells, ARPE-19 cells and porcine RPE/choroid explants. The expression of Fcγ-receptors was tested in primary porcine RPE cells, and the expression of Fcγ-receptors I and II could be shown in RT-PCR and qRT-PCR, while the expression of FcRn was additionally confirmed in Western blot and immunocytochemistry. All three compounds, bevacizumab, rituximab and aflibercept, were taken up into the cells and displayed a characteristic time-dependent pattern, as shown in Western blot and immunohistochemistry. The uptake was not altered by the inhibition of Fcγ-receptors using different inhibitors (TruStain FcX, genistein, R406). However, the inhibition of FcRn with an antagonistic antibody reduced intracellular IgG in porcine RPE cells (rituximab) and ARPE-19 cells (bevacizumab, rituximab). Colocalisations between the tested compounds and myosin7a could be found. In addition, limited colocalization with FcRn and the tested compounds, as well as triple localization between compound, FcRn and myosin7a could be detected, indicating a role of myosin7a in FcRn mediated transport. However, the colocalizations are restricted to small fractions of the Fc-containing compounds. Furthermore, the FcRn is mainly found in the membrane section, where only minute amounts of the Fc-containing compounds are seen, suggesting a limited interaction. An apical to choroidal transport of IgG through the RPE/choroid can be found in RPE/choroid explants. Inhibition of FcRn increases the amount of bevacizumab found on the choroidal side, suggesting a role of FcRn in the recycling of bevacizumab. In conclusion, our data indicate a role for FcRn, but not Fcγ-receptors, in the uptake and transport of Fc-containing molecules in the RPE and indicate a recycling function of FcRn in the retina.
Collapse
Affiliation(s)
- Michaela Dithmer
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | | | - Prasti Pomarius
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Shereen Hassan Aboul Naga
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany; University of Cairo, Kasr Al-Aini Faculty of Medicine, Cairo, Egypt
| | - Tim Meyer
- Department of Gastroenterology, Charite University Clinic, Berlin, Germany
| | - Rolf Mentlein
- University of Kiel, Department of Anatomy, Kiel, Germany
| | - Johann Roider
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany
| | - Alexa Klettner
- University of Kiel, University Medical Center, Department of Ophthalmology, Kiel, Germany.
| |
Collapse
|
33
|
Deissler HL, Lang GK, Lang GE. Internalization of bevacizumab by retinal endothelial cells and its intracellular fate: Evidence for an involvement of the neonatal Fc receptor. Exp Eye Res 2015; 143:49-59. [PMID: 26481553 DOI: 10.1016/j.exer.2015.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022]
Abstract
Bevacizumab is one of the VEGF-binding proteins that are established in clinical practice to treat various ocular diseases. In view of therapeutic long-term application, potential accumulation of the antibody in retinal cells gave reason for safety concerns. Internalization of considerable amounts of bevacizumab by retinal endothelial (REC) and pigment epithelial cells has been observed which may affect their important functions. Therefore we investigated the transport and intracellular localization of bevacizumab in immortalized bovine REC (iBREC) in detail, considering possible roles of vesicles and receptors mediating uptake and intracellular transport. By performing transcytosis assays with iBREC monolayers cultivated on porous membrane inserts, we demonstrated that bevacizumab was transported efficiently through a tight monolayer from the lower to the upper chamber or vice versa. When added to the lower chamber in excess, the internalized antibody was transported through the cells, but it was also recycled to be set free at the same side of the cell into a bevacizumab-free environment. The rates of both processes strongly depended on the concentration of fetal bovine serum (FBS) in the environment. This observation is important because in vivo REC might be exposed to varying amounts of serum, e.g. in patients with macular edema. FBS also affected the intracellular localization of bevacizumab as shown by analyses of subcellular fractions and direct immunofluorescence staining. When iBREC were cultivated in low-serum medium, most of the antibody was found in the fraction of cytoskeleton proteins and spots of high intensity of bevacizumab-specific staining close to the nuclei were observed. Cultivation in medium with FBS resulted in internalized bevacizumab predominately found in the membrane/organelle fraction in addition to its weaker association with proteins from the cytoskeleton and uniform staining of the cell. Bevacizumab-specific staining close to the cytoskeleton proteins α-tubulin or vimentin was also observed. Accumulation and association of the antibody with the cytoskeleton induced by serum reduction could be reversed by subsequent FBS addition. In uptake and transport of bevacizumab vesicles and binding to a receptor seems to be involved: Internalization was strongly temperature-dependent which ruled out paracellular passage and a fraction of the internalized bevacizumab was associated with early endosomes. Protein A inhibited transcytosis and affected intracellular localization suggesting a key role of the neonatal Fc receptor (FcRn). Interestingly, FcRn expression was decreased when iBREC were cultivated without FBS. Our results suggest this pathway of bevacizumab uptake and transition through iBREC: Independent of serum, bevacizumab is taken up through a nonspecific mechanism. The subsequent sorting into transport vesicles depends on the presence of serum as regulator of FcRn expression. Without sufficient amounts of the receptor being expressed, a likely obstructed exocytosis results in intracellular accumulation and an increased association with cytoskeleton proteins. Interaction of substantial amounts of bevacizumab with the cytoskeleton may be the reason for under these conditions suppressed migration of iBREC. If long-term therapies by intravitreal injection lead to accumulation of bevacizumab in REC in vivo and potentially harmful consequences, will have to be revealed by future investigations.
Collapse
Affiliation(s)
| | - Gerhard K Lang
- Department of Ophthalmology, University of Ulm, 89075 Ulm, Germany
| | - Gabriele E Lang
- Department of Ophthalmology, University of Ulm, 89075 Ulm, Germany
| |
Collapse
|
34
|
The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv Drug Deliv Rev 2015; 91:109-24. [PMID: 25703189 DOI: 10.1016/j.addr.2015.02.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
Immunoglobulin G (IgG)-based drugs are arguably the most successful class of protein therapeutics due in part to their remarkably long blood circulation. This arises from IgG interaction with the neonatal Fc receptor, FcRn. FcRn is the central regulator of IgG and albumin homeostasis throughout life and is increasingly being recognized as an important player in autoimmune disease, mucosal immunity, and tumor immune surveillance. Various engineering approaches that hijack or disrupt the FcRn-mediated transport pathway have been devised to develop long-lasting and non-invasive protein therapeutics, protein subunit vaccines, and therapeutics for treatment of autoimmune and infectious disease. In this review, we highlight the diverse biological functions of FcRn, emerging therapeutic opportunities, as well as the associated challenges of targeting FcRn for drug delivery and disease therapy.
Collapse
|
35
|
Mikulska JE. Analysis of Response Elements Involved in the Regulation of the Human Neonatal Fc Receptor Gene (FCGRT). PLoS One 2015; 10:e0135141. [PMID: 26252948 PMCID: PMC4529178 DOI: 10.1371/journal.pone.0135141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/19/2015] [Indexed: 12/26/2022] Open
Abstract
Human epithelial, endothelial and PMA-differentiated THP-1 cell lines were used as model systems to study the transcriptional regulation of the human FCGRT gene encoding the alpha chain of hFcRn. The data obtained from site-directed mutagenesis in transient transfection experiments indicate that the Sp1 sites at positions -641, -635, and -313, CF1/YY1 elements at positions -586 and -357, and the AP-1 motif at -276 within the-660/-233 fragment of the human FCGRT promoter (hFCGRT) participate in the regulation of human FCGRT in all selected cell lines. However, their individual contribution to promoter activity is not equivalent. The Sp1 binding site at -313 and the AP-1 site at -276 are critical for the activity of the hFCGRT promoter in epithelial and endothelial cells. Moreover, the CF1/YY1 site at -586 in differentiated THP-1 cells, plays an essential role in the transcriptional activity of the promoter. In addition, the C/EBPbeta binding site at -497 of the hFCGRT promoter in epithelial and endothelial cells, and the C/EBPbeta motif located at -497 and -233 within the hFCGRT promoter in differentiated THP-1 cells may function as positive regulatory sequences in response to LPS or PMA stimulation. EMSA and supershift analyses showed that the functionally identified binding motifs in the hFCGRT promoter were able to specifically interact with their corresponding (Sp1, Sp2, Sp3, c-Fos, c-Jun, YY1, and C/EBPbeta or C/EBPdelta) transcription factors (TFs), suggesting their possible involvement in the regulation of the human FCGRT gene expression.
Collapse
Affiliation(s)
- Joanna E. Mikulska
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- * E-mail:
| |
Collapse
|
36
|
Abstract
Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.
Collapse
|
37
|
Pyzik M, Rath T, Lencer WI, Baker K, Blumberg RS. FcRn: The Architect Behind the Immune and Nonimmune Functions of IgG and Albumin. THE JOURNAL OF IMMUNOLOGY 2015; 194:4595-603. [PMID: 25934922 DOI: 10.4049/jimmunol.1403014] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neonatal FcR (FcRn) belongs to the extensive and functionally divergent family of MHC molecules. Contrary to classical MHC family members, FcRn possesses little diversity and is unable to present Ags. Instead, through its capacity to bind IgG and albumin with high affinity at low pH, it regulates the serum half-lives of both of these proteins. In addition, FcRn plays an important role in immunity at mucosal and systemic sites through its ability to affect the lifespan of IgG, as well as its participation in innate and adaptive immune responses. Although the details of its biology are still emerging, the ability of FcRn to rescue albumin and IgG from early degradation represents an attractive approach to alter the plasma half-life of pharmaceuticals. We review some of the most novel aspects of FcRn biology, immune as well as nonimmune, and provide some examples of FcRn-based therapies.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115; Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Timo Rath
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115; Department of Medicine, Harvard Medical School, Boston, MA 02115; Division of Gastroenterology, Department of Medicine, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nueremberg, 91054 Erlangen, Germany
| | - Wayne I Lencer
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115; Harvard Digestive Diseases Center, Boston, MA 02115; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Kristi Baker
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115; Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Richard S Blumberg
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115; Department of Medicine, Harvard Medical School, Boston, MA 02115; Harvard Digestive Diseases Center, Boston, MA 02115; and
| |
Collapse
|
38
|
The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery. J Control Release 2015; 211:144-62. [PMID: 26055641 DOI: 10.1016/j.jconrel.2015.06.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Albumin is the most abundant protein in blood and acts as a molecular taxi for a plethora of small insoluble substances such as nutrients, hormones, metals and toxins. In addition, it binds a range of medical drugs. It has an unusually long serum half-life of almost 3weeks, and although the structure and function of albumin has been studied for decades, a biological explanation for the long half-life has been lacking. Now, recent research has unravelled that albumin-binding cellular receptors play key roles in the homeostatic regulation of albumin. Here, we review our current understanding of albumin homeostasis with a particular focus on the impact of the cellular receptors, namely the neonatal Fc receptor (FcRn) and the cubilin-megalin complex, and we discuss their importance on uses of albumin in drug delivery.
Collapse
|
39
|
Zehetner C, Kralinger MT, Modi YS, Waltl I, Ulmer H, Kirchmair R, Bechrakis NE, Kieselbach GF. Systemic levels of vascular endothelial growth factor before and after intravitreal injection of aflibercept or ranibizumab in patients with age-related macular degeneration: a randomised, prospective trial. Acta Ophthalmol 2015; 93:e154-9. [PMID: 25488124 DOI: 10.1111/aos.12604] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/15/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the changes of vascular endothelial growth factor (VEGF) plasma levels after intravitreal injections of aflibercept or ranibizumab in patients with exudative age-related macular degeneration (AMD). METHODS Thirty-eight patients with exudative AMD were included in this randomised, prospective study. Nineteen patients were randomised to treatment with intravitreal aflibercept (2.0 mg) and 19 to intravitreal ranibizumab (0.5 mg). The concentration of VEGF was measured by ELISA just before the injection, after 7 days and 1 month. Twenty-two age- and sex-matched healthy patients without chorioretinal diseases served as control. RESULTS The median baseline plasma VEGF concentration was 61.0 pg/ml in the control group, 43.0 pg/ml in the aflibercept group and 59.0 pg/ml in the ranibizumab group (p=0.127). Seven days after intravitreal injection of aflibercept plasma levels were significantly reduced to values below the minimum detectable dose (MDD) in 17 of 19 patients (89.5%) resulting in a median VEGF concentration of <9 pg/ml (p<0.001). The reduction persisted throughout 1 month with values below the MDD in 5 of 19 patients (26.3%) and a median measurement of 17.0 pg/ml (p<0.001). In patients treated with ranibizumab no significant effects could be observed with a baseline VEGF of 59.0 pg/ml, 54.0 pg/ml at 7 days (p=0.776) and 58.5 pg/ml at 4 weeks of follow-up (p=0.670). CONCLUSION After intravitreal aflibercept injection, the systemic VEGF levels were significantly reduced throughout the observational period of 4 weeks. No significant systemic effects of intravitreal ranibizumab on plasma VEGF were observed.
Collapse
Affiliation(s)
- Claus Zehetner
- Department of Ophthalmology; Medical University Innsbruck; Innsbruck Austria
| | | | - Yasha S. Modi
- Bascom Palmer Eye Institute; University of Miami; Miami Florida USA
| | - Inga Waltl
- Department of Ophthalmology; Medical University Innsbruck; Innsbruck Austria
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics; Medical University Innsbruck; Innsbruck Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine; Medical University Innsbruck; Innsbruck Austria
| | | | | |
Collapse
|
40
|
Sand KMK, Bern M, Nilsen J, Noordzij HT, Sandlie I, Andersen JT. Unraveling the Interaction between FcRn and Albumin: Opportunities for Design of Albumin-Based Therapeutics. Front Immunol 2015; 5:682. [PMID: 25674083 PMCID: PMC4306297 DOI: 10.3389/fimmu.2014.00682] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023] Open
Abstract
The neonatal Fc receptor (FcRn) was first found to be responsible for transporting antibodies of the immunoglobulin G (IgG) class from the mother to the fetus or neonate as well as for protecting IgG from intracellular catabolism. However, it has now become apparent that the same receptor also binds albumin and plays a fundamental role in homeostatic regulation of both IgG and albumin, as FcRn is expressed in many different cell types and organs at diverse body sites. Thus, to gain a complete understanding of the biological function of each ligand, and also their distribution in the body, an in-depth characterization of how FcRn binds and regulates the transport of both ligands is necessary. Importantly, such knowledge is also relevant when developing new drugs, as IgG and albumin are increasingly utilized in therapy. This review discusses our current structural and biological understanding of the relationship between FcRn and its ligands, with a particular focus on albumin and design of albumin-based therapeutics.
Collapse
Affiliation(s)
- Kine Marita Knudsen Sand
- Department of Biosciences, Centre for Immune Regulation (CIR), University of Oslo , Oslo , Norway ; Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Malin Bern
- Department of Biosciences, Centre for Immune Regulation (CIR), University of Oslo , Oslo , Norway ; Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Jeannette Nilsen
- Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway ; Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Hanna Theodora Noordzij
- Department of Biosciences, Centre for Immune Regulation (CIR), University of Oslo , Oslo , Norway ; Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Inger Sandlie
- Department of Biosciences, Centre for Immune Regulation (CIR), University of Oslo , Oslo , Norway ; Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Jan Terje Andersen
- Department of Immunology, Centre for Immune Regulation (CIR), Oslo University Hospital Rikshospitalet , Oslo , Norway
| |
Collapse
|
41
|
Park SJ, Oh J, Kim YK, Park JH, Park JY, Hong HK, Park KH, Lee JE, Kim HM, Chung JY, Woo SJ. Intraocular pharmacokinetics of intravitreal vascular endothelial growth factor-Trap in a rabbit model. Eye (Lond) 2015; 29:561-8. [PMID: 25592118 DOI: 10.1038/eye.2014.329] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/07/2014] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To determine intraocular pharmacokinetic properties of intravitreally injected vascular endothelial growth factor (VEGF)-Trap in a rabbit model. METHODS VEGF-Trap was intravitreally injected in 18 rabbit eyes. Eyes were enucleated 1 h and 1, 2, 5, 14, and 30 days after injections and immediately frozen at -80 °C. Concentration of VEGF-Trap in vitreous, aqueous humor, and retina/choroid was determined using an indirect enzyme-linked immunosorbent assay and analyzed to obtain pharmacokinetic properties. RESULTS Maximum concentration of VEGF-Trap was achieved at 1 h in all three tissues. A one-compartment model of distribution was selected as the final model for all tissues studied. Estimated half-life of VEGF-Trap in vitreous, aqueous humor, and retinal/choroid was 87.1, 36.8, and 35.0 h, respectively, and estimated mean residence time was 125.7, 53.1, and 50.5 h, respectively. Area under the curve from time 0 to the end point was 10009.8, 3945.1, and 1189.3, respectively. Total exposure of the aqueous humor and retina/choroid to VEGF-Trap was 39.4% and 11.9% of vitreous exposure, respectively. CONCLUSION The vitreous half-life of VEGF-Trap is 3.63 days. This is shorter than that of bevacizumab (6.99 days) and longer than that of ranibizumab (2.51 days), as shown in studies using the same experimental settings. The concentration of VEGF-Trap peaked at 1 h after injections in all eye tissues studied.
Collapse
Affiliation(s)
- S J Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - J Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Republic of Korea
| | - Y-K Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - J H Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - J Y Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - H K Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - K H Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - J-E Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - H M Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - J Y Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Republic of Korea
| | - S J Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
42
|
FcRn: from molecular interactions to regulation of IgG pharmacokinetics and functions. Curr Top Microbiol Immunol 2014; 382:249-72. [PMID: 25116104 DOI: 10.1007/978-3-319-07911-0_12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neonatal Fc receptor, FcRn, is related to MHC class I with respect to its structure and association with β2microglobulin (β2m). However, by contrast with MHC class I molecules, FcRn does not bind to peptides, but interacts with the Fc portion of IgGs and belongs to the Fc receptor family. Unlike the 'classical' Fc receptors, however, the primary functions of FcRn include salvage of IgG (and albumin) from lysosomal degradation through the recycling and transcytosis of IgG within cells. The characteristic feature of FcRn is pH-dependent binding to IgG, with relatively strong binding at acidic pH (<6.5) and negligible binding at physiological pH (7.3-7.4). FcRn is expressed in many different cell types, and endothelial and hematopoietic cells are the dominant cell types involved in IgG homeostasis in vivo. FcRn also delivers IgG across cellular barriers to sites of pathogen encounter and consequently plays a role in protection against infections, in addition to regulating renal filtration and immune complex-mediated antigen presentation. Further, FcRn has been targeted to develop both IgGs with extended half-lives and FcRn inhibitors that can lower endogenous antibody levels. These approaches have implications for the development of longer lived therapeutics and the removal of pathogenic or deleterious antibodies.
Collapse
|