1
|
Drake KD, Lemoine C, Aquino GS, Vaeth AM, Kanadia RN. Loss of U11 small nuclear RNA in the developing mouse limb results in micromelia. Development 2020; 147:dev.190967. [PMID: 32665241 DOI: 10.1242/dev.190967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023]
Abstract
Disruption of the minor spliceosome due to mutations in RNU4ATAC is linked to primordial dwarfism in microcephalic osteodysplastic primordial dwarfism type 1, Roifman syndrome, and Lowry-Wood syndrome. Similarly, primordial dwarfism in domesticated animals is linked to positive selection in minor spliceosome components. Despite being vital for limb development and size regulation, its role remains unexplored. Here, we disrupt minor spliceosome function in the developing mouse limb by ablating one of its essential components, U11 small nuclear RNA, which resulted in micromelia. Notably, earlier loss of U11 corresponded to increased severity. We find that limb size is reduced owing to elevated minor intron retention in minor intron-containing genes that regulate cell cycle. As a result, limb progenitor cells experience delayed prometaphase-to-metaphase transition and prolonged S-phase. Moreover, we observed death of rapidly dividing, distally located progenitors. Despite cell cycle defects and cell death, the spatial expression of key limb patterning genes was maintained. Overall, we show that the minor spliceosome is required for limb development via size control potentially shared in disease and domestication.
Collapse
Affiliation(s)
- Kyle D Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Christopher Lemoine
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA.,Department of Surgery, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Gabriela S Aquino
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Anna M Vaeth
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA .,Institute for System Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Vangala V, Nimmu NV, Khalid S, Kuncha M, Sistla R, Banerjee R, Chaudhuri A. Combating Glioblastoma by Codelivering the Small-Molecule Inhibitor of STAT3 and STAT3siRNA with α5β1 Integrin Receptor-Selective Liposomes. Mol Pharm 2020; 17:1859-1874. [PMID: 32343904 DOI: 10.1021/acs.molpharmaceut.9b01271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive tumors with a median survival of only 15 months. Effective therapeutics need to overcome the formidable challenge of crossing the blood-brain barrier (BBB). Receptors and transporters overexpressed on BCECs are being used for designing liposomes, polymers, polymeric micelles, peptides, and dendrimer-based drug carriers for combating brain tumors. Herein, using the orthotopic mouse glioblastoma model, we show that codelivering a small-molecule inhibitor of the JAK/STAT pathway (WP1066) and STAT3siRNA with nanometric (100-150 nm) α5β1 integrin receptor-selective liposomes of RGDK-lipopeptide holds therapeutic promise in combating glioblastoma. Rh-PE (red)-labeled liposomes of RGDK-lipopeptide were found to be internalized in GL261 cells via integrin α5β1 receptors. Intravenously administered near-infrared (NIR)-dye-labeled α5β1 integrin receptor-selective liposomes of RGDK-lipopeptide were found to be accumulated preferentially in the mouse brain tumor tissue. Importantly, we show that iv injection of WP1066 (a commercially sold small-molecule inhibitor of the JAK/STAT pathway) and STAT3siRNA cosolubilized within the liposomes of RGDK-lipopeptide leads to significant inhibition (>350% compared to the untreated mice group) of orthotopically growing mouse glioblastoma. The present strategy may find future use in combating GBM.
Collapse
Affiliation(s)
- Venugopal Vangala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110001, India
| | - Narendra Varma Nimmu
- Analytical and Mass Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Telangana 500007, India
| | - Sara Khalid
- Analytical and Mass Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Telangana 500007, India
| | - Madhusudana Kuncha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110001, India
| | - Rajkumar Banerjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110001, India
| | - Arabinda Chaudhuri
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
3
|
Baumgartner M, Olthof AM, Aquino GS, Hyatt KC, Lemoine C, Drake K, Sturrock N, Nguyen N, Al Seesi S, Kanadia RN. Minor spliceosome inactivation causes microcephaly, owing to cell cycle defects and death of self-amplifying radial glial cells. Development 2018; 145:dev166322. [PMID: 30093551 PMCID: PMC6141777 DOI: 10.1242/dev.166322] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022]
Abstract
Mutation in minor spliceosome components is linked to the developmental disorder microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Here, we inactivated the minor spliceosome in the developing mouse cortex (pallium) by ablating Rnu11, which encodes the crucial minor spliceosome small nuclear RNA (snRNA) U11. Rnu11 conditional knockout mice were born with microcephaly, which was caused by the death of self-amplifying radial glial cells (RGCs), while intermediate progenitor cells and neurons were produced. RNA sequencing suggested that this cell death was mediated by upregulation of p53 (Trp53 - Mouse Genome Informatics) and DNA damage, which were both observed specifically in U11-null RGCs. Moreover, U11 loss caused elevated minor intron retention in genes regulating the cell cycle, which was consistent with fewer RGCs in S-phase and cytokinesis, alongside prolonged metaphase in RGCs. In all, we found that self-amplifying RGCs are the cell type most sensitive to loss of minor splicing. Together, these findings provide a potential explanation of how disruption of minor splicing might cause microcephaly in MOPD1.
Collapse
Affiliation(s)
- Marybeth Baumgartner
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Gabriela S Aquino
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Katery C Hyatt
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Christopher Lemoine
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Kyle Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Nikita Sturrock
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Nhut Nguyen
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Sahar Al Seesi
- Computer Science Engineering Department, University of Connecticut, Storrs, CT 06269, USA
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute of Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Bianchi FT, Gai M, Berto GE, Di Cunto F. Of rings and spines: The multiple facets of Citron proteins in neural development. Small GTPases 2017; 11:122-130. [PMID: 29185861 PMCID: PMC7053930 DOI: 10.1080/21541248.2017.1374325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Citron protein was originally identified for its capability to specifically bind the active form of RhoA small GTPase, leading to the simplistic hypothesis that it may work as a RhoA downstream effector in actin remodeling. More than two decades later, a much more complex picture has emerged. In particular, it has become clear that in animals, and especially in mammals, the functions of the Citron gene (CIT) are intimately linked to many aspects of central nervous system (CNS) development and function, although the gene is broadly expressed. More specifically, CIT encodes two main isoforms, Citron-kinase (CIT-K) and Citron-N (CIT-N), characterized by complementary expression pattern and different functions. Moreover, in many of their activities, CIT proteins act more as upstream regulators than as downstream effectors of RhoA. Finally it has been found that, besides working through actin, CIT proteins have many crucial functional interactions with the microtubule cytoskeleton and may directly affect genome stability. In this review, we will summarize these advances and illustrate their actual or potential relevance for CNS diseases, including microcephaly and psychiatric disorders.
Collapse
Affiliation(s)
- Federico T Bianchi
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|