1
|
Walton MMG. Disconjugacies of saccade duration and trajectories in strabismus. Strabismus 2024; 32:252-270. [PMID: 39036886 PMCID: PMC11524785 DOI: 10.1080/09273972.2024.2378827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Introduction: For decades, the saccadic system has been a favorite target of neurophysiologists seeking to elucidate the neural control of eye movements, partly because saccades are characterized by a set of highly stereotyped relationships between amplitude, duration, and peak velocity. There is a large literature describing the dynamics and trajectories of these movements in normal primates, but there are no similarly detailed analyses for subjects with infantile strabismus syndrome. Previous studies have shown the amplitudes and directions of saccades often differ for the two eyes in this disorder, but it is unknown whether a similar disconjugacy exists for duration. The present study was designed to determine whether or not saccade duration differs for the two eyes in strabismus, and whether there are abnormalities involving the trajectories of these movements. Methods: Dynamic analyses of saccade trajectories and durations were performed for two normal monkeys, two with esotropia and two with exotropia. The amount of curvature was compared for the two eyes. For each monkey with strabismus, the amount of curvature was compared to normal controls. Saccades were placed into 12 bins, based on direction; for each bin, the mean saccade duration was compared for the two eyes (duration disconjugacy). The duration disconjugacy for each bin was then compared for monkeys with strabismus, versus normal control animals. Results: Surprisingly, the amount of curvature was not consistently greater in subjects with pattern strabismus. However, saccade curvature differed for the two eyes by a significantly greater amount for all monkeys with strabismus, compared to normal controls. In addition, for a subset of saccades in subjects with strabismus, saccade duration differed for the two eyes by more than 10 ms, even when the animal was fully alert. Discussion: To the best of the author's knowledge, this is the first study to show that, in strabismus, saccade durations can differ for the two eyes by an abnormally large amount. These data also suggest that, in monkeys with pattern strabismus, abnormal horizontal-vertical crosstalk in brainstem can lead to directional disconjugacy without significantly impairing component stretching. These results place important constraints on future attempts to model the neural mechanisms that contribute to directional disconjugacy in pattern strabismus.
Collapse
Affiliation(s)
- Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Pallus A, Walton MMG. Microstimulation of Interstitial Nucleus of Cajal Evokes Directionally Disconjugate Eye Movements in Monkeys With Pattern Strabismus. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 36326726 PMCID: PMC9645357 DOI: 10.1167/iovs.63.12.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose Pattern strabismus is characterized by a horizontal misalignment of the eyes that varies with vertical eye position. This disorder has traditionally been described, and treated, as overaction or underaction of the oblique muscles. In recent years, evidence has accumulated that indicate that the disorder is associated with abnormal cross-talk between brainstem pathways that contribute to the horizontal and vertical components of eye movements. The present study was designed to investigate the hypothesis that the key abnormalities are at the level of, or downstream from, the interstitial nucleus of Cajal (INC). Methods Microstimulation was applied to the INC in two mature rhesus monkeys with "A" pattern strabismus that was experimentally induced in infancy. We asked whether the evoked movements would be vertical and conjugate, as has been previously reported in normal monkeys, or would be directionally disconjugate (i.e. with oblique or horizontal movement observed for at least one eye). Results Evoked movements were conjugate and vertical for a minority of sites but, for most sites, the evoked movements were directionally disconjugate. Moreover, there was typically a convergent change in horizontal strabismus when the evoked movements were upward and a divergent change when the evoked movements were downward. Conclusions Microstimulation of INC in monkeys with A-pattern strabismus evokes movements with the expected directional disconjugacies, implying that the key neural abnormalities are within, or downstream from, this structure. High site-to-site variability in the conjugacy/disconjugacy of evoked movements rules out the hypothesis that the abnormalities are solely peripheral.
Collapse
Affiliation(s)
- Adam Pallus
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| | - Mark M. G. Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| |
Collapse
|
3
|
Rudell JC, Fleuriet J, Mustari MJ, McLoon LK. Childhood Onset Strabismus: A Neurotrophic Factor Hypothesis. J Binocul Vis Ocul Motil 2021; 71:35-40. [PMID: 33872122 PMCID: PMC8102408 DOI: 10.1080/2576117x.2021.1893585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Strabismus is a genetically heterogeneous disorder with complex molecular and neurophysiological causes. Evidence in the literature suggests a strong role for motor innervation in the etiology of strabismus, which connects central neural processes to the peripheral extraocular muscles. Current treatments of strabismus through surgery show that an inherent sensorimotor plasticity in the ocular motor system decreases the effectiveness of treatment, often driving eye alignment back toward its misaligned pre-surgical state by altering extraocular muscle tonus. There is recent interest in capitalizing on existing biological processes in extraocular muscles to overcome these compensatory mechanisms. Neurotrophins are trophic factors that regulate survival and development in neurons and muscle, including extraocular muscles. Local administration of neurotrophins to extraocular muscles partially reversed strabismus in an animal model of strabismus. The hypothesis is that sustained release of neurotrophins gives more time for the ocular motor system to adapt to a slow change in alignment in the desired direction. The effect of neurotrophins on extraocular muscles is complex, as different neurotrophic factors have diverse effects on extraocular muscle contraction profiles, patterns of innervation, and density of extraocular muscle precursor cells. Neurotrophic factors show promise as a therapeutic option for strabismus, which may help to improve treatment outcomes and offset devastating amblyopia and psychosocial effects of disease in strabismus patients.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University California San Diego, San Diego, California
| | - Jérome Fleuriet
- Assistance Publique-Hôpitaux de Paris, Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Pallus A, Walton MMG. Abnormal Tuning in Nucleus Prepositus Hypoglossi of Monkeys With "A" Pattern Exotropia. Invest Ophthalmol Vis Sci 2020; 61:45. [PMID: 32446250 PMCID: PMC7405765 DOI: 10.1167/iovs.61.5.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose In many individuals with pattern strabismus, the vertical misalignment varies with horizontal eye position. It has been proposed that these cross-axis effects result from abnormal cross-talk between brainstem structures that would normally encode horizontal and vertical eye position and velocity. The nucleus prepositus hypoglossi (NPH) is an ideal structure to test this overarching hypothesis. Neurons in the NPH are believed to mathematically integrate eye velocity signals to generate a tonic signal related to horizontal eye position. We hypothesized that, in monkeys with A-pattern exotropia and vertical inconcomitance, these neurons would show an abnormally large sensitivity to vertical eye position. Methods Three rhesus monkeys (1 normal and 2 with A-pattern exotropia) were trained to maintain fixation on a visual target as it stepped to various locations on a tangent screen. Extracellular neural activity was recorded from neurons in the NPH. Each neuron's sensitivity to horizontal and vertical eye position was estimated using multiple linear regression and preferred directions computed for each eye. Results Unexpectedly, the mean preferred directions for the left eye were normal in the monkeys with A-pattern exotropia. For the right eye, there was a clear upward deviation for the right NPH and a downward deviation for the left NPH. In addition, the R2 values were significantly lower for model fits for neurons recorded from the exotropic monkeys. Conclusions We suggest that vertical inconcomitance results from inappropriate vertical-to-horizontal cross-talk that affects the two eyes differently.
Collapse
|
5
|
Upadhyaya S, Das VE. Response Properties of Cells Within the Rostral Superior Colliculus of Strabismic Monkeys. Invest Ophthalmol Vis Sci 2020; 60:4292-4302. [PMID: 31618766 PMCID: PMC6996666 DOI: 10.1167/iovs.19-27786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose The superior colliculus (SC) is an important oculomotor structure which, in addition to saccades and smooth-pursuit, has been implicated in vergence. Previously we showed that electrical stimulation of the SC changes strabismus angle in monkey models. The purpose of this study was to record from neurons in the rostral SC (rSC) of two exotropic (XT; divergent strabismus) monkeys (M1, M2) and characterize their response properties, including possible correlation with strabismus angle. Methods Binocular eye movements and neural data were acquired as the monkeys performed fixation and saccade tasks with either eye viewing. Results Forty-two cells with responses likely related to eye misalignment were recorded from the rSC of the strabismic monkeys of which 29 increased firing for smaller angles of exotropia and 13 increased firing for larger exotropia. Twenty-six of thirty-five cells showed a pause (decrease in firing rate) during large amplitude saccades. Blanking the target briefly during fixation did not reduce firing responses indicating a lack of visual sensitivity. A bursting response for nystagmus quick phases was identified in cells whose topographic location matched the direction and amplitude of quick phases. Conclusions Certain cells in the rSC show responses related to eye misalignment suggesting that the SC is part of a vergence circuit that plays a role in setting strabismus angle. An alternative interpretation is that these cells display ocular preference, also a novel finding, and could potentially act as a driver of downstream oculomotor structures that maintain the state of strabismus.
Collapse
Affiliation(s)
- Suraj Upadhyaya
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
6
|
Pallus A, Mustari M, Walton MMG. Abnormal Eye Position Signals in Interstitial Nucleus of Cajal in Monkeys With "A" Pattern Strabismus. Invest Ophthalmol Vis Sci 2019; 60:3970-3979. [PMID: 31560371 PMCID: PMC6764482 DOI: 10.1167/iovs.19-27490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Pattern strabismus is characterized by a cross-axis pattern of horizontal and vertical misalignments. In A-pattern strabismus, for example, a divergent change in the horizontal misalignment occurs on downgaze. Work with nonhuman primate models has provided evidence that this disorder is associated with abnormal cross-talk between brainstem pathways that normally encode horizontal and vertical eye position and velocity. Neurons in the interstitial nucleus of Cajal (INC) are normally sensitive to vertical eye position; in the present study, we test the hypothesis that, in monkeys with pattern strabismus, some INC neurons will show an abnormal sensitivity to horizontal eye position. Methods Monkeys were rewarded for fixating a visual target that stepped to various locations on a tangent screen. Single neurons were recorded from INC in one normal monkey, and two with A-pattern strabismus. Multiple linear regression analysis was used to estimate the preferred direction for each neuron. Results In the normal monkey, all INC neurons had preferred directions within 20° of pure vertical (either up or down). The preferred directions were significantly more variable in the monkeys with pattern strabismus, with a minority being more sensitive to horizontal eye position than vertical eye position. In addition, the vertical eye position sensitivity was significantly less in the monkeys with strabismus. Conclusions In pattern strabismus, neurons in INC show neurophysiological abnormalities consistent with a failure to develop normal tuning properties. Results were consistent with the hypothesis that, in pattern strabismus, INC receives an abnormally strong signal related to horizontal eye position.
Collapse
Affiliation(s)
- Adam Pallus
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States.,Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Michael Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States.,Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| |
Collapse
|
7
|
Pullela M, Agaoglu MN, Joshi AC, Agaoglu S, Coats DK, Das VE. Neural Plasticity Following Surgical Correction of Strabismus in Monkeys. Invest Ophthalmol Vis Sci 2019; 59:5011-5021. [PMID: 30326068 PMCID: PMC6188463 DOI: 10.1167/iovs.18-25245] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Although widely practiced, surgical treatment of strabismus has varying levels of success and permanence. In this study we investigated adaptive responses within the brain and the extraocular muscles (EOM) that occur following surgery and therefore determine long-term success of the treatment. Methods Single cell responses were collected from cells in the oculomotor and abducens nuclei before and after two monkeys (M1, M2) with exotropia (divergent strabismus) underwent a strabismus correction surgery that involved weakening of the lateral rectus (LR) and strengthening of the medial rectus (MR) muscle of one eye. Eye movement and neuronal data were collected for up to 10 months after surgery during a monocular viewing smooth-pursuit task. These data were fit with a first-order equation and resulting coefficients were used to estimate the population neuronal drive (ND) to each EOM of both eyes. Results Surgery resulted in a ∼70% reduction in strabismus angle in both animals that reverted toward presurgical misalignment by approximately 6 months after treatment. In the first month after surgery, the ND to the treated MR reduced in one animal and ND to the LR increased in the other animal, both indicating active neural plasticity that reduced the effectiveness of the treatment. Adaptive changes in ND to the untreated eye were also identified. Conclusions Active neural and muscle plasticity corresponding to both the treated and the untreated eye determines longitudinal success following surgical correction of strabismus. Outcome of surgical treatment could be improved by identifying ways to enhance “positive” adaptation and limit “negative” adaptation.
Collapse
Affiliation(s)
- Mythri Pullela
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Mehmet N Agaoglu
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Anand C Joshi
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Sevda Agaoglu
- College of Optometry, University of Houston, Houston, Texas, United States
| | - David K Coats
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
8
|
Walton MMG, Pallus A, Mustari M. A Rhesus Monkey With a Naturally Occurring Impairment of Disparity Vergence. II. Abnormal Near Response Cell Activity in the Supraoculomotor Area. Invest Ophthalmol Vis Sci 2019; 60:1670-1676. [PMID: 30999322 PMCID: PMC6736280 DOI: 10.1167/iovs.18-26440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Convergence insufficiency is a very common disorder that can have significant adverse effects on school performance. When reading, children with this disorder often experience diplopia and headaches. We have recently obtained a rhesus monkey with a naturally occurring impairment of vergence eye movements. In the companion paper, we report behavioral testing that shows a pattern of impairments similar to what clinicians observe in human children with convergence insufficiency, including a receded near point, an exophoria that increases as target distance decreases, and difficulty maintaining an appropriate vergence angle when presented with a large field stimulus at near. For the present case report, we wondered whether these behavioral deficits would be associated with abnormal discharge patterns in brainstem neurons related to vergence eye movements. Methods Single unit activity was recorded from near and far response cells in the supraoculomotor area in the vergence-impaired monkey, while he performed a smooth vergence tracking task or fixated visual targets at different distances. Results We found an abnormally weak sensitivity to both vergence angle and vergence velocity. Nonetheless, these neurons modulated in association with contextually inappropriate slow vergence movements that occurred in the absence of saccades but not for slow divergence drifts that immediately followed converging saccades. Modulation of activity was more robust when additional depth cues were available. Conclusions These data suggest that disorders affecting vergence eye movements may be associated with impoverished sensory input to the near and far response cells and, perhaps, aberrant tuning in vergence-related neurons.
Collapse
Affiliation(s)
- Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| | - Adam Pallus
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States.,Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Michael Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States.,Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Biological Structure, University of Washington, Seattle, Washington, United States
| |
Collapse
|
9
|
Horizontal Saccadic Velocity in Patients with Exotropia before and after Unilateral Resection and Recession Surgery. J Ophthalmol 2019; 2019:1374917. [PMID: 30895156 PMCID: PMC6393912 DOI: 10.1155/2019/1374917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
Purpose The effects of strabismus surgery on eye movement are not known in detail, as few studies have compared saccade velocities before and after strabismus surgery. In this study, horizontal saccades were recorded using an eye-tracker in patients with only exotropia to compare the peak velocities (PVs), before and after undergoing strabismus surgery of the same type (unilateral resection and recession). Methods Horizontal saccades of monocular vision were recorded using an eye-tracking device in 18 patients with exotropia and 20 normal subjects. All patients were examined using the same method after strabismus surgery. Results The PVs of adduction and abduction in the patients were higher than those in the normal subjects (in dominant eye, P=0.032 for adduction and P=0.049 for abduction; in nondominant eye, P=0.016 for adduction and P=0.037 for abduction). Following the surgery, the PVs of abduction of the surgical eye (nondominant eye) decreased to the level of the normal subjects (P=0.016). However, there were no correlations between changes in the PVs and the extent of surgery (resection and recession). Conclusion Strabismus surgery normalized the patient's increased PV in the operated eye for abduction of horizontal saccade. Not only peripheral (extraocular muscle) but also central sensory-motor mechanisms may be involved in the changes in PV of horizontal saccades, both of which could result from the improvement of the primary eye position.
Collapse
|
10
|
Fleuriet J, McLoon LK. Visualizing Neuronal Adaptation Over Time After Treatment of Strabismus. Invest Ophthalmol Vis Sci 2018; 59:5022-5024. [PMID: 30326069 PMCID: PMC6188464 DOI: 10.1167/iovs.18-25651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, Minneapolis, Minnesota, United States;
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
11
|
Fleuriet J, Walton MMG, Ono S, Mustari MJ. Electrical Microstimulation of the Superior Colliculus in Strabismic Monkeys. Invest Ophthalmol Vis Sci 2017; 57:3168-80. [PMID: 27309621 PMCID: PMC4928695 DOI: 10.1167/iovs.16-19488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose Visually guided saccades are disconjugate in human and nonhuman strabismic primates. The superior colliculus (SC) is a region of the brain topographically organized in visual and motor maps where the saccade goal is spatially coded. The present study was designed to investigate if a site of stimulation on the topographic motor map was evoking similar or different saccade vectors for each eye. Methods We used microelectrical stimulation (MS) of the SC in two strabismic (one esotrope and one exotrope) and two control macaques under binocular and monocular viewing conditions. We compared the saccade amplitudes and directions for each SC site and each condition independently of the fixating eye and then between each fixating eye. A comparison with disconjugacies of visually guided saccades was also performed. Results We observed different saccade vectors for the two eyes in strabismic monkeys, but conjugate saccades in normal monkeys. Evoked saccade vectors for the left eye when that eye was fixating the target were different from those of the right eye when it was fixating. The disconjugacies evoked by the MS were not identical but similar to those observed for visually guided saccades especially for the dominant eye. Conclusions Our results suggest that, in strabismus, the saccade generator does not interpret activation of a single location of the SC as the same desired displacement for each eye. This finding is important for advancing understanding of the development of neural circuits in strabismus. French Abstract
Collapse
Affiliation(s)
- Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States 2Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| | - Seiji Ono
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States 2Department of Ophthalmology, University of Washington, Seattle, Washington, United States 4Department of Biological Structure, University of Washing
| |
Collapse
|
12
|
Pullela M, Degler BA, Coats DK, Das VE. Longitudinal Evaluation of Eye Misalignment and Eye Movements Following Surgical Correction of Strabismus in Monkeys. Invest Ophthalmol Vis Sci 2017; 57:6040-6047. [PMID: 27820877 PMCID: PMC5102570 DOI: 10.1167/iovs.16-20481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Strabismus correction surgery is well documented in both the literature and practice with varying levels of success and permanence. Our goal was to characterize longitudinal changes in eye alignment and eye movements following strabismus correction surgery in a monkey model for developmental strabismus. Methods We studied two juvenile rhesus monkeys with exotropia previously induced via an optical prism-rearing paradigm in infancy. Eye misalignment was corrected via a resection–recession surgery of the horizontal rectus muscles of one eye. Binocular search coils were used to collect eye movement data during smooth-pursuit, saccades, and fixation tasks before surgical treatment, immediately after surgery, and through 6 months after treatment. Results Both animals showed an immediate ∼70% reduction in misalignment as a consequence of surgery that regressed to a 20%–40% improvement by 6 months after treatment. Significant changes were observed in saccade and smooth-pursuit gain of the nonviewing eye after surgery, which also reverted to presurgical values by 6 months. A temporary improvement in fixation stability of the nonviewing eye was observed after surgery; naso-temporal (N/T) asymmetry of monocular smooth-pursuit remained unchanged. Conclusions Surgical realignment is followed by plastic changes that often lead to reversal of surgery effects. Immediate improvement in misalignment and changes in eye movement gains are likely a result of contractility changes at the level of the extraocular muscle, whereas longer-term effects are likely a combination of neural and muscle adaptation.
Collapse
Affiliation(s)
- Mythri Pullela
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Brittany A Degler
- College of Optometry, University of Houston, Houston, Texas, United States
| | - David K Coats
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
13
|
McLoon LK, Christiansen SP, Ghose GM, Das VE, Mustari MJ. Improvement of Eye Alignment in Adult Strabismic Monkeys by Sustained IGF-1 Treatment. Invest Ophthalmol Vis Sci 2017; 57:6070-6078. [PMID: 27820875 PMCID: PMC5114034 DOI: 10.1167/iovs.16-19739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The goal of this study was to determine if continuous application of insulin-like growth factor-1 (IGF-1) could improve eye alignment of adult strabismic nonhuman primates and to assess possible mechanisms of effect. Methods A continuous release pellet of IGF-1 was placed on one medial rectus muscle in two adult nonhuman primates (M1, M2) rendered exotropic by the alternating monocular occlusion method during the first months of life. Eye alignment and eye movements were recorded for 3 months, after which M1 was euthanized, and the lateral and medial rectus muscles were removed for morphometric analysis of fiber size, nerve, and neuromuscular density. Results Monkey 1 showed a 40% reduction in strabismus angle, a reduction of exotropia of approximately 11° to 14° after 3 months. Monkey 2 showed a 15% improvement, with a reduction of its exotropia by approximately 3°. The treated medial rectus muscle of M1 showed increased mean myofiber cross-sectional areas. Increases in myofiber size also were seen in the contralateral medial rectus and lateral rectus muscles. Similarly, nerve density increased in the contralateral medial rectus and yoked lateral rectus. Conclusions This study demonstrates that in adult nonhuman primates with a sensory-induced exotropia in infancy, continuous IGF-1 treatment improves eye alignment, resulting in muscle fiber enlargement and altered innervational density that includes the untreated muscles. This supports the view that there is sufficient plasticity in the adult ocular motor system to allow continuous IGF-1 treatment over months to produce improvement in eye alignment in early-onset strabismus.
Collapse
Affiliation(s)
- Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Stephen P Christiansen
- Departments of Ophthalmology and Pediatrics, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Geoffrey M Ghose
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Michael J Mustari
- Washington National Primate Center and Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| |
Collapse
|
14
|
Upadhyaya S, Meng H, Das VE. Electrical stimulation of superior colliculus affects strabismus angle in monkey models for strabismus. J Neurophysiol 2016; 117:1281-1292. [PMID: 28031397 DOI: 10.1152/jn.00437.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 11/22/2022] Open
Abstract
Disruption of binocular vision during the critical period for development leads to eye misalignment in humans and in monkey models. We have previously suggested that disruption within a vergence circuit could be the neural basis for strabismus. Electrical stimulation in the rostral superior colliculus (rSC) leads to vergence eye movements in normal monkeys. Therefore, the purpose of this study was to investigate the effect of SC stimulation on eye misalignment in strabismic monkeys. Electrical stimulation was delivered to 51 sites in the intermediate and deep layers of the SC (400 Hz, 0.5-s duration, 10-40 μA) in 3 adult optical prism-reared strabismic monkeys. Scleral search coils were used to measure movements of both eyes during a fixation task. Staircase saccades with horizontal and vertical components were elicited by stimulation as predicted from the SC topographic map. Electrical stimulation also resulted in significant changes in horizontal strabismus angle, i.e., a shift toward exotropia/esotropia depending on stimulation site. Electrically evoked saccade vector amplitude in the two eyes was not significantly different (P > 0.05; paired t-test) but saccade direction differed. However, saccade disconjugacy accounted for only ~50% of the change in horizontal misalignment while disconjugate postsaccadic movements accounted for the other ~50% of the change in misalignment due to electrical stimulation. In summary, our data suggest that electrical stimulation of the SC of strabismic monkeys produces a change in horizontal eye alignment that is due to a combination of disconjugate saccadic eye movements and disconjugate postsaccadic movements.NEW & NOTEWORTHY Electrical stimulation of the superior colliculus in strabismic monkeys results in a change in eye misalignment. These data support the notion of developmental disruption of vergence circuits leading to maintenance of eye misalignment in strabismus.
Collapse
Affiliation(s)
| | - Hui Meng
- College of Optometry, University of Houston, Houston, Texas
| | - Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas
| |
Collapse
|
15
|
Abstract
Disrupting binocular vision in infancy leads to strabismus and oftentimes to a variety of associated visual sensory deficits and oculomotor abnormalities. Investigation of this disorder has been aided by the development of various animal models, each of which has advantages and disadvantages. In comparison to studies of binocular visual responses in cortical structures, investigations of neural oculomotor structures that mediate the misalignment and abnormalities of eye movements have been more recent, and these studies have shown that different brain areas are intimately involved in driving several aspects of the strabismic condition, including horizontal misalignment, dissociated deviations, A and V patterns of strabismus, disconjugate eye movements, nystagmus, and fixation switch. The responses of cells in visual and oculomotor areas that potentially drive the sensory deficits and also eye alignment and eye movement abnormalities follow a general theme of disrupted calibration, lower sensitivity, and poorer specificity compared with the normally developed visual oculomotor system.
Collapse
Affiliation(s)
- Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas 77204;
| |
Collapse
|
16
|
Economides JR, Adams DL, Horton JC. Normal correspondence of tectal maps for saccadic eye movements in strabismus. J Neurophysiol 2016; 116:2541-2549. [PMID: 27605534 DOI: 10.1152/jn.00553.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022] Open
Abstract
The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles.
Collapse
Affiliation(s)
- John R Economides
- Beckman Vision Center, Program in Neuroscience, University of California, San Francisco, California; and
| | - Daniel L Adams
- Beckman Vision Center, Program in Neuroscience, University of California, San Francisco, California; and.,Center for Mind/Brain Sciences, The University of Trento, Trento, Italy
| | - Jonathan C Horton
- Beckman Vision Center, Program in Neuroscience, University of California, San Francisco, California; and
| |
Collapse
|
17
|
Ghasia FF, Shaikh AG, Jacobs J, Walker MF. Cross-coupled eye movement supports neural origin of pattern strabismus. Invest Ophthalmol Vis Sci 2015; 56:2855-66. [PMID: 26024072 DOI: 10.1167/iovs.15-16371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Pattern strabismus describes vertically incomitant horizontal strabismus. Conventional theories emphasized the role of orbital etiologies, such as abnormal fundus torsion and misaligned orbital pulleys as a cause of the pattern strabismus. Experiments in animal models, however, suggested the role of abnormal cross-connections between the neural circuits. We quantitatively assessed eye movements in patients with pattern strabismus with a goal to delineate the role of neural circuits versus orbital etiologies. METHODS We measured saccadic eye movements with high-precision video-oculography in 14 subjects with pattern strabismus, 5 with comitant strabismus, and 15 healthy controls. We assessed change in eye position in the direction orthogonal to that of the desired eye movement (cross-coupled responses). We used fundus photography to quantify the fundus torsion. RESULTS We found cross-coupling of saccades in all patients with pattern strabismus. The cross-coupled responses were in the same direction in both eyes, but larger in the nonviewing eye. All patients had clinically apparent inferior oblique overaction with abnormal excylotorsion. There was no correlation between the amount of the fundus torsion or the grade of oblique overaction and the severity of cross-coupling. The disconjugacy in the saccade direction and amplitude in pattern strabismics did not have characteristics predicted by clinically apparent inferior oblique overaction. CONCLUSIONS Our results validated primate models of pattern strabismus in human patients. We found no correlation between ocular torsion or oblique overaction and cross-coupling. Therefore, we could not ascribe cross-coupling exclusively to the orbital etiology. Patients with pattern strabismus could have abnormalities in the saccade generators.
Collapse
Affiliation(s)
- Fatema F Ghasia
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States 2Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States 3Daroff-DelOsso Ocular Motility Laboratory, Cleveland VA Medical Center, Cle
| | - Aasef G Shaikh
- Daroff-DelOsso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, Ohio, United States 4Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio, United States
| | - Jonathan Jacobs
- Daroff-DelOsso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, Ohio, United States
| | - Mark F Walker
- Daroff-DelOsso Ocular Motility Laboratory, Cleveland VA Medical Center, Cleveland, Ohio, United States 5Department of Neurology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
18
|
Walton MMG, Mustari MJ. Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys. J Neurophysiol 2015; 114:857-68. [PMID: 26063778 PMCID: PMC4533063 DOI: 10.1152/jn.00238.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/08/2015] [Indexed: 11/22/2022] Open
Abstract
Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem.
Collapse
Affiliation(s)
- Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington;
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington; Department of Ophthalmology, University of Washington, Seattle, Washington; and Department of Biological Structure, University of Washington, Seattle, Washington
| |
Collapse
|