1
|
Liu Y, Tong X, Hu W, Chen D. HDAC11: A novel target for improved cancer therapy. Biomed Pharmacother 2023; 166:115418. [PMID: 37659201 DOI: 10.1016/j.biopha.2023.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
Histone deacetylase 11 (HDAC11) is a unique member of the histone deacetylase family that plays an important role in the regulation of gene expression and protein function. In recent years, research on the role of HDAC11 in tumors has attracted increasing attention. This review summarizes the current knowledge on the subcellular localization, structure, expression, and functions of HDAC11 in tumors, as well as the regulatory mechanisms involved in its network, including ncRNA and substrates. Moreover, we focus on the progress made in targeting HDAC11 to overcome tumor therapy resistance, and the development of HDAC11 inhibitors for cancer treatment. Collectively, this review provides comprehensive insights into the potential clinical implications of HDAC11 for cancer therapy.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Xuechao Tong
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
2
|
Li Y, Xiong C, Wu LL, Zhang BY, Wu S, Chen YF, Xu QH, Liao HF. Tumor subtypes and signature model construction based on chromatin regulators for better prediction of prognosis in uveal melanoma. Pathol Oncol Res 2023; 29:1610980. [PMID: 37362244 PMCID: PMC10287976 DOI: 10.3389/pore.2023.1610980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Background: Uveal Melanoma (UM) is the most prevalent primary intraocular malignancy in adults. This study assessed the importance of chromatin regulators (CRs) in UM and developed a model to predict UM prognosis. Methods: Gene expression data and clinical information for UM were obtained from public databases. Samples were typed according to the gene expression of CRs associated with UM prognosis. The prognostic key genes were further screened by the protein interaction network, and the risk model was to predict UM prognosis using the least absolute shrinkage and selection operator (LASSO) regression analysis and performed a test of the risk mode. In addition, we performed gene set variation analysis, tumor microenvironment, and tumor immune analysis between subtypes and risk groups to explore the mechanisms influencing the development of UM. Results: We constructed a signature model consisting of three CRs (RUVBL1, SIRT3, and SMARCD3), which was shown to be accurate, and valid for predicting prognostic outcomes in UM. Higher immune cell infiltration in poor prognostic subtypes and risk groups. The Tumor immune analysis and Tumor Immune Dysfunction and Exclusion (TIDE) score provided a basis for clinical immunotherapy in UM. Conclusion: The risk model has prognostic value for UM survival and provides new insights into the treatment of UM.
Collapse
Affiliation(s)
- Yue Li
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Chao Xiong
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Li Li Wu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Bo Yuan Zhang
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Sha Wu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Yu Fen Chen
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Qi Hua Xu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Hong Fei Liao
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
In uveal melanoma Gα-protein GNA11 mutations convey a shorter disease-specific survival and are more strongly associated with loss of BAP1 and chromosomal alterations than Gα-protein GNAQ mutations. Eur J Cancer 2022; 170:27-41. [DOI: 10.1016/j.ejca.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
|
4
|
Luo G, Xu W, Chen X, Wang S, Wang J, Dong F, Hu DN, Reinach PS, Yan D. NSUN2-mediated RNA m 5C modification modulates uveal melanoma cell proliferation and migration. Epigenetics 2022; 17:922-933. [PMID: 35757999 DOI: 10.1080/15592294.2022.2088047] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
RNA 5-methylcytosine (m5C) is a widespread post-transcriptional modification involved in diverse biological processes through controlling RNA metabolism. However, its roles in uveal melanoma (UM) remain unknown. Here, we describe the biological roles and regulatory mechanisms of RNA m5C in UM. Initially, we identified significantly elevated global RNA m5C levels in both UM cells and tissue specimens using ELISA assay and dot blot analysis. Meanwhile, NOP2/Sun RNA methyltransferase family member 2 (NSUN2) was upregulated in both types of these samples, whereas NSUN2 knockdown significantly decreased RNA m5C level. Such declines inhibited UM cell migration and suppressed cell proliferation through cell cycle G1 arrest. Furthermore, bioinformatic analyses, m5C-RIP-qPCR, and luciferase assay identified β-Catenin (CTNNB1) as a direct target of NSUN2-mediated m5C modification in UM cells. Additionally, overexpression of miR-124a in UM cells diminished NSUN2 expression levels indicating that it is an upstream regulator of this response. Our study suggests that NSUN2-mediated RNA m5C methylation provides a potential novel target to improve the therapeutic management of UM pathogenesis.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Siqi Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jiao Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Feng Dong
- The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan-Ning Hu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China.,Tissue Culture Center, The New York Eye and Ear Infirmary, New York Medical College, Valhalla, New York, USA
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Rad FT, Gargari BN, Ghorbian S, Farsani ZS, Sharifi R. Inhibiting the growth of melanoma cells via hTERT gene editing using CRISPR-dCas9-dnmt3a system. Gene 2022; 828:146477. [PMID: 35398175 DOI: 10.1016/j.gene.2022.146477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
CRISPR-Cas9 gene-editing technology has pushed the boundaries of genetic modification. The principle of this method is based on the purposeful defense system of DNA degradation and will be one of the most powerful instruments for gene editing shortly. The purpose of this study was to evaluate the capability of this approach to manage melanoma cells. The present study used EF1a-hsaCas9-U6-gRNA as a hybrid vector of sgRNA and Cas9 for the transfection of A-375 melanoma cells. Transfection efficiency was enhanced by examining the two concentrations of 4 and 8 µg/mL of hexadimethrine bromide (trade name Polybrene). The existence of Cas9 in transfected cells was detected by flow cytometry. The expression level of the metabisulfite-modified hTERT gene was measured by real-time PCR technique. The presence of telomerase in cells was determined by flow cytometry and western blotting analysis. The hTERT gene promoter methylation was also evaluated by HRM assay. Finally, the induction of apoptosis in transfected A375 cells was assessed using flow cytometry. The results showed that the presence of gRNA significantly increased the transfection efficiency (up to about 7.75 times higher). The hTERT expression levels in A-375 cells were significantly decreased at different concentrations of Polybrene (in a dose-dependent manner) and various amounts of transfection (P < 0.05). The expression of hTERT in basal cells was not significantly different from the group transfected without gRNA (P˃0.05) but was significantly higher than the group transfected with gRNA (P < 0.05). The results of flow cytometry and western blotting analysis showed a decrease in hTERT level compared to cells transfected without gRNA as well as basal cells. The methylation of hTERT gene promoter in the cells transfected with gRNA at a concentration of 80 μg/mL in the presence of both 4 μg/mL and 8 μg/mL of Polybrene was significantly increased compared to those transfected without sRNA (P < 0.05). The flow cytometry results indicated no significant difference in the induction of apoptosis in the transfected cells compared to the basal cells (P < 0.05). Evidence suggests that the designed CRISPR/Cas9 system reduces the expression of the hTERT gene and telomerase presence, thereby inhibiting the growth of melanoma cells.
Collapse
Affiliation(s)
- Farbod Taghavi Rad
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Bahar Naghavi Gargari
- Department of Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saied Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Rasoul Sharifi
- Department of Biology, Faculty of Basic Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran
| |
Collapse
|
6
|
Lu D, Ma Z, Huang D, Zhang J, Li J, Zhi P, Zhang L, Feng Y, Ge X, Zhai J, Jiang M, Zhou X, Simone CB, Neal JW, Patel SR, Yan X, Hu Y, Wang J. Clinicopathological characteristics and prognostic significance of HDAC11 protein expression in non-small cell lung cancer: a retrospective study. Transl Lung Cancer Res 2022; 11:1119-1131. [PMID: 35832445 PMCID: PMC9271448 DOI: 10.21037/tlcr-22-403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 12/09/2022]
Abstract
Background Although the prognosis of non-small cell lung cancer (NSCLC) can be assessed based on pathological type, disease stage and inflammatory indicators, the prognostic scoring model of NSCLC still needs to improve. HDAC11 is associated with poor prognosis of partial tumors, but its prognostic relationship with NSCLC is poorly understood. In this study, the role of HDAC11 in NSCLC was studied to evaluate relationship with disease prognosis and potential therapeutic target. Methods The clinicopathological and paracancerous tissues of patients with NSCLC primarily diagnosed in Tangdu Hospital from 2009 to 2013 were collected. Follow-up of patients were made every three months and the last follow-up period was December 2018. The expression of HDAC11 was assessed by immunohistochemistry (IHC). Then, weighted gene co-expression network analysis (WGCNA) was used to analyze the relationship between HDAC11 expression and the prognosis of lung adenocarcinoma (LUAD) patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Kaplan-Meier plotter database was used to verify the connection between hub genes and tumor stage and prognosis. We accessed the relationship between HDAC11 expression and clinicopathological features, and impact on the prognosis. Results The study assessed 326 patients with NSCLC. Compared with adjacent tissues, HDAC11 expression was upregulated (HR =1.503, 95% CI: 1.172 to 1.927, P=0.001). Kaplan-Meier survival analyses showed that HDAC11 expression was closely related to OS of NSCLC patients (P=0.0011). Univariate and multivariate analyses showed that the independent risk factors of OS were clinical stage, HDAC11 expression, and HDAC11 differentiation (all P≤0.001). HDAC11 was significantly associated with prognosis in LUAD. A total of 1,174 differential genes and WGCNA were obtained to construct a co-expression network in LUAD. The GO and KEGG pathway enrichment analyses showed the relevance with staphylococcus aureus infection, NOD-like receptor signaling pathway, and others. The results of LUAD survival analysis showed that HDAC11-related genes NKX2-5 and FABP7 were significantly associated with LUAD prognosis. Conclusions The high expression of HDAC11 is related to the poor prognosis of LUAD, and it is expected to become a therapeutic target and prognostic evaluation therapy for LUAD in the future. However, the relevant results need to be further studied and verified.
Collapse
Affiliation(s)
- Di Lu
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Di Huang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jundong Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinfeng Li
- Institute of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhi
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Shanxi Medical University, Taiyuan, China
| | - Lizhong Zhang
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Shanxi Medical University, Taiyuan, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiangwei Ge
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jinzhao Zhai
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Zhou
- Medical School of Chinese PLA, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shruti Rajesh Patel
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Loss of polycomb repressive complex 1 activity and chromosomal instability drive uveal melanoma progression. Nat Commun 2021; 12:5402. [PMID: 34518527 PMCID: PMC8438051 DOI: 10.1038/s41467-021-25529-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosomal instability (CIN) and epigenetic alterations have been implicated in tumor progression and metastasis; yet how these two hallmarks of cancer are related remains poorly understood. By integrating genetic, epigenetic, and functional analyses at the single cell level, we show that progression of uveal melanoma (UM), the most common intraocular primary cancer in adults, is driven by loss of Polycomb Repressive Complex 1 (PRC1) in a subpopulation of tumor cells. This leads to transcriptional de-repression of PRC1-target genes and mitotic chromosome segregation errors. Ensuing CIN leads to the formation of rupture-prone micronuclei, exposing genomic double-stranded DNA (dsDNA) to the cytosol. This provokes tumor cell-intrinsic inflammatory signaling, mediated by aberrant activation of the cGAS-STING pathway. PRC1 inhibition promotes nuclear enlargement, induces a transcriptional response that is associated with significantly worse patient survival and clinical outcomes, and enhances migration that is rescued upon pharmacologic inhibition of CIN or STING. Thus, deregulation of PRC1 can promote tumor progression by inducing CIN and represents an opportunity for early therapeutic intervention. The molecular underpinnings driving uveal melanoma (UM) progression are unknown. Here the authors show that loss of Polycomb Repressive Complex 1 triggers chromosomal instability, which promotes inflammatory signaling and migration in UM.
Collapse
|
8
|
Expression of HDACs 1, 3 and 8 Is Upregulated in the Presence of Infiltrating Lymphocytes in Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13164146. [PMID: 34439300 PMCID: PMC8393956 DOI: 10.3390/cancers13164146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Uveal melanoma (UM) is an ocular malignancy which is derived from melanocytes in the uveal tract. Epigenetic regulators such as Histone Deacetylase (HDACs) inhibitors are being tested as treatment of UM metastases. Expression of different HDACs is variable, and some are increased in high-risk tumors with loss of one chromosome 3. As this genetic abnormality is also associated with an inflammatory phenotype, we analyzed whether HDAC expression was influenced by inflammation. In two cohorts of UM cases, expression of several HDACs showed a positive correlation with tumor-infiltrating T cells, while HDACs 2 and 11 showed a negative association with macrophages. Interferon-γ stimulated expression of some HDACs on UM cell lines. These data suggest that cytokines produced by T cells may be responsible for the increased expression of some HDACs in UM with monosomy 3. Abstract In Uveal Melanoma (UM), an inflammatory phenotype is strongly associated with the development of metastases and with chromosome 3/BAP1 expression loss. As an increased expression of several Histone Deacetylases (HDACs) was associated with loss of chromosome 3, this suggested that HDAC expression might also be related to inflammation. We analyzed HDAC expression and the presence of leukocytes by mRNA expression in two sets of UM (Leiden and TCGA) and determined the T lymphocyte fraction through ddPCR. Four UM cell lines were treated with IFNγ (50IU, 200IU). Quantitative PCR (qPCR) was used for mRNA measurement of HDACs in cultured cells. In both cohorts (Leiden and TCGA), a positive correlation occurred between expression of HDACs 1, 3 and 8 and the presence of a T-cell infiltrate, while expression of HDACs 2 and 11 was negatively correlated with the presence of tumor-infiltrating macrophages. Stimulation of UM cell lines with IFNγ induced an increase in HDACs 1, 4, 5, 7 and 8 in two out of four UM cell lines. We conclude that the observed positive correlations between HDAC expression and chromosome 3/BAP1 loss may be related to the presence of infiltrating T cells.
Collapse
|
9
|
Proteomics of Primary Uveal Melanoma: Insights into Metastasis and Protein Biomarkers. Cancers (Basel) 2021; 13:cancers13143520. [PMID: 34298739 PMCID: PMC8307952 DOI: 10.3390/cancers13143520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Uveal melanoma metastases are lethal and remain incurable. A quantitative proteomic analysis of 53 metastasizing and 47 non-metastasizing primary uveal melanoma (pUM) was pursued for insights into UM metastasis and protein biomarkers. The metastatic status of the pUM specimens was defined based on clinical data, survival histories, prognostic analyses, and liver histopathology. LC MS/MS iTRAQ technology, the Mascot search engine, and the UniProt human database were used to identify and quantify pUM proteins relative to the normal choroid excised from UM donor eyes. The determined proteomes of all 100 tumors were very similar, encompassing a total of 3935 pUM proteins. Proteins differentially expressed (DE) between metastasizing and non-metastasizing pUM (n = 402) were employed in bioinformatic analyses that predicted significant differences in the immune system between metastasizing and non-metastasizing pUM. The immune proteins (n = 778) identified in this study support the immune-suppressive nature and low abundance of immune checkpoint regulators in pUM, and suggest CDH1, HLA-DPA1, and several DE immune kinases and phosphatases as possible candidates for immune therapy checkpoint blockade. Prediction modeling identified 32 proteins capable of predicting metastasizing versus non-metastasizing pUM with 93% discriminatory accuracy, supporting the potential for protein-based prognostic methods for detecting UM metastasis.
Collapse
|
10
|
Núñez-Álvarez Y, Suelves M. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J 2021; 289:2771-2792. [PMID: 33891374 DOI: 10.1111/febs.15895] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The histone deacetylases (HDACs) family of enzymes possess deacylase activity for histone and nonhistone proteins; HDAC11 is the latest discovered HDAC and the only member of class IV. Besides its shared HDAC family catalytical activity, recent studies underline HDAC11 as a multifaceted enzyme with a very efficient long-chain fatty acid deacylase activity, which has open a whole new field of action for this protein. Here, we summarize the importance of HDAC11 in a vast array of cellular pathways, which has been recently highlighted by discoveries about its subcellular localization, biochemical features, and its regulation by microRNAs and long noncoding RNAs, as well as its new targets and interactors. Additionally, we discuss the recent work showing the consequences of HDAC11 dysregulation in brain, skeletal muscle, and adipose tissue, and during regeneration in response to kidney, skeletal muscle, and vascular injuries, underscoring HDAC11 as an emerging hub protein with physiological functions that are much more extensive than previously thought, and with important implications in human diseases.
Collapse
Affiliation(s)
| | - Mònica Suelves
- Germans Trias i Pujol Research Institute, Badalona, Spain
| |
Collapse
|
11
|
Hao L, Yin J, Yang H, Li C, Zhu L, Liu L, Zhong J. ALKBH5-mediated m 6A demethylation of FOXM1 mRNA promotes progression of uveal melanoma. Aging (Albany NY) 2021; 13:4045-4062. [PMID: 33428593 PMCID: PMC7906204 DOI: 10.18632/aging.202371] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/09/2020] [Indexed: 05/02/2023]
Abstract
In this study, we found that ALKBH5, a key component of the N6-methyladenosine (m6A) methyltransferase complex, was significantly elevated in uveal melanoma (UM) cell lines and that ALKBH5 downregulation inhibited tumor growth in vivo. High ALKBH5 expression predicted worse outcome in patients with UM. EP300-induced H3K27 acetylation activation increased ALKBH5 expression. Downregulation of ALKBH5 inhibited UM cell proliferation, migration, and invasion and increased apoptosis in vitro. Besides, ALKBH5 may promote UM metastasis by inducing epithelial-to-mesenchymal transition (EMT) via demethylation of FOXM1 mRNA, which increases its expression and stability. In sum, our study indicates that AKLBH5-induced m6A demethylation of FOXM1 mRNA promotes UM progression. Therefore, AKLBH5 is a potential prognostic biomarker and therapeutic target in UM.
Collapse
Affiliation(s)
- Lili Hao
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jiayang Yin
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Hong Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chaoxuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Linxin Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
12
|
Souri Z, Jochemsen AG, Versluis M, Wierenga AP, Nemati F, van der Velden PA, Kroes WG, Verdijk RM, Luyten GP, Jager MJ. HDAC Inhibition Increases HLA Class I Expression in Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12123690. [PMID: 33316946 PMCID: PMC7763827 DOI: 10.3390/cancers12123690] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Chemotherapy and immunotherapy are both used to treat malignancies. The immunotherapy of cancer often involves T cells, which recognise the antigens presented in HLA molecules. Uveal melanoma (UM) is an intraocular malignancy, which often gives rise to metastases. We determined whether high-risk tumours expressed the target of two drugs, histone deacetylase (HDAC) inhibitor Quisinostat and Tazemetostat, an inhibitor of Enhancer of zeste homologue 2 (EZH2). We observed that especially high-risk UM tumours (monosomy 3, gain of 8q, loss of BAP1) expressed several HDACs, and showed a high HLA Class I expression. We further tested whether these drugs influenced HLA Class I expression on three UM cell lines. The drug Quisinostat led to an upregulation of HLA protein and mRNA levels in three UM cell lines, while Tazemetostat had little effect. We concluded that the use of drugs that influence epigenetic regulators may impact immunotherapy approaches. Abstract The treatment of uveal melanoma (UM) metastases or adjuvant treatment may imply immunological approaches or chemotherapy. It is to date unknown how epigenetic modifiers affect the expression of immunologically relevant targets, such as the HLA Class I antigens, in UM. We investigated the expression of HDACs and the histone methyl transferase EZH2 in a set of 64 UMs, using an Illumina HT12V4 array, and determined whether a histone deacetylase (HDAC) inhibitor and EZH2 inhibitor modified the expression of HLA Class I on three UM cell lines. Several HDACs (HDAC1, HDAC3, HDAC4, and HDAC8) showed an increased expression in high-risk UM, and were correlated with an increased HLA expression. HDAC11 had the opposite expression pattern. While in vitro tests showed that Tazemetostat did not influence cell growth, Quisinostat decreased cell survival. In the three tested cell lines, Quisinostat increased HLA Class I expression at the protein and mRNA level, while Tazemetostat did not have an effect on the cell surface HLA Class I levels. Combination therapy mostly followed the Quisinostat results. Our findings indicate that epigenetic drugs (in this case an HDAC inhibitor) may influence the expression of immunologically relevant cell surface molecules in UM, demonstrating that these drugs potentially influence immunotherapy.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Ophthalmology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.S.); (M.V.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, LUMC, 2333 ZA Leiden, The Netherlands;
| | - Mieke Versluis
- Department of Ophthalmology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.S.); (M.V.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Annemijn P.A. Wierenga
- Department of Ophthalmology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.S.); (M.V.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, 75248 Paris, France;
| | - Pieter A. van der Velden
- Department of Ophthalmology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.S.); (M.V.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Wilma G.M. Kroes
- Department of Clinical Genetics, LUMC, 2333 ZA Leiden, The Netherlands;
| | - Robert M. Verdijk
- Department of Pathology, LUMC, 2333 ZA Leiden, The Netherlands;
- Department of Pathology, Section Ophthalmic Pathology, ErasmusMC, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Gregorius P.M. Luyten
- Department of Ophthalmology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.S.); (M.V.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Martine J. Jager
- Department of Ophthalmology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.S.); (M.V.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
- Correspondence:
| |
Collapse
|
13
|
Liu SS, Wu F, Jin YM, Chang WQ, Xu TM. HDAC11: a rising star in epigenetics. Biomed Pharmacother 2020; 131:110607. [PMID: 32841898 DOI: 10.1016/j.biopha.2020.110607] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms, such as acetylation, methylation, and succinylation, play pivotal roles in the regulation of multiple normal biological processes, including neuron regulation, hematopoiesis, bone cell maturation, and metabolism. In addition, epigenetic mechanisms are closely associated with the pathological processes of various diseases, such as metabolic diseases, autoimmune diseases and cancers. Epigenetic changes may precede genetic mutation, so research on epigenetic changes and regulation may be important for the early detection and diagnosis of disease. Histone deacetylase11 (HDAC11) is the newest member of the histone deacetylase (HDAC) family and the only class IV histone deacetylase. HDAC11 has different expression levels and biological functions in different systems of the human body and is among the top 1 to 4% of genes overexpressed in cancers, such as breast cancer, hepatocellular carcinoma and renal pelvis urothelial carcinoma. This article analyzes the role and mechanism of HDAC11 in disease, especially in tumorigenesis, in an attempt to provide new ideas for clinical and basic research.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Yue-Mei Jin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Wei-Qin Chang
- Department of Surgery, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, Jilin Province, China.
| | - Tian-Min Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Uveal melanoma is a distinct subtype of melanoma characterized by a unique biology and divergent response to immune therapies. In this review, we will discuss our current understanding of the pathophysiology of uveal melanoma, systemic treatment options for advanced disease, and potential future therapeutic directions. RECENT FINDINGS Although treatment with single-agent checkpoint blockade has been generally disappointing, the results of combined checkpoint blockade are modestly more promising. Several alternative systemic therapeutic approaches have been or are currently being investigated, including two agents that have been taken into registration-intent clinical trials: tebentafusp, a T cell redirecting agent, and IDE196, an oral protein kinase C inhibitor. Treatment of advanced uveal melanoma remains challenging, however, encouraging results from novel agents offer hope for improvement in the near future.
Collapse
Affiliation(s)
- Shaheer Khan
- Department of Hematology and Oncology, Columbia University Irving Medical Center, 177 Ft. Washington Avenue, MHB 6GN-435, New York, NY, 10032, USA.
| | - Richard D Carvajal
- Department of Hematology and Oncology, Columbia University Irving Medical Center, 177 Ft. Washington Avenue, MHB 6GN-435, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Targeting Epigenetic Modifications in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21155314. [PMID: 32726977 PMCID: PMC7432398 DOI: 10.3390/ijms21155314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Uveal melanoma (UM), the most common intraocular malignancy in adults, is a rare subset of melanoma. Despite effective primary therapy, around 50% of patients will develop the metastatic disease. Several clinical trials have been evaluated for patients with advanced UM, though outcomes remain dismal due to the lack of efficient therapies. Epigenetic dysregulation consisting of aberrant DNA methylation, histone modifications, and small non-coding RNA expression, silencing tumor suppressor genes, or activating oncogenes, have been shown to play a significant role in UM initiation and progression. Given that there is no evidence any approach improves results so far, adopting combination therapies, incorporating a new generation of epigenetic drugs targeting these alterations, may pave the way for novel promising therapeutic options. Furthermore, the fusion of effector enzymes with nuclease-deficient Cas9 (dCas9) in clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) system equips a potent tool for locus-specific erasure or establishment of DNA methylation as well as histone modifications and, therefore, transcriptional regulation of specific genes. Both, CRISPR-dCas9 potential for driver epigenetic alterations discovery, and possibilities for their targeting in UM are highlighted in this review.
Collapse
|
16
|
Luo G, Xu W, Zhao Y, Jin S, Wang S, Liu Q, Chen X, Wang J, Dong F, Hu DN, Reinach PS, Yan D. RNA m 6 A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting c-Met. J Cell Physiol 2020; 235:7107-7119. [PMID: 32017066 DOI: 10.1002/jcp.29608] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
N6 -methyladenosine (m6 A) is a novel epitranscriptomic marker that contributes to regulating diverse biological processes through controlling messenger RNA metabolism. However, it is unknown if m6 A RNA methylation affects uveal melanoma (UM) development. To address this question, we probed its function and molecular mechanism in UM. Initially, we demonstrated that global RNA m6 A methylation levels were dramatically elevated in both UM cell lines and clinical specimens. Meanwhile, we found that METTL3, a main m6 A regulatory enzyme, was significantly increased in UM cells and specimens. Subsequently, cycloleucine (Cyc) or METTL3 targeted small interfering RNA was used to block m6 A methylation in UM cells. We found that Cyc or silencing METTL3 significantly suppressed UM cell proliferation and colony formation through cell cycle G1 arrest, as well as migration and invasion by functional analysis. On the other hand, overexpression of METTL3 had the opposite effects. Furthermore, bioinformatics and methylated RNA immunoprecipitation-quantitative polymerase chain reaction identified c-Met as a direct target of m6 A methylation in UM cells. In addition, western blot analysis showed that Cyc or knockdown of METTL3 downregulated c-Met, p-Akt, and cell cycle-related protein levels in UM cells. Taken together, our results demonstrate that METTL3-mediated m6 A RNA methylation modulates UM cell proliferation, migration, and invasion by targeting c-Met. Such a modification acts as a critical oncogenic regulator in UM development.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yunping Zhao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shanshan Jin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Siqi Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Qi Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jiao Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan-Ning Hu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China.,Tissue Culture Center, The New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Piaggio F, Tozzo V, Bernardi C, Croce M, Puzone R, Viaggi S, Patrone S, Barla A, Coviello D, Jager MJ, van der Velden PA, Zeschnigk M, Cangelosi D, Eva A, Pfeffer U, Amaro A. Secondary Somatic Mutations in G-Protein-Related Pathways and Mutation Signatures in Uveal Melanoma. Cancers (Basel) 2019; 11:cancers11111688. [PMID: 31671564 PMCID: PMC6896012 DOI: 10.3390/cancers11111688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Uveal melanoma (UM), a rare cancer of the eye, is characterized by initiating mutations in the genes G-protein subunit alpha Q (GNAQ), G-protein subunit alpha 11 (GNA11), cysteinyl leukotriene receptor 2 (CYSLTR2), and phospholipase C beta 4 (PLCB4) and by metastasis-promoting mutations in the genes splicing factor 3B1 (SF3B1), serine and arginine rich splicing factor 2 (SRSF2), and BRCA1-associated protein 1 (BAP1). Here, we tested the hypothesis that additional mutations, though occurring in only a few cases ("secondary drivers"), might influence tumor development. METHODS We analyzed all the 4125 mutations detected in exome sequencing datasets, comprising a total of 139 Ums, and tested the enrichment of secondary drivers in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that also contained the initiating mutations. We searched for additional mutations in the putative secondary driver gene protein tyrosine kinase 2 beta (PTK2B) and we developed new mutational signatures that explain the mutational pattern observed in UM. RESULTS Secondary drivers were significantly enriched in KEGG pathways that also contained GNAQ and GNA11, such as the calcium-signaling pathway. Many of the secondary drivers were known cancer driver genes and were strongly associated with metastasis and survival. We identified additional mutations in PTK2B. Sparse dictionary learning allowed for the identification of mutational signatures specific for UM. CONCLUSIONS A considerable part of rare mutations that occur in addition to known driver mutations are likely to affect tumor development and progression.
Collapse
Affiliation(s)
- Francesca Piaggio
- Tumor Epigenetics; IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | | | - Cinzia Bernardi
- Tumor Epigenetics; IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Michela Croce
- Biotherapy; IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Roberto Puzone
- Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Silvia Viaggi
- DISTAV, University of Genova, 16132 Genova, Italy.
- IRCCS Istituto G. Gaslini, 16147 Genova, Italy.
| | | | | | | | - Martine J Jager
- Laboratory of Human Genetics, Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Pieter A van der Velden
- Laboratory of Human Genetics, Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Michael Zeschnigk
- Institute of Human Genetics, University Clinics Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Davide Cangelosi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy.
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy.
| | - Ulrich Pfeffer
- Tumor Epigenetics; IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Adriana Amaro
- Tumor Epigenetics; IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
18
|
Yin X, Yang S, Zhang M, Yue Y. The role and prospect of JMJD3 in stem cells and cancer. Biomed Pharmacother 2019; 118:109384. [PMID: 31545292 DOI: 10.1016/j.biopha.2019.109384] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Currently, stem cells are reported to be involved in tumor formation, drug resistance and recurrence. Inhibiting the proliferation of tumor cells, promoting their senescence and apoptosis has been the most important anti-tumor therapy. Epigenetics is involved in the regulation of gene expression and is closely related to cancer and stem cells. It mainly includes DNA methylation, histone modification, and chromatin remodeling. Histone methylation and demethylation play an important role in histone modification. Histone 3 lysine 27 trimethylation (H3K27me3) induces transcriptional inhibition and plays an important role in gene expression. Jumonji domain-containing protein-3 (JMJD3), one of the demethyases of histone H3K27me3, has been reported to be associated with the prognosis of many cancers and stem cells differentiation. Inhibition of JMJD3 can reduce proliferation and promote apoptosis in tumor cells, as well as suppress differentiation in stem cells. GSK-J4 is an inhibitor of demethylase JMJD3 and UTX, which has been shown to possess anti-cancer and inhibition of embryonic stem cells differentiation effects. In this review, we examine how JMJD3 regulates cellular fates of stem cells and cancer cells and references were identified through searches of PubMed, Medline, Web of Science.
Collapse
Affiliation(s)
- Xiaojiao Yin
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Siyu Yang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Mingyue Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
19
|
Croce M, Ferrini S, Pfeffer U, Gangemi R. Targeted Therapy of Uveal Melanoma: Recent Failures and New Perspectives. Cancers (Basel) 2019; 11:E846. [PMID: 31216772 PMCID: PMC6628160 DOI: 10.3390/cancers11060846] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Among Uveal Melanoma (UM) driver mutations, those involving GNAQ or GNA11 genes are the most frequent, while a minor fraction of tumors bears mutations in the PLCB4 or CYSLTR2 genes. Direct inhibition of constitutively active oncoproteins deriving from these mutations is still in its infancy in UM, whereas BRAFV600E-targeted therapy has obtained relevant results in cutaneous melanoma. However, UM driver mutations converge on common downstream signaling pathways such as PKC/MAPK, PI3K/AKT, and YAP/TAZ, which are presently considered as actionable targets. In addition, BAP1 loss, which characterizes UM metastatic progression, affects chromatin structure via histone H2A deubiquitylation that may be counteracted by histone deacetylase inhibitors. Encouraging results of preclinical studies targeting signaling molecules such as MAPK and PKC were unfortunately not confirmed in early clinical studies. Indeed, a general survey of all clinical trials applying new targeted and immune therapy to UM displayed disappointing results. This paper summarizes the most recent studies of UM-targeted therapies, analyzing the possible origins of failures. We also focus on hyperexpressed molecules involved in UM aggressiveness as potential new targets for therapy.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | | - Ulrich Pfeffer
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | |
Collapse
|
20
|
Violanti SS, Bononi I, Gallenga CE, Martini F, Tognon M, Perri P. New Insights into Molecular Oncogenesis and Therapy of Uveal Melanoma. Cancers (Basel) 2019; 11:E694. [PMID: 31109147 PMCID: PMC6562554 DOI: 10.3390/cancers11050694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM), which is the most common cancer of the eye, was investigated in recent years by many teams in the field of biomedical sciences and eye clinicians. New knowledge was acquired on molecular pathways found to be dysregulated during the multistep process of oncogenesis, whereas novel therapeutic approaches gave significant results in the clinical applications. Uveal melanoma-affected patients greatly benefited from recent advances of the research in this eye cancer. Tumour biology, genetics, epigenetics and immunology contributed significantly in elucidating the role of different genes and related pathways during uveal melanoma onset/progression and UM treatments. Indeed, these investigations allowed identification of new target genes and to develop new therapeutic strategies/compounds to cure this aggressive melanoma of the eye. Unfortunately, the advances reported in the treatment of cutaneous melanoma have not produced analogous benefits in metastatic uveal melanoma. Nowadays, no systemic adjuvant therapy has been shown to improve overall survival or reduce the risk of metastasis. However, the increasing knowledge of this disease, and the encouraging results seen in clinical trials, offer promise for future effective therapies. Herein, different pathways/genes involved in uveal melanoma onset/progression were taken into consideration, together with novel therapeutic approaches.
Collapse
Affiliation(s)
- Sara Silvia Violanti
- Department of Biomedical Sciences and Specialized Surgeries, School of Medicine, University of Ferrara and Eye Unit of University Hospital of Ferrara, 44124 Ferrara, Italy.
| | - Ilaria Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Carla Enrica Gallenga
- Department of Biomedical Sciences and Specialized Surgeries, School of Medicine, University of Ferrara and Eye Unit of University Hospital of Ferrara, 44124 Ferrara, Italy.
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Paolo Perri
- Department of Biomedical Sciences and Specialized Surgeries, School of Medicine, University of Ferrara and Eye Unit of University Hospital of Ferrara, 44124 Ferrara, Italy.
| |
Collapse
|
21
|
Wilson C, Krieg AJ. KDM4B: A Nail for Every Hammer? Genes (Basel) 2019; 10:E134. [PMID: 30759871 PMCID: PMC6410163 DOI: 10.3390/genes10020134] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
Epigenetic changes are well-established contributors to cancer progression and normal developmental processes. The reversible modification of histones plays a central role in regulating the nuclear processes of gene transcription, DNA replication, and DNA repair. The KDM4 family of Jumonj domain histone demethylases specifically target di- and tri-methylated lysine 9 on histone H3 (H3K9me3), removing a modification central to defining heterochromatin and gene repression. KDM4 enzymes are generally over-expressed in cancers, making them compelling targets for study and therapeutic inhibition. One of these family members, KDM4B, is especially interesting due to its regulation by multiple cellular stimuli, including DNA damage, steroid hormones, and hypoxia. In this review, we discuss what is known about the regulation of KDM4B in response to the cellular environment, and how this context-dependent expression may be translated into specific biological consequences in cancer and reproductive biology.
Collapse
Affiliation(s)
- Cailin Wilson
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA.
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|
22
|
Levinzon L, Madigan M, Nguyen V, Hasic E, Conway M, Cherepanoff S. Tumour Expression of Histone Deacetylases in Uveal Melanoma. Ocul Oncol Pathol 2018; 5:153-161. [PMID: 31049320 DOI: 10.1159/000490038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose To determine the expression of histone deacetylase enzymes in uveal melanoma tumour cells. Procedures This is an observational immunohistochemical study of 16 formalin-fixed, paraffin-embedded eyes enucleated for uveal melanoma between January 2001 and March 2002. Haematoxylin and eosin paraffin sections were reviewed for histopathological parameters according to the American Joint Committee on Cancer 7th edition. Sections were then immunohistochemically stained for histone deacetylases 1, 2, 3, 4 and 6 and sirtuin 2 using an automated Leica Bond II platform and Fast Red chromogen, then digitally scanned using Aperio software before assessment of staining. Results Nuclear expression of histone deacetylases 1, 2, 3, 4 and 6 and of sirtuin 2 was confirmed in uveal melanoma tumour cells. In addition, the tumour cells showed cytoplasmic expression of histone deacetylases 4 and 6 and sirtuin 2. Nuclear and cytoplasmic immunostaining was also seen in intraocular tissues uninvolved by the tumour. Conclusion Uveal melanoma tumour cells express histone deacetylases 1, 2, 3, 4 and 6 and sirtuin 2, confirming potential tissue targets for histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Louis Levinzon
- Save Site Institute, Sydney Medical School, The University of Sydney, Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Michele Madigan
- Save Site Institute, Sydney Medical School, The University of Sydney, Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Vuong Nguyen
- Save Site Institute, Sydney Medical School, The University of Sydney, Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Enisa Hasic
- Save Site Institute, Sydney Medical School, The University of Sydney, Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Max Conway
- Save Site Institute, Sydney Medical School, The University of Sydney, Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Svetlana Cherepanoff
- Save Site Institute, Sydney Medical School, The University of Sydney, Sydney Eye Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Yang J, Manson DK, Marr BP, Carvajal RD. Treatment of uveal melanoma: where are we now? Ther Adv Med Oncol 2018; 10:1758834018757175. [PMID: 29497459 PMCID: PMC5824910 DOI: 10.1177/1758834018757175] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma, a rare subset of melanoma, is the most common primary intraocular malignancy in adults. Despite effective primary therapy, nearly 50% of patients will develop metastatic disease. Outcomes for those with metastatic disease remain dismal due to a lack of effective therapies. The unique biology and immunology of uveal melanoma necessitates the development of dedicated management and treatment approaches. Ongoing efforts seek to optimize the efficacy of targeted therapy and immunotherapy in both the adjuvant and metastatic setting. This review provides a comprehensive, updated overview of disease biology and risk stratification, the management of primary disease, options for adjuvant therapy, and the current status of treatment strategies for metastatic disease.
Collapse
Affiliation(s)
- Jessica Yang
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Daniel K. Manson
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Brian P. Marr
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Richard D. Carvajal
- Assistant Professor of Medicine, Director of Experimental Therapeutics and Melanoma Services, Division of Hematology/Oncology, Columbia University Medical Center, 177 Fort Washington Avenue, MHB 6GN-435, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Sharma A, Stei MM, Fröhlich H, Holz FG, Loeffler KU, Herwig-Carl MC. Genetic and epigenetic insights into uveal melanoma. Clin Genet 2018; 93:952-961. [PMID: 28902406 DOI: 10.1111/cge.13136] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022]
Abstract
Uveal melanoma (UM) is the most frequent primary intraocular tumor in Caucasian adults and is potentially fatal if metastases develop. While several prognostic genetic changes have been identified in UM, epigenetic influences are now getting closer attention. Recent technological advances have allowed to exam the human genome to a greater extent and have improved our understanding of several diseases including malignant tumors. In this context, there has been tremendous progress in the field of UM pathogenesis. Herein, we review the literature with emphasis on genetic alterations, epigenetic modifications and signaling pathways as well as possible biomarkers in UM. In addition, different research models for UM are discussed. New insights and major challenges are outlined in order to evaluate the current status for this potentially devastating disease.
Collapse
Affiliation(s)
- A Sharma
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - M M Stei
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - H Fröhlich
- Algorithmic Bioinformatics, BIT, University of Bonn, Bonn, Germany.,UCB Biosciences GmbH, Monheim, Germany
| | - F G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - K U Loeffler
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - M C Herwig-Carl
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Triozzi PL, Achberger S, Aldrich W, Crabb JW, Saunthararajah Y, Singh AD. Association of tumor and plasma microRNA expression with tumor monosomy-3 in patients with uveal melanoma. Clin Epigenetics 2016; 8:80. [PMID: 27453764 PMCID: PMC4957327 DOI: 10.1186/s13148-016-0243-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/04/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Epigenetic events mediated by methylation and histone modifications have been associated with the development of metastasis in patients with uveal melanoma. The role of epigenetic events mediated by microRNA (miR) is less clear. Tumor and plasma miR expression was examined in patients with primary uveal melanoma with tumor monosomy-3, a predictor of metastasis. RESULTS miR profiling of tumors by microarray found six miRs over-expressed and 19 under-expressed in 33 tumors with monosomy-3 compared to 22 without. None of the miRs differentially expressed in tumors with and without monosomy-3 was differentially expressed in tumors with and without tumor infiltrating lymphocytes. Tumors manifesting monosomy-3 were also characterized by higher levels of TARBP2 and DDX17 and by lower levels of XPO5 and HIWI, miR biogenesis factors. miR profiling of plasma by a quantitative nuclease protection assay found elevated levels of 11 miRs and reduction in four in patients with tumor monosomy-3. Only three miRs differentially expressed in the tumor arrays were detectable in plasma. miRs implicated in uveal melanoma development were not differentially expressed. Elevated plasma levels in patients with tumor monosomy-3 of miR-92b, identified in the tumor array, and of miR-199-5p and miR-223, identified in the plasma array, were confirmed by quantitative real-time polymerase chain reaction. Levels were also higher in patients compared to normal controls. CONCLUSIONS These results support a role for epigenetic mechanisms in the development of metastasis in patients with uveal melanoma and the analysis of miRs as biomarkers of metastatic risk. They also suggest that potentially useful blood miRs may be derived from the host response as well as the tumor.
Collapse
Affiliation(s)
- Pierre L Triozzi
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH USA ; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Susan Achberger
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH USA
| | - Wayne Aldrich
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH USA
| | - John W Crabb
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH USA
| | | | - Arun D Singh
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH USA
| |
Collapse
|
26
|
Venkatesan N, Kanwar J, Deepa PR, Khetan V, Crowley TM, Raguraman R, Sugneswari G, Rishi P, Natarajan V, Biswas J, Krishnakumar S. Clinico-Pathological Association of Delineated miRNAs in Uveal Melanoma with Monosomy 3/Disomy 3 Chromosomal Aberrations. PLoS One 2016; 11:e0146128. [PMID: 26812476 PMCID: PMC4728065 DOI: 10.1371/journal.pone.0146128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/14/2015] [Indexed: 12/15/2022] Open
Abstract
Purpose To correlate the differentially expressed miRNAs with clinico-pathological features in uveal melanoma (UM) tumors harbouring chromosomal 3 aberrations among South Asian Indian cohort. Methods Based on chromosomal 3 aberration, UM (n = 86) were grouped into monosomy 3 (M3; n = 51) and disomy 3 (D3; n = 35) by chromogenic in-situ hybridisation (CISH). The clinico-pathological features were recorded. miRNA profiling was performed in formalin fixed paraffin embedded (FFPE) UM samples (n = 6) using Agilent, Human miRNA microarray, 8x15KV3 arrays. The association between miRNAs and clinico-pathological features were studied using univariate and multivariate analysis. miRNA-gene targets were predicted using Target-scan and MiRanda database. Significantly dys-regulated miRNAs were validated in FFPE UM (n = 86) and mRNAs were validated in frozen UM (n = 10) by qRT-PCR. Metastasis free-survival and miRNA expressions were analysed by Kaplen-Meier analysis in UM tissues (n = 52). Results Unsupervised analysis revealed 585 differentially expressed miRNAs while supervised analysis demonstrated 82 miRNAs (FDR; Q = 0.0). Differential expression of 8 miRNAs: miR-214, miR-149*, miR-143, miR-146b, miR-199a, let7b, miR-1238 and miR-134 were studied. Gene target prediction revealed SMAD4, WISP1, HIPK1, HDAC8 and C-KIT as the post-transcriptional regulators of miR-146b, miR-199a, miR-1238 and miR-134. Five miRNAs (miR-214, miR146b, miR-143, miR-199a and miR-134) were found to be differentially expressed in M3/ D3 UM tumors. In UM patients with liver metastasis, miR-149* and miR-134 expressions were strongly correlated. Conclusion UM can be stratified using miRNAs from FFPE sections. miRNAs predicting liver metastasis and survival have been identified. Mechanistic linkage of de-regulated miRNA/mRNA expressions provide new insights on their role in UM progression and aggressiveness.
Collapse
Affiliation(s)
- Nalini Venkatesan
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18/41, College road, Chennai—600006, India
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani-333031, Rajasthan, India
| | - Jagat Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia
| | - Perinkulam Ravi Deepa
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani-333031, Rajasthan, India
| | - Vikas Khetan
- Department of Vitreoretinal and Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, 18/41, College road, Chennai—600006, India
| | - Tamsyn M. Crowley
- School of Medicine, Deakin University, and Australian Animal Health Laboratories, CSIRO, Australia
| | - Rajeswari Raguraman
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18/41, College road, Chennai—600006, India
| | - Ganesan Sugneswari
- Department of Vitreoretinal and Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, 18/41, College road, Chennai—600006, India
| | - Pukhraj Rishi
- Department of Vitreoretinal and Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, 18/41, College road, Chennai—600006, India
| | - Viswanathan Natarajan
- Department of Bio-statistics, Medical Research Foundation, Sankara Nethralaya, 41, College road, Chennai—600006, India
| | - Jyotirmay Biswas
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18/41, College road, Chennai—600006, India
| | - Subramanian Krishnakumar
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18/41, College road, Chennai—600006, India
- * E-mail:
| |
Collapse
|
27
|
Crabb JW, Hu B, Crabb JS, Triozzi P, Saunthararajah Y, Tubbs R, Singh AD. iTRAQ Quantitative Proteomic Comparison of Metastatic and Non-Metastatic Uveal Melanoma Tumors. PLoS One 2015; 10:e0135543. [PMID: 26305875 PMCID: PMC4549237 DOI: 10.1371/journal.pone.0135543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Uveal melanoma is the most common malignancy of the adult eye. The overall mortality rate is high because this aggressive cancer often metastasizes before ophthalmic diagnosis. Quantitative proteomic analysis of primary metastasizing and non-metastasizing tumors was pursued for insights into mechanisms and biomarkers of uveal melanoma metastasis. METHODS Eight metastatic and 7 non-metastatic human primary uveal melanoma tumors were analyzed by LC MS/MS iTRAQ technology with Bruch's membrane/choroid complex from normal postmortem eyes as control tissue. Tryptic peptides from tumor and control proteins were labeled with iTRAQ tags, fractionated by cation exchange chromatography, and analyzed by LC MS/MS. Protein identification utilized the Mascot search engine and the human Uni-Prot/Swiss-Protein database with false discovery ≤ 1%; protein quantitation utilized the Mascot weighted average method. Proteins designated differentially expressed exhibited quantitative differences (p ≤ 0.05, t-test) in a training set of five metastatic and five non-metastatic tumors. Logistic regression models developed from the training set were used to classify the metastatic status of five independent tumors. RESULTS Of 1644 proteins identified and quantified in 5 metastatic and 5 non-metastatic tumors, 12 proteins were found uniquely in ≥ 3 metastatic tumors, 28 were found significantly elevated and 30 significantly decreased only in metastatic tumors, and 31 were designated differentially expressed between metastatic and non-metastatic tumors. Logistic regression modeling of differentially expressed collagen alpha-3(VI) and heat shock protein beta-1 allowed correct prediction of metastasis status for each of five independent tumor specimens. CONCLUSIONS The present data provide new clues to molecular differences in metastatic and non-metastatic uveal melanoma tumors. While sample size is limited and validation required, the results support collagen alpha-3(VI) and heat shock protein beta-1 as candidate biomarkers of uveal melanoma metastasis and establish a quantitative proteomic database for uveal melanoma primary tumors.
Collapse
Affiliation(s)
- John W. Crabb
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| | - Bo Hu
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - John S. Crabb
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Pierre Triozzi
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yogen Saunthararajah
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Raymond Tubbs
- Department of Molecular Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Arun D. Singh
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|