1
|
He X, Islam MR, Ji F, Wang B, Sigal IA. Comparing continuum and direct fiber models of soft tissues: An ocular biomechanics example reveals that continuum models may artificially disrupt the strains at both the tissue and fiber levels. Acta Biomater 2024:S1742-7061(24)00611-1. [PMID: 39424020 DOI: 10.1016/j.actbio.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Collagen fibers are the main load-bearing component of soft tissues but difficult to incorporate into models. Whilst simplified homogenization models suffice for some applications, a thorough mechanistic understanding requires accurate prediction of fiber behavior, including both detailed fiber-level strains and long-distance transmission. Our goal was to compare the performance of a continuum model of the optic nerve head (ONH) built using conventional techniques with a fiber model we recently introduced which explicitly incorporates the complex 3D organization and interaction of collagen fiber bundles [1]. To ensure a fair comparison, we constructed the continuum model with identical geometrical, structural, and boundary specifications as for the fiber model. We found that: 1) although both models accurately matched the intraocular pressure (IOP)-induced globally averaged displacement responses observed in experiments, they diverged significantly in their ability to replicate specific 3D tissue-level strain patterns. Notably, the fiber model faithfully replicated the experimentally observed depth-dependent variability of radial strain, the ring-like pattern of meridional strain, and the radial pattern of circumferential strain, whereas the continuum model failed to do so; 2) the continuum model disrupted the strain transmission along each fiber, a feature captured well by the fiber model. These results demonstrate limitations of the conventional continuum models that rely on homogenization and affine deformation assumptions, which render them incapable of capturing some complex tissue-level and fiber-level deformations. Our results show that the strengths of explicit fiber modeling help capture intricate ONH biomechanics. They potentially also help modeling other fibrous tissues. STATEMENT OF SIGNIFICANCE: Understanding the mechanics of fibrous tissues is crucial for advancing knowledge of various diseases. This study uses the ONH as a test case to compare conventional continuum models with fiber models that explicitly account for the complex fiber structure. We found that the fiber model captured better the biomechanical behaviors at both the tissue level and the fiber level. The insights gained from this study demonstrate the significant potential of fiber models to advance our understanding of not only glaucoma pathophysiology but also other conditions involving fibrous soft tissues. This can contribute to the development of therapeutic strategies across a wide range of applications.
Collapse
Affiliation(s)
- Xuehuan He
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad R Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg TX, USA
| | - Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA,.
| |
Collapse
|
2
|
Ji F, Islam MR, Sebastian F, He X, Schilpp H, Wang B, Hua Y, Amini R, Sigal IA. Capturing sclera anisotropy using direct collagen fiber models. Linking microstructure to macroscopic mechanical properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612702. [PMID: 39386446 PMCID: PMC11463644 DOI: 10.1101/2024.09.12.612702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Because of the crucial role of collagen fibers on soft tissue mechanics, there is great interest in techniques to incorporate them in computational models. Recently we introduced a direct fiber modeling approach for sclera based on representing the long-interwoven fibers. Our method differs from the conventional continuum approach to modeling sclera that homogenizes the fibers and describes them as statistical distributions for each element. At large scale our method captured gross collagen fiber bundle architecture from histology and experimental intraocular pressure-induced deformations. At small scale, a direct fiber model of a sclera sample reproduced equi-biaxial experimental behavior from the literature. In this study our goal was a much more challenging task for the direct fiber modeling: to capture specimen-specific 3D fiber architecture and anisotropic mechanics of four sclera samples tested under equibiaxial and four non-equibiaxial loadings. Samples of sclera from three eyes were isolated and tested in five biaxial loadings following an approach previously reported. Using microstructural architecture from polarized light microscopy we then created specimen-specific direct fiber models. Model fiber orientations agreed well with the histological information (adjusted R2's>0.89). Through an inverse-fitting process we determined model characteristics, including specimen-specific fiber mechanical properties to match equibiaxial loading. Interestingly, the equibiaxial properties also reproduced all the non-equibiaxial behaviors. These results indicate that the direct fiber modeling method naturally accounted for tissue anisotropy within its fiber structure. Direct fiber modeling is therefore a promising approach to understand how macroscopic behavior arises from microstructure.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Mohammad R. Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX
| | | | - Xuehuan He
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Hannah Schilpp
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, University of Mississippi, University, MS
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
Lu Y, Hua Y, Wang B, Zhong F, Theophanous A, Tahir S, Lee PY, Sigal IA. Impact of elevated IOP on lamina cribrosa oxygenation; A combined experimental-computational study on monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.609208. [PMID: 39314421 PMCID: PMC11418968 DOI: 10.1101/2024.09.05.609208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Purpose Our goal is to evaluate how lamina cribrosa (LC) oxygenation is affected by the tissue distortions resulting from elevated IOP. Design Experimental study on monkeys. Subjects Four healthy monkey eyes with OCT scans with IOP of 10 to 50 mmHg, and then with histological sections of LC. Methods Since in-vivo LC oxygenation measurement is not yet possible, we used 3D eye-specific numerical models of the LC vasculature which we subjected to experimentally-derived tissue deformations. We reconstructed 3D models of the LC vessel networks of 4 healthy monkey eyes from histological sections. We also obtained in-vivo IOP-induced tissue deformations from a healthy monkey using OCT images and digital volume correlation analysis techniques. The extent that LC vessels distort under a given OCT-derived tissue strain remains unknown. We biomechanics-based mapping techniques: cross-sectional and isotropic. The hemodynamics and oxygenations of the four vessel networks were simulated for deformations at several IOPs up to 60mmHg. The results were used to determine the effects of IOP on LC oxygen supply, assorting the extent of tissue mild and severe hypoxia. Main Outcome Measures IOP-induced deformation, vasculature structure, blood supply, and oxygen supply for LC region. Result IOP-induced deformations reduced LC oxygenation significantly. More than 20% of LC tissue suffered from mild hypoxia when IOP reached 30 mmHg. Extreme IOP(>50mmHg) led to large severe hypoxia regions (>30%) in the isotropic mapping cases. Conclusion Our models predicted that moderately elevated IOP can lead to mild hypoxia in a substantial part of the LC, which, if sustained chronically, may contribute to neural tissue damage. For extreme IOP elevations, severe hypoxia was predicted, which would potentially cause more immediate damage. Our findings suggest that despite the remarkable LC vascular robustness, IOP-induced distortions can potentially contribute to glaucomatous neuropathy.
Collapse
Affiliation(s)
- Yuankai Lu
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, University of Mississippi, Mississippi, United States
- Department of Mechanical Engineering, University of Mississippi, Mississippi, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Andrew Theophanous
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States
| | - Shaharoz Tahir
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Liu T, Hung PT, Wang X, Girard MJA. Effect of Eye Globe and Optic Nerve Morphologies on Gaze-Induced Optic Nerve Head Deformations. Invest Ophthalmol Vis Sci 2024; 65:48. [PMID: 39083312 PMCID: PMC11290562 DOI: 10.1167/iovs.65.8.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose The purpose of this study was to investigate the effect of globe and optic nerve (ON) morphologies and tissue stiffnesses on gaze-induced optic nerve head deformations using parametric finite element modeling and a design of experiment (DOE) approach. Methods A custom software was developed to generate finite element models of the eye using 10 morphological parameters: dural radius, scleral, choroidal, retinal, pial and peripapillary border tissue thicknesses, prelaminar tissue depth, lamina cribrosa (LC) depth, ON radius, and ON tortuosity. A central composite face-centered design (1045 models) was used to predict the effects of each morphological factor and their interactions on LC strains induced by 13 degrees of adduction. Subsequently, a further DOE analysis (1045 models) was conducted to study the effects and potential interactions between the top five morphological parameters identified from the initial DOE study and five critical tissue stiffnesses. Results In the DOE analysis of 10 morphological parameters, the 5 most significant factors were ON tortuosity, dural radius, ON radius, scleral thickness, and LC depth. Further DOE analysis incorporating biomechanical parameters highlighted the importance of dural and LC stiffness. A larger dural radius and stiffer dura increased LC strains but the other main factors had the opposite effects. Notably, the significant interactions were found between dural radius with dural stiffness, ON radius, and ON tortuosity. Conclusions This study highlights the significant impact of morphological factors on LC deformations during eye movements, with key morphological effects being more pronounced than tissue stiffnesses.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Pham Tan Hung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Xiaofei Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Ophthalmology and Optometry and School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Michaël J. A. Girard
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Emory Empathetic AI for Health Institute, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Islam MR, Ji F, Bansal M, Hua Y, Sigal IA. Fibrous finite element modeling of the optic nerve head region. Acta Biomater 2024; 175:123-137. [PMID: 38147935 DOI: 10.1016/j.actbio.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The optic nerve head (ONH) region at the posterior pole of the eye is supported by a fibrous structure of collagen fiber bundles. Discerning how the fibrous structure determines the region biomechanics is crucial to understand normal physiology, and the roles of biomechanics on vision loss. The fiber bundles within the ONH structure exhibit complex three-dimensional (3D) organization and continuity across the various tissue components. Computational models of the ONH, however, usually represent collagen fibers in a homogenized fashion without accounting for their continuity across tissues, fibers interacting with each other and other fiber-specific effects in a fibrous structure. We present a fibrous finite element (FFE) model of the ONH that incorporates discrete collagen fiber bundles and their histology-based 3D organization to study ONH biomechanics as a fibrous structure. The FFE model was constructed using polarized light microscopy data of porcine ONH cryosections, representing individual fiber bundles in the sclera, dura and pia maters with beam elements and canal tissues as continuum structures. The FFE model mimics the histological in-plane orientation and width distributions of collagen bundles as well as their continuity across different tissues. Modeling the fiber bundles as linear materials, the FFE model predicts the nonlinear ONH response observed in an inflation experiment from the literature. The model also captures important microstructural mechanisms including fiber interactions and long-range strain transmission among bundles that have not been considered before. The FFE model presented here advances our understanding of the role of fibrous collagen structure in the ONH biomechanics. STATEMENT OF SIGNIFICANCE: The microstructure and mechanics of the optic nerve head (ONH) are central to ocular physiology. Histologically, the ONH region exhibits a complex continuous fibrous structure of collagen bundles. Understanding the role of the fibrous collagen structure on ONH biomechanics requires high-fidelity computational models previously unavailable. We present a computational model of the ONH that incorporates histology-based fibrous collagen structure derived from polarized light microscopy images. The model predictions agree with experiments in the literature, and provide insight into important microstructural mechanisms of fibrous tissue biomechanics, such as long-range strain transmission along fiber bundles. Our model can be used to study the microstructural basis of biomechanical damage and the effects of collagen remodeling in glaucoma.
Collapse
Affiliation(s)
- Mohammad R Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg TX, USA
| | - Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA
| | - Manik Bansal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Biomedical Engineering, University of Mississippi, MS, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA.
| |
Collapse
|
6
|
Braeu FA, Chuangsuwanich T, Tun TA, Perera S, Husain R, Thiery AH, Aung T, Barbastathis G, Girard MJA. AI-based clinical assessment of optic nerve head robustness superseding biomechanical testing. Br J Ophthalmol 2024; 108:223-231. [PMID: 36627175 DOI: 10.1136/bjo-2022-322374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS To use artificial intelligence (AI) to: (1) exploit biomechanical knowledge of the optic nerve head (ONH) from a relatively large population; (2) assess ONH robustness (ie, sensitivity of the ONH to changes in intraocular pressure (IOP)) from a single optical coherence tomography (OCT) volume scan of the ONH without the need for biomechanical testing and (3) identify what critical three-dimensional (3D) structural features dictate ONH robustness. METHODS 316 subjects had their ONHs imaged with OCT before and after acute IOP elevation through ophthalmo-dynamometry. IOP-induced lamina cribrosa (LC) deformations were then mapped in 3D and used to classify ONHs. Those with an average effective LC strain superior to 4% were considered fragile, while those with a strain inferior to 4% robust. Learning from these data, we compared three AI algorithms to predict ONH robustness strictly from a baseline (undeformed) OCT volume: (1) a random forest classifier; (2) an autoencoder and (3) a dynamic graph convolutional neural network (DGCNN). The latter algorithm also allowed us to identify what critical 3D structural features make a given ONH robust. RESULTS All three methods were able to predict ONH robustness from a single OCT volume scan alone and without the need to perform biomechanical testing. The DGCNN (area under the curve (AUC): 0.76±0.08) outperformed the autoencoder (AUC: 0.72±0.09) and the random forest classifier (AUC: 0.69±0.05). Interestingly, to assess ONH robustness, the DGCNN mainly used information from the scleral canal and the LC insertion sites. CONCLUSIONS We propose an AI-driven approach that can assess the robustness of a given ONH solely from a single OCT volume scan of the ONH, and without the need to perform biomechanical testing. Longitudinal studies should establish whether ONH robustness could help us identify fast visual field loss progressors. PRECIS Using geometric deep learning, we can assess optic nerve head robustness (ie, sensitivity to a change in IOP) from a standard OCT scan that might help to identify fast visual field loss progressors.
Collapse
Affiliation(s)
- Fabian A Braeu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore
| | - Thanadet Chuangsuwanich
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
| | - Shamira Perera
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
| | - Rahat Husain
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
| | - Alexandre H Thiery
- Statistics and Applied Probability, National University of Singapore, Singapore
| | - Tin Aung
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - George Barbastathis
- Singapore-MIT Alliance for Research and Technology, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
7
|
Otani T, Miyata K, Miki A, Wada S. Computational study on the effects of central retinal blood vessels with asymmetric geometries on optic nerve head biomechanics. Med Eng Phys 2024; 123:104086. [PMID: 38365339 DOI: 10.1016/j.medengphy.2023.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 02/18/2024]
Abstract
Optic nerve head (ONH) biomechanics are associated with glaucoma progression and have received considerable attention. Central retinal vessels (CRVs) oriented asymmetrically in the ONH are the single blood supply source to the retina and are believed to act as mechanically stable elements in the ONH in response to intraocular pressure (IOP). However, these mechanical effects are considered negligible in ONH biomechanical studies and received less attention. This study investigated the effects of CRVs on ONH biomechanics taking into consideration three-dimensional asymmetric CRV geometries. A CRV geometry was constructed based on CRV centerlines extracted from optical coherence tomography ONH images in eight healthy subjects and superimposed in the idealized ONH geometry established in previous studies. Mechanical analyses of the ONH in response to the IOP were conducted in the cases with and without CRVs for comparison. Obtained results demonstrated that the CRVs induced anisotropic ONH deformation, particularly in the lamina cribrosa and the associated upper neural tissues (prelamina) with wide ranges of spatial strain distributions. These results indicated that the CRVs result in anisotropic deformation with local strain concentration, rather than function to mechanically support in response to the IOP as in the conventional thinking in ophthalmology.
Collapse
Affiliation(s)
- Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Kota Miyata
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Atsuya Miki
- Department of Myopia Control Research, Aichi Medical University, Japan
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
8
|
Lee PY, Fryc G, Gnalian J, Wang B, Hua Y, Waxman S, Zhong F, Yang B, Sigal IA. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. Acta Biomater 2024; 173:135-147. [PMID: 37967694 PMCID: PMC10843755 DOI: 10.1016/j.actbio.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial to understanding their functions in bearing loads and maintaining tissue integrity. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 μm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9º vs. 0.6º and 3.1º vs. 2.7º. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue. STATEMENT OF SIGNIFICANCE: Peripapillary sclera (PPS) and lamina cribrosa (LC) collagen recruitment behaviors are central to the nonlinear mechanical behavior of the posterior pole of the eye. How PPS and LC collagen fibers recruit under stretch is crucial to develop constitutive models of the tissues but remains unclear. We used image-based stretch testing to characterize PPS and LC collagen fiber bundle recruitment under local stretch. We found that fiber-level stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers at a low stretch, but at 10% bundle stretch the two curves crossed with 75% bundles recruited. We also found that PPS and LC fibers had different uncrimping rates and non-zero waviness's when recruited.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gosia Fryc
- Department of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biomedical Engineering, University of Mississippi, University, MS, USA; Department of Mechanical Engineering, University of Mississippi, University, MS, USA
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Ji F, Quinn M, Hua Y, Lee PY, Sigal IA. 2D or not 2D? Mapping the in-depth inclination of the collagen fibers of the corneoscleral shell. Exp Eye Res 2023; 237:109701. [PMID: 37898229 PMCID: PMC10872428 DOI: 10.1016/j.exer.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
The collagen fibers of the corneoscleral shell play a central role in the eye mechanical behavior. Although it is well-known that these fibers form a complex three-dimensional interwoven structure, biomechanical and microstructural studies often assume that the fibers are aligned in-plane with the tissues. This is convenient as it removes the out-of-plane components and allows focusing on the 2D maps of in-plane fiber organization that are often quite complex. The simplification, however, risks missing potentially important aspects of the tissue architecture and mechanics. In the cornea, for instance, fibers with high in-depth inclination have been shown to be mechanically important. Outside the cornea, the in-depth fiber orientations have not been characterized, preventing a deeper understanding of their potential roles. Our goal was to characterize in-depth collagen fiber organization over the whole corneoscleral shell. Seven sheep whole-globe axial sections from eyes fixed at an IOP of 50 mmHg were imaged using polarized light microscopy to measure collagen fiber orientations and density. In-depth fiber orientation distributions and anisotropy (degree of fiber alignment) accounting for fiber density were quantified over the whole sclera and in 15 regions: central cornea, peripheral cornea, limbus, anterior equator, equator, posterior equator, posterior sclera and peripapillary sclera on both nasal and temporal sides. Orientation distributions were fitted using a combination of a uniform distribution and a sum of π-periodic von Mises distributions, each with three parameters: primary orientation μ, fiber concentration factor k, and weighting factor a. To study the features of fibers that are not in-plane, i.e., fiber inclination, we quantified the percentage of inclined fibers and the range of inclination angles (half width at half maximum of inclination angle distribution). Our measurements showed that the fibers were not uniformly in-plane but exhibited instead a wide range of in-depth orientations, with fibers significantly more aligned in-plane in the anterior parts of the globe. We found that fitting the orientation distributions required between one and three π-periodic von Mises distributions with different primary orientations and fiber concentration factors. Regions of the posterior globe, particularly on the temporal side, had a larger percentage of inclined fibers and a larger range of inclination angles than anterior and equatorial regions. Variations of orientation distributions and anisotropies may imply varying out-of-plane tissue mechanical properties around the eye globe. Out-of-plane fibers could indicate fiber interweaving, not necessarily long, inclined fibers. Effects of small-scale fiber undulations, or crimp, were minimized by using tissues from eyes at high IOPs. These fiber features also play a role in tissue stiffness and stability and are therefore also important experimental information.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Quinn
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering and Department of Mechanical Engineering, University of Mississippi, University, MS, USA
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Lee EJ, Han JC, Kee C. Deep Optic Nerve Head Morphology in Tilted Disc Syndrome and Its Clinical Implication on Visual Damage. Invest Ophthalmol Vis Sci 2023; 64:10. [PMID: 37796490 PMCID: PMC10561776 DOI: 10.1167/iovs.64.13.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
Purpose To study deep optic nerve head (ONH) morphology in tilted disc syndrome (TDS) and identify factors associated with retinal nerve fiber layer (RNFL) defect. Methods In patients with TDS, we evaluated the optic disc shape using the Bruch's membrane opening (BMO)-anterior scleral canal opening (ASCO) offset and measured the border tissue (BT) length, depth, and angle in the direction of the tilt, using radial ONH optical coherence tomography (OCT). We compared the parameters between the TDS groups with and without RNFL defects. Results Twenty-one eyes had no glaucomatous RNFL defect, and 38 eyes had a glaucomatous RNFL defect. The group with RNFL defects had a higher baseline IOP, larger tilt axis of BMO-ASCO optic disc margin (76.4° ± 14.5° vs. 87.9° ± 15.4°, P = 0.012), larger BMO-lamina cribrosa insertion (LCI) angle (25.6° ± 9.3° vs. 43.6° ± 15.2°, P < 0.001), and more lamina cribrosa (LC) defects (4.3% vs. 30.6%, P = 0.028) than without RNFL defects. The tilt axis and BMO-LCI angle were significant factors after adjusting for baseline IOP and LC defect. The BMO-LCI angle had excellent diagnostic power for glaucomatous RNFL defect in TDS, similar to the visual field mean deviation. Conclusions OCT-based large deep ONH BT angle and tilt axis were factors associated with the presence of RNFL defects in TDS. The results suggest a mechanism of RNFL defect associated with structural ONH deformation. Further investigations are warranted to understand the role of ONH structures in a general population with and without optic disc tilt.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Ling YTT, Korneva A, Quigley HA, Nguyen TD. Computational study of the mechanical behavior of the astrocyte network and axonal compartments in the mouse optic nerve head. Biomech Model Mechanobiol 2023; 22:1751-1772. [PMID: 37573553 PMCID: PMC10988382 DOI: 10.1007/s10237-023-01752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
Glaucoma is a blinding disease characterized by the degeneration of the retinal ganglion cell (RGC) axons at the optic nerve head (ONH). A major risk factor for glaucoma is the intraocular pressure (IOP). However, it is currently impossible to measure the IOP-induced mechanical response of the axons of the ONH. The objective of this study was to develop a computational modeling method to estimate the IOP-induced strains and stresses in the axonal compartments in the mouse astrocytic lamina (AL) of the ONH, and to investigate the effect of the structural features on the mechanical behavior. We developed experimentally informed finite element (FE) models of six mouse ALs to investigate the effect of structure on the strain responses of the astrocyte network and axonal compartments to pressure elevation. The specimen-specific geometries of the FE models were reconstructed from confocal fluorescent images of cryosections of the mouse AL acquired in a previous study that measured the structural features of the astrocytic processes and axonal compartments. The displacement fields obtained from digital volume correlation in prior inflation tests of the mouse AL were used to determine the displacement boundary conditions of the FE models. We then applied Gaussian process regression to analyze the effects of the structural features on the strain outcomes simulated for the axonal compartments. The axonal compartments experienced, on average, 6 times higher maximum principal strain but 1800 times lower maximum principal stress compared to those experienced by the astrocyte processes. The strains experienced by the axonal compartments were most sensitive to variations in the area of the axonal compartments. Larger axonal compartments that were more vertically aligned, closer to the AL center, and with lower local actin area fraction had higher strains. Understanding the factors affecting the deformation in the axonal compartments will provide insights into mechanisms of glaucomatous axonal damage.
Collapse
Affiliation(s)
- Yik Tung Tracy Ling
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Arina Korneva
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Harry A Quigley
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Materials Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Ji F, Bansal M, Wang B, Hua Y, Islam MR, Matuschke F, Axer M, Sigal IA. A direct fiber approach to model sclera collagen architecture and biomechanics. Exp Eye Res 2023; 232:109510. [PMID: 37207867 PMCID: PMC10330555 DOI: 10.1016/j.exer.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/16/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Sclera collagen fiber microstructure and mechanical behavior are central to eye physiology and pathology. They are also complex, and are therefore often studied using modeling. Most models of sclera, however, have been built within a conventional continuum framework. In this framework, collagen fibers are incorporated as statistical distributions of fiber characteristics such as the orientation of a family of fibers. The conventional continuum approach, while proven successful for describing the macroscale behavior of the sclera, does not account for the sclera fibers are long, interwoven and interact with one another. Hence, by not considering these potentially crucial characteristics, the conventional approach has only a limited ability to capture and describe sclera structure and mechanics at smaller, fiber-level, scales. Recent advances in the tools for characterizing sclera microarchitecture and mechanics bring to the forefront the need to develop more advanced modeling techniques that can incorporate and take advantage of the newly available highly detailed information. Our goal was to create a new computational modeling approach that can represent the sclera fibrous microstructure more accurately than with the conventional continuum approach, while still capturing its macroscale behavior. In this manuscript we introduce the new modeling approach, that we call direct fiber modeling, in which the collagen architecture is built explicitly by long, continuous, interwoven fibers. The fibers are embedded in a continuum matrix representing the non-fibrous tissue components. We demonstrate the approach by doing direct fiber modeling of a rectangular patch of posterior sclera. The model integrated fiber orientations obtained by polarized light microscopy from coronal and sagittal cryosections of pig and sheep. The fibers were modeled using a Mooney-Rivlin model, and the matrix using a Neo-Hookean model. The fiber parameters were determined by inversely matching experimental equi-biaxial tensile data from the literature. After reconstruction, the direct fiber model orientations agreed well with the microscopy data both in the coronal plane (adjusted R2 = 0.8234) and in the sagittal plane (adjusted R2 = 0.8495) of the sclera. With the estimated fiber properties (C10 = 5746.9 MPa; C01 = -5002.6 MPa, matrix shear modulus 200 kPa), the model's stress-strain curves simultaneously fit the experimental data in radial and circumferential directions (adjusted R2's 0.9971 and 0.9508, respectively). The estimated fiber elastic modulus at 2.16% strain was 5.45 GPa, in reasonable agreement with the literature. During stretch, the model exhibited stresses and strains at sub-fiber level, with interactions among individual fibers which are not accounted for by the conventional continuum methods. Our results demonstrate that direct fiber models can simultaneously describe the macroscale mechanics and microarchitecture of the sclera, and therefore that the approach can provide unique insight into tissue behavior questions inaccessible with continuum approaches.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manik Bansal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad R Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Felix Matuschke
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Lee PY, Fryc G, Gnalian J, Hua Y, Waxman S, Zhong F, Yang B, Sigal IA. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539784. [PMID: 37215028 PMCID: PMC10197604 DOI: 10.1101/2023.05.07.539784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial for the development of constitutive models associating micro and macro scales. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 μm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9° vs. 0.6° and 3.1° vs. 2.7°. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Bioengineering, Swanson School of Engineering
| | - Gosia Fryc
- Department of Chemistry, Dietrich School of Arts and Sciences University of Pittsburgh, Pittsburgh, PA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Biomedical Engineering, University of Mississippi, University, MS
- Department of Mechanical Engineering, University of Mississippi, University, MS
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Bioengineering, Swanson School of Engineering
| |
Collapse
|
14
|
Foong TY, Hua Y, Amini R, Sigal IA. Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell. Exp Eye Res 2023; 230:109446. [PMID: 36935071 PMCID: PMC10133210 DOI: 10.1016/j.exer.2023.109446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Collagen is the main load-bearing component of cornea and sclera. When stretched, both of these tissues exhibit a behavior known as collagen fiber recruitment. In recruitment, as the tissues stretch the constitutive collagen fibers lose their natural waviness, progressively straightening. Recruited, straight, fibers bear substantially more mechanical load than non-recruited, wavy, fibers. As such, the process of recruitment underlies the well-established nonlinear macroscopic behavior of the corneoscleral shell. Recruitment has an interesting implication: when recruitment is incomplete, only a fraction of the collagen fibers is actually contributing to bear the loads, with the rest remaining "in reserve". In other words, at a given intraocular pressure (IOP), it is possible that not all the collagen fibers of the cornea and sclera are actually contributing to bear the loads. To the best of our knowledge, the fraction of corneoscleral shell fibers recruited and contributing to bear the load of IOP has not been reported. Our goal was to obtain regionally-resolved estimates of the fraction of corneoscleral collagen fibers recruited and in reserve. We developed a fiber-based microstructural constitutive model that could account for collagen fiber undulations or crimp via their tortuosity. We used experimentally-measured collagen fiber crimp tortuosity distributions in human eyes to derive region-specific nonlinear hyperelastic mechanical properties. We then built a three-dimensional axisymmetric model of the globe, assigning region-specific mechanical properties and regional anisotropy. The model was used to simulate the IOP-induced shell deformation. The model-predicted tissue stretch was then used to quantify collagen recruitment within each shell region. The calculations showed that, at low IOPs, collagen fibers in the posterior equator were recruited the fastest, such that at a physiologic IOP of 15 mmHg, over 90% of fibers were recruited, compared with only a third in the cornea and the peripapillary sclera. The differences in recruitment between regions, in turn, mean that at a physiologic IOP the posterior equator had a fiber reserve of only 10%, whereas the cornea and peripapillary sclera had two thirds. At an elevated IOP of 50 mmHg, collagen fibers in the limbus and the anterior/posterior equator were almost fully recruited, compared with 90% in the cornea and the posterior sclera, and 70% in the peripapillary sclera and the equator. That even at such an elevated IOP not all the fibers were recruited suggests that there are likely other conditions that challenge the corneoscleral tissues even more than IOP. The fraction of fibers recruited may have other potential implications. For example, fibers that are not bearing loads may be more susceptible to enzymatic digestion or remodeling. Similarly, it may be possible to control tissue stiffness through the fraction of recruited fibers without the need to add or remove collagen.
Collapse
Affiliation(s)
- Tian Yong Foong
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biomedical Engineering, University of Mississippi, MS, United States; Department of Mechanical Engineering, University of Mississippi, MS, United States
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States; Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
15
|
Czerpak CA, Kashaf MS, Zimmerman BK, Quigley HA, Nguyen TD. The Strain Response to Intraocular Pressure Decrease in the Lamina Cribrosa of Patients with Glaucoma. Ophthalmol Glaucoma 2023; 6:11-22. [PMID: 35863747 PMCID: PMC9849479 DOI: 10.1016/j.ogla.2022.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To measure biomechanical strains in the lamina cribrosa (LC) of living human eyes with intraocular pressure (IOP) lowering. DESIGN Cohort study. PARTICIPANTS Patients with glaucoma underwent imaging before and after laser suturelysis after trabeculectomy surgery (29 image pairs; 26 persons). INTERVENTION Noninvasive imaging of the eye. MAIN OUTCOME MEASURES Strains in optic nerve head tissue and changes in depths of the anterior border of the LC. RESULTS Intraocular pressure decreases caused the LC to expand in thickness in the anterior-posterior strain (Ezz = 0.94 ± 1.2%; P = 0.00020) and contract in radius in the radial strain (Err = - 0.19 ± 0.33%; P = 0.0043). The mean LC depth did not significantly change with IOP lowering (1.33 ± 6.26 μm; P = 0.26). A larger IOP decrease produced a larger, more tensile Ezz (P < 0.0001), greater maximum principal strain (Emax; P < 0.0001), and greater maximum shear strain (Γmax; P < 0.0001). The average LC depth change was associated with the Γmax and radial-circumferential shear strain (Erθ; P < 0.02) but was not significantly related to tensile or compressive strains. An analysis by clock hour showed that in temporal clock hours 3 to 6, a more anterior LC movement was associated with a more positive Emax, and in clock hours 3, 5, and 6, it was associated with a more positive Γmax. At 10 o'clock, a more posterior LC movement was related to a more positive Emax (P < 0.004). Greater compliance (strain/ΔIOP) of Emax (P = 0.044), Γmax (P = 0.052), and Erθ (P = 0.018) was associated with a thinner retinal nerve fiber layer. Greater compliance of Emax (P = 0.041), Γmax (P = 0.021), Erθ (P = 0.024), and in-plane shear strain (Erz; P = 0.0069) was associated with more negative mean deviations. Greater compliance of Γmax (P = 0.055), Erθ (P = 0.040), and Erz (P = 0.015) was associated with lower visual field indices. CONCLUSIONS With IOP lowering, the LC moves either into or out of the eye but, on average, expands in thickness and contracts in radius. Shear strains are nearly as substantial as in-plane strains. Biomechanical strains are more compliant in eyes with greater glaucoma damage. This work was registered at ClinicalTrials.gov as NCT03267849.
Collapse
Affiliation(s)
- Cameron A Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland.
| | - Michael Saheb Kashaf
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Brandon K Zimmerman
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland; Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
16
|
Wei J, Hua Y, Yang B, Wang B, Schmitt SE, Wang B, Lucy KA, Ishikawa H, Schuman JS, Smith MA, Wollstein G, Sigal IA. Comparing Acute IOP-Induced Lamina Cribrosa Deformations Premortem and Postmortem. Transl Vis Sci Technol 2022; 11:1. [DOI: 10.1167/tvst.11.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Junchao Wei
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Engineering, Duquesne University, Pittsburgh, PA, USA
| | - Bo Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha E. Schmitt
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katie A. Lucy
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Hiroshi Ishikawa
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
- Neuroscience Institute, NYU Langone Health, New York, NY, USA
| | - Matthew A. Smith
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Guan C, Pease ME, Quillen S, Ling YTT, Li X, Kimball E, Johnson TV, Nguyen TD, Quigley HA. Quantitative Microstructural Analysis of Cellular and Tissue Remodeling in Human Glaucoma Optic Nerve Head. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 36269186 PMCID: PMC9617510 DOI: 10.1167/iovs.63.11.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To measure quantitatively changes in lamina cribrosa (LC) cell and connective tissue structure in human glaucoma eyes. Methods We studied 27 glaucoma and 19 age-matched non-glaucoma postmortem eyes. In 25 eyes, LC cross-sections were examined by confocal and multiphoton microscopy to quantify structures identified by anti-glial fibrillary acidic protein (GFAP), phalloidin-labeled F-actin, nuclear 4',6-diamidino-2-phenylindole (DAPI), and by second harmonic generation imaging of LC beams. Additional light and transmission electron microscopy were performed in 21 eyes to confirm features of LC remodeling, including immunolabeling by anti-SOX9 and anti-collagen IV. All glaucoma eyes had detailed clinical histories of open-angle glaucoma status, and degree of axon loss was quantified in retrolaminar optic nerve cross-sections. Results Within LC pores, the proportionate area of both GFAP and F-actin processes was significantly lower in glaucoma eyes than in controls (P = 0.01). Nuclei were rounder (lower median aspect ratio) in glaucoma specimens (P = 0.02). In models assessing degree of glaucoma damage, F-actin process width was significantly wider in glaucoma eyes with more damage (P = 0.024), average LC beam width decreased with worse glaucoma damage (P = 0.042), and nuclear count per square millimeter rose with worse damage (P = 0.019). The greater cell count in LC pores represented 92.3% astrocytes by SOX9 labeling. The results are consistent with replacement of axons in LC pores by basement membrane labeled by anti-collagen IV and in-migrating astrocytes. Conclusions Alteration in LC structure in glaucoma involves migration of astrocytes into axonal bundles, change in astrocyte orientation and processes, production of basement membrane material, and thinning of connective tissue beams.
Collapse
Affiliation(s)
- Carolyn Guan
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Mary Ellen Pease
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Sarah Quillen
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Yik Tung Tracy Ling
- Departments of Mechanical Engineering and Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Ximin Li
- Department of Biostatistics, The Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Elizabeth Kimball
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thomas V. Johnson
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thao D. Nguyen
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
- Departments of Mechanical Engineering and Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
18
|
Bastelica P, Labbé A, El Maftouhi A, Hamard P, Paques M, Baudouin C. Rôle de la lame criblée dans la pathogenèse du glaucome. Une revue de la littérature. J Fr Ophtalmol 2022; 45:952-966. [DOI: 10.1016/j.jfo.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
|
19
|
Jammal AA, Medeiros FA. Corneal Hysteresis and Rates of Neuroretinal Rim Change in Glaucoma. Ophthalmol Glaucoma 2022; 5:483-489. [PMID: 35331968 PMCID: PMC10278201 DOI: 10.1016/j.ogla.2022.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To evaluate the impact of corneal hysteresis (CH) as a risk factor for progressive neuroretinal rim loss in glaucoma, as measured by spectral-domain OCT of the Bruch's membrane opening minimum rim width (MRW). DESIGN Prospective, observational cohort study. PARTICIPANTS The study group included 118 eyes of 70 subjects with glaucoma. The average follow-up time for the cohort was 3.9 ± 1.3 years, with an average of 6.4 ± 2.0 spectral-domain OCT tests, ranging from 4 to 12. METHODS Corneal hysteresis measurements were acquired at baseline using the Ocular Response Analyzer (Reichert Instruments). Linear mixed models were used to investigate the relationship between the rates of MRW loss and baseline CH. Multivariable analyses adjusted for other putative predictive factors for progression, including mean intraocular pressure (IOP), central corneal thickness (CCT), age, race, and baseline disease severity. MAIN OUTCOME MEASURES Effects of CH on the rate of MRW change over time. RESULTS Corneal hysteresis had a significant effect on rates of MRW progression over time. Each 1-mmHg lower CH was associated with -0.38 μm/year faster MRW loss (95% confidence interval [CI], -0.70 to -0.06; P = 0.019), after adjustment for other predictive factors. The mean IOP was also significantly associated with progression, with -0.35 μm/year (95% CI, -0.47 to -0.23 μm/year) faster MRW change for each 1-mmHg higher pressure (P < 0.001). In the analysis of predictive strength, the mean IOP was the strongest predictive factor (R2 = 23%), followed by CH (R2 = 14%) and baseline disease severity (R2 = 6%). Central corneal thickness explained only 3% of the variability in slopes of change in global MRW. CONCLUSIONS Lower CH measurements were associated with faster loss of the neuroretinal rim in glaucoma, as measured by MRW. The predictive ability of CH was superior to that of CCT. These findings suggest that CH is an important parameter to be considered in assessing the risk of glaucoma progression.
Collapse
Affiliation(s)
- Alessandro A Jammal
- Vision, Imaging and Performance Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
20
|
Elevated IOP Alters the Material Properties of Sclera and Lamina Cribrosa in Monkeys. DISEASE MARKERS 2022; 2022:5038847. [PMID: 36051361 PMCID: PMC9427265 DOI: 10.1155/2022/5038847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
Objective Elevated intraocular pressure (IOP) has significant impacts on different stages in the progression of chronic glaucoma. In this study, we investigated changes in the material properties of sclera and lamina cribrosa (LC) in a nonhuman primate model with elevated IOP. Methods Normal adult Tibetan macaques were selected for the construction of elevated IOP model. After 40 days of stable maintenance on the ocular hypertension, the binocular eyeballs were obtained for the measurement of macroscopic parameters of the eyeballs. Posterior scleral tissue strips were obtained in circumferential and axial directions, and thickness was measured, respectively. Biomechanical parameters were obtained with stress relaxation, creep, and tensile test. The nanoindentation test was performed on the LC and scleral tissue around optic nerve head (ONH) to obtain compressive modulus. Results In the presence of elevated IOP, variations of the axial diameter of the eyeball were greater than those of the transverse diameter, and the mean scleral thickness around ONH was smaller in the experimental group than control group. The elastic modulus and stress relaxation modulus of sclera were larger, and the creep rate was lower in the experimental group than control group. In the control group, the elastic modulus and stress relaxation modulus of the circumferential sclera were larger in the axial direction, and creep rate was smaller. In the experimental group, there was no significant difference in biomechanical characteristics between the two directions. Compared to the control group, the compression modulus of the LC was smaller, and the compression modulus of sclera around ONH was larger in the experimental group. Conclusion Elevated IOP alters the viscoelasticity and anisotropy of sclera and LC. These may contribute to reduction of the organizational resistance to external forces and decline in the ability of self-recovery.
Collapse
|
21
|
Kamalipour A, Moghimi S, Eslani M, Nishida T, Mohammadzadeh V, Micheletti E, Girkin CA, Fazio MA, Liebmann JM, Zangwill LM, Weinreb RN. A Prospective Longitudinal Study to Investigate Corneal Hysteresis as a Risk Factor of Central Visual Field Progression in Glaucoma. Am J Ophthalmol 2022; 240:159-169. [PMID: 35278360 PMCID: PMC10249485 DOI: 10.1016/j.ajo.2022.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/07/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To evaluate the role of corneal hysteresis (CH) as a risk factor of central visual field (VF) progression in a cohort of glaucoma suspect and glaucoma patients. DESIGN Prospective cohort study. METHODS Two hundred forty-eight eyes of 143 subjects who were followed for an average of 4.8 years with a minimum of 5 visits with 10-2 and 24-2 VF tests were included. Univariable and multivariable linear mixed-effects models were used to identify characteristics associated with the rate of change over time in 10-2 and 24-2 mean deviation (MD). Mixed-effects logistic regression was used to evaluate characteristics associated with an increased likelihood of event-based 10-2 VF progression based on the clustered pointwise linear regression criterion. RESULTS CH was significantly associated with 10-2 and 24-2 VF progression in the univariable trend-based analysis. In multivariable trend-based analyses, lower CH was associated with a faster rate of decline in 10-2 MD (0.07 dB/y per 1 mm Hg, P < .001) but not with 24-2 MD (P = .490). In multivariable event-based analysis, lower CH was associated with an increased likelihood of 10-2 VF progression (odds ratio = 1.35 per 1 mm Hg lower, P = .025). Similar results were found in eyes with early glaucomatous damage at the baseline (baseline: 24-2 MD ≥ -6 dB). CONCLUSIONS Lower CH was associated with a statistically significant, but relatively small, increased risk of central VF progression on the 10-2 test grid. Given the substantial influence of central VF impairment on the quality of life, clinicians should consider using CH to assess the risk of progression in patients with primary open-angle glaucoma including those with early disease.
Collapse
Affiliation(s)
- Alireza Kamalipour
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Sasan Moghimi
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Medi Eslani
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Takashi Nishida
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Vahid Mohammadzadeh
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Eleonora Micheletti
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | | | - Massimo A Fazio
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California; Department of Ophthalmology and Visual Sciences, Heersink School of Medicine; Department of Biomedical Engineering, School of Engineering
| | - Jeffrey M Liebmann
- University of Alabama at Birmingham, Alabama, and Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York, USA
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California.
| |
Collapse
|
22
|
Hua Y, Lu Y, Walker J, Lee PY, Tian Q, McDonald H, Pallares P, Ji F, Brazile BL, Yang B, Voorhees AP, Sigal IA. Eye-specific 3D modeling of factors influencing oxygen concentration in the lamina cribrosa. Exp Eye Res 2022; 220:109105. [PMID: 35568202 PMCID: PMC11007759 DOI: 10.1016/j.exer.2022.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Our goal was to identify the factors with the strongest influence on the minimum lamina cribrosa (LC) oxygen concentration as potentially indicative of conditions increasing hypoxia risk. Because direct measurement of LC hemodynamics and oxygenation is not yet possible, we developed 3D eye-specific LC vasculature models. The vasculature of a normal monkey eye was perfusion-labeled post-mortem. Serial cryosections through the optic nerve head were imaged using fluorescence and polarized light microscopy to visualize the vasculature and collagen, respectively. The vasculature within a 450 μm-thick region containing the LC - identified from the collagen, was segmented, skeletonized, and meshed for simulations. Using Monte Carlo sampling, 200 vascular network models were generated with varying vessel diameter, neural tissue oxygen consumption rate, inflow hematocrit, and blood pressures (arteriole, venule, anterior boundary, and posterior boundary). Factors were varied over ranges of baseline ±20% with uniform probability. For each model we first obtained the blood flow, and from this the neural tissue oxygen concentration. ANOVA was used to identify the factors with the strongest influence on the minimum (10th percentile) oxygen concentration in the LC. The three most influential factors were, in ranked order, vessel diameter, neural tissue oxygen consumption rate, and arteriole pressure. There was a strong interaction between vessel diameter and arteriole pressure whereby the impact of one factor was larger when the other factor was small. Our results show that, for the eye analyzed, conditions that reduce vessel diameter, such as vessel compression due to elevated intraocular pressure or gaze-induced tissue deformation, may particularly contribute to decreased LC oxygen concentration. More eyes must be analyzed before generalizing.
Collapse
Affiliation(s)
- Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuankai Lu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason Walker
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Tian
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haiden McDonald
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pedro Pallares
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
Abstract
PURPOSE OF THE REVIEW This review summarizes recent findings on corneal hysteresis, a biomechanical property of the cornea. Corneal hysteresis measurements can be easily acquired clinically and may serve as surrogate markers for biomechanical properties of tissues in the back of the eye, like the lamina cribrosa and peripapillary sclera, which may be related to the susceptibility to glaucomatous damage. RECENT FINDINGS Several studies have provided evidence of the associations between corneal hysteresis and clinically relevant outcomes in glaucoma. Corneal hysteresis has been shown to be predictive of glaucoma development in eyes suspected of having the disease. For eyes already diagnosed with glaucoma, lower corneal hysteresis has been associated with higher risk of progression and faster rates of visual field loss over time. Such associations appear to be stronger than those for corneal thickness, suggesting that corneal hysteresis may be a more important predictive factor. Recent evidence has also shown that cornealcorrected intraocular pressure measurements may present advantages compared to conventional Goldmann tonometry in predicting clinically relevant outcomes in glaucoma. SUMMARY Given the evidence supporting corneal hysteresis as an important risk factor for glaucoma development and its progression, practitioners should consider measuring corneal hysteresis in all patients at risk for glaucoma, as well as in those already diagnosed with the disease.
Collapse
Affiliation(s)
| | - Felipe A Medeiros
- Duke Eye Center and Department of Ophthalmology
- Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
24
|
Karimi A, Rahmati SM, Razaghi R, Girkin CA, Crawford Downs J. Finite element modeling of the complex anisotropic mechanical behavior of the human sclera and pia mater. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106618. [PMID: 35026624 PMCID: PMC8847341 DOI: 10.1016/j.cmpb.2022.106618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Accurate finite element (FE) simulation of the optic nerve head (ONH) depends on accurate mechanical properties of the load-bearing tissues. The peripapillary sclera in the ONH exhibits a depth-dependent, anisotropic, heterogeneous collagen fiber distribution. This study proposes a novel cable-in-solid modeling approach that mimics heterogeneous anisotropic collagen fiber distribution, validates the approach against published experimental biaxial tensile tests of scleral patches, and demonstrates its effectiveness in a complex model of the posterior human eye and ONH. METHODS A computational pipeline was developed that defines control points in the sclera and pia mater, distributes the depth-dependent circumferential, radial, and isotropic cable elements in the sclera and pia in a pattern that mimics collagen fiber orientation, and couples the cable elements and solid matrix using a mesh-free penalty-based cable-in-solid algorithm. A parameter study was performed on a model of a human scleral patch subjected to biaxial deformation, and computational results were matched to published experimental data. The new approach was incorporated into a previously published eye-specific model to test the method; results were then interpreted in relation to the collagen fibers' (cable elements) role in the resultant ONH deformations, stresses, and strains. RESULTS Results show that the cable-in-solid approach can mimic the full range of scleral mechanical behavior measured experimentally. Disregarding the collagen fibers/cable elements in the posterior eye model resulted in ∼20-60% greater tensile and shear stresses and strains, and ∼30% larger posterior deformations in the lamina cribrosa and peripapillary sclera. CONCLUSIONS The cable-in-solid approach can easily be implemented into commercial FE packages to simulate the heterogeneous and anisotropic mechanical properties of collagenous biological tissues.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Reza Razaghi
- Research Department, Heel of Scene Ltd., Tokyo, Japan
| | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
Lee PY, Yang B, Hua Y, Waxman S, Zhu Z, Ji F, Sigal IA. Real-time imaging of optic nerve head collagen microstructure and biomechanics using instant polarized light microscopy. Exp Eye Res 2022; 217:108967. [PMID: 35114213 PMCID: PMC8957577 DOI: 10.1016/j.exer.2022.108967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023]
Abstract
Current tools lack the temporal or spatial resolution necessary to image many important aspects of the architecture and dynamics of the optic nerve head (ONH). We evaluated the potential of instant polarized light microscopy (IPOL) to overcome these limitations by leveraging the ability to capture collagen fiber orientation and density in a single image. Coronal sections through the ONH of fresh normal sheep eyes were imaged using IPOL while they were stretched using custom uniaxial or biaxial micro-stretch devices. IPOL allows identifying ONH collagen architectural details, such as fiber interweaving and crimp, and has high temporal resolution, limited only by the frame rate of the camera. Local collagen fiber orientations and deformations were quantified using color analysis and image tracking techniques. We quantified stretch-induced collagen uncrimping of lamina cribrosa (LC) and peripapillary sclera (PPS), and changes in LC pore size (area) and shape (convexity and aspect ratio). The simultaneous high spatial and temporal resolutions of IPOL revealed complex ONH biomechanics: i) stretch-induced local deformation of the PPS was nonlinear and nonaffine. ii) under load the crimped collagen fibers in the PPS and LC straightened, without torsion and with only small rotations. iii) stretch-induced LC pore deformation was anisotropic and heterogeneous among pores. Overall, with stretch the pores were became larger, more convex, and more circular. We have demonstrated that IPOL reveals details of collagen morphology and mechanics under dynamic loading previously out of reach. IPOL can detect stretch-induced collagen uncrimping and other elements of the tissue nonlinear mechanical behavior. IPOL showed changes in pore morphology and collagen architecture that will help improve understanding of how LC tissue responds to load.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Yang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susannah Waxman
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ziyi Zhu
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fengting Ji
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
26
|
Choi YJ, Lee EJ. The Effects of Anti-glaucoma Eyedrops on Corneal Hysteresis in Patients with Open-angle Glaucoma and Glaucoma-suspect. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2022. [DOI: 10.3341/jkos.2022.63.1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: We explored the effects of topical anti-glaucoma medications on the corneal biochemical properties of patients with open-angle glaucoma (OAG) and glaucoma suspect (GS patients).Methods: We retrospectively reviewed data on 115 OAG and 98 GS patients (225 and 128 eyes respectively). Corneal hysteresis (CH) was measured using an ocular response analyzer. Factors influencing CH were determined using a generalized estimation equation.Results: The mean CH was lower in OAG than GS patients (p < 0.001). A lower cornea-compensated intraocular pressure, concomitant use of a beta-adrenergic blocker and an alpha2-adrenergic agonist, a higher visual field mean deviation, and a larger central corneal thickness were associated with a higher CH in the OAG group.Conclusions: Concomitant use of a topical beta-adrenergic blocker and an alpha2-adrenergic agonist was associated with a higher CH.
Collapse
|
27
|
Voorhees AP, Hua Y, Brazile BL, Wang B, Waxman S, Schuman JS, Sigal IA. So-Called Lamina Cribrosa Defects May Mitigate IOP-Induced Neural Tissue Insult. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 33165501 PMCID: PMC7671862 DOI: 10.1167/iovs.61.13.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The prevailing theory about the function of lamina cribrosa (LC) connective tissues is that they provide structural support to adjacent neural tissues. Missing connective tissues would compromise this support and therefore are regarded as “LC defects”, despite scarce actual evidence of their role. We examined how so-called LC defects alter IOP-related mechanical insult to the LC neural tissues. Methods We built numerical models incorporating LC microstructure from polarized light microscopy images. To simulate LC defects of varying sizes, individual beams were progressively removed. We then compared intraocular pressure (IOP)-induced neural tissue deformations between models with and without defects. To better understand the consequences of defect development, we also compared neural tissue deformations between models with partial and complete loss of a beam. Results The maximum stretch of neural tissues decreased non-monotonically with defect size. Maximum stretch in the model with the largest defect decreased by 40% in comparison to the model with no defects. Partial loss of a beam increased the maximum stretch of neural tissues in its adjacent pores by 162%, compared with 63% in the model with complete loss of a beam. Conclusions Missing LC connective tissues can mitigate IOP-induced neural tissue insult, suggesting that the role of the LC connective tissues is more complex than simply fortifying against IOP. The numerical models further predict that partial loss of a beam is biomechanically considerably worse than complete loss of a beam, perhaps explaining why defects have been reported clinically but partial beams have not.
Collapse
Affiliation(s)
- Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Langone Health, New York University Grossman School of Medicine, New York, New York, United States.,Center for Neural Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Department of Physiology and Neuroscience, Neuroscience Institute, NYU Langone Health, New York University Grossman School of Medicine, New York, New York, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
28
|
Material properties and effect of preconditioning of human sclera, optic nerve, and optic nerve sheath. Biomech Model Mechanobiol 2021; 20:1353-1363. [PMID: 33877503 PMCID: PMC8298341 DOI: 10.1007/s10237-021-01448-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/06/2021] [Indexed: 02/03/2023]
Abstract
The optic nerve (ON) is a recently recognized tractional load on the eye during larger horizontal eye rotations. In order to understand the mechanical behavior of the eye during adduction, it is necessary to characterize material properties of the sclera, ON, and in particular its sheath. We performed tensile loading of specimens taken from fresh postmortem human eyes to characterize the range of variation in their biomechanical properties and determine the effect of preconditioning. We fitted reduced polynomial hyperelastic models to represent the nonlinear tensile behavior of the anterior, equatorial, posterior, and peripapillary sclera, as well as the ON and its sheath. For comparison, we analyzed tangent moduli in low and high strain regions to represent stiffness. Scleral stiffness generally decreased from anterior to posterior ocular regions. The ON had the lowest tangent modulus, but was surrounded by a much stiffer sheath. The low-strain hyperelastic behaviors of adjacent anatomical regions of the ON, ON sheath, and posterior sclera were similar as appropriate to avoid discontinuities at their boundaries. Regional stiffnesses within individual eyes were moderately correlated, implying that mechanical properties in one region of an eye do not reliably reflect properties of another region of that eye, and that potentially pathological combinations could occur in an eye if regional properties are discrepant. Preconditioning modestly stiffened ocular tissues, except peripapillary sclera that softened. The nonlinear mechanical behavior of posterior ocular tissues permits their stresses to match closely at low strains, although progressively increasing strain causes particularly great stress in the peripapillary region.
Collapse
|
29
|
Fisher LK, Wang X, Tun TA, Chung HW, Milea D, Girard MJA. Gaze-evoked deformations of the optic nerve head in thyroid eye disease. Br J Ophthalmol 2021; 105:1758-1764. [PMID: 33468490 DOI: 10.1136/bjophthalmol-2020-318246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 11/03/2022]
Abstract
PURPOSE To assess gaze evoked deformations of the optic nerve head (ONH) in thyroid eye disease (TED), using computational modelling and optical coherence tomography (OCT). METHODS Multiple finite element models were constructed: one model of a healthy eye, and two models mimicking effects of TED; one with proptosis and another with extraocular tissue stiffening. Two additional hypothetical models had extraocular tissue softening or no extraocular tissue at all. Horizontal eye movements were simulated in these models. OCT images of the ONH of 10 healthy volunteers and 1 patient with TED were taken in primary gaze. Additional images were recorded in the same subjects performing eye movements in adduction and abduction. The resulting ONH deformation in the models and human subjects was measured by recording the 'tilt angle' (relative antero-posterior deformation of the Bruch's membrane opening). RESULTS In our computational models the eyes with proptosis and stiffer extraocular tissue had greater gaze-evoked deformations than the healthy eye model, while the models with softer or no extraocular tissue had lesser deformations, in both adduction and abduction. In healthy subjects, the mean tilt angle was 1.46°±0.25 in adduction and -0.42°±0.12 in abduction. The tilt angle measured in the subject with TED was 5.37° in adduction and -2.21° in abduction. CONCLUSION Computational modelling and experimental observation suggest that TED can cause increased gaze-evoked deformations of the ONH.
Collapse
Affiliation(s)
- Liam K Fisher
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore.,Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Xiaofei Wang
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tin A Tun
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Hsi-Wei Chung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Dan Milea
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Duke-NUS Medical School, Singapore
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore .,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Duke-NUS Medical School, Singapore
| |
Collapse
|
30
|
Nascimento E Silva R, Chiou CA, Wang M, Devlin J, Li D, Lovelace S, Wang H, Greenstein SH, Brauner SC, Shen LQ. Quantification of the Peripapillary Microvasculature in Eyes with Glaucomatous Paracentral Visual Field Loss. Ophthalmol Glaucoma 2020; 4:286-294. [PMID: 33075548 DOI: 10.1016/j.ogla.2020.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To quantify abnormalities in the peripapillary microvasculature in eyes with primary open-angle glaucoma (POAG) and paracentral visual field (VF) loss. DESIGN Prospective, cross-sectional study. PARTICIPANTS Thirty-three POAG patients, including 15 with paracentral VF loss and 18 with peripheral VF loss, and 31 control participants underwent swept-source OCT angiography (OCTA) of the peripapillary region. METHODS The POAG groups were matched by VF mean deviation (MD). The peripapillary microvasculature from the internal limiting membrane to the retinal nerve fiber layer (RNFL) interface was quantified within a 0.70-mm annulus around Bruch's membrane opening after removal of large vessels. Both vessel density (VD) and the integrated OCTA by ratio analysis signal (IOS) suggestive of flow were measured. Regional VD and IOS were measured from the affected hemisphere corresponding to the VF hemifield of more severe loss, which was used to calculate the paracentral total deviation (PaTD), or total deviation within the central 10°. One eye per participant was included. MAIN OUTCOME MEASURES Difference in peripapillary OCTA measurements between paracentral and peripheral VF loss groups and correlation of peripapillary VD and IOS with PaTD. RESULTS The POAG groups had matched VF MD (-3.1 ± 2.5 dB paracentral vs. -2.3 ± 2.0 dB peripheral; P = 0.31), did not differ in average RNFL thickness (71.1 ± 14.7 μm vs. 78.1 ± 15.0 μm; P = 0.55), but differed in age (59.2 ± 9.6 years paracentral vs. 67.4 ± 6.6 years peripheral; P = 0.02). Compared with control participants, both paracentral and peripheral VF loss groups showed reduced VD (P < 0.001 and P = 0.009, respectively) and IOS (P < 0.001 and P = 0.01, respectively) in the affected hemisphere. Compared with POAG eyes with peripheral VF loss, the paracentral group showed reduced peripapillary VD (38.0 ± 2.0%, 35.0 ± 2.2%, respectively; P = 0.001) and IOS (44.3 ± 3.1%, 40.4 ± 4.0%, respectively; P = 0.02) in the affected hemisphere. Among all POAG eyes, peripapillary VD and IOS of the affected hemisphere correlated significantly with functional measurement of paracentral loss (PaTD, r = 0.40, P = 0.02; r = 0.45, P = 0.008; respectively). These correlations remained significant after adjusting for age (r = 0.41, P = 0.02; r = 0.47, P = 0.01; respectively). CONCLUSIONS Regional peripapillary microvasculature showed decreased VD and flow in POAG with paracentral loss, supporting its importance in this glaucoma subtype.
Collapse
Affiliation(s)
- Rafaella Nascimento E Silva
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Instituto de Olhos Sao Sebastiao, Rio de Janeiro, Brazil
| | - Carolina A Chiou
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Mengyu Wang
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Julia Devlin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Dian Li
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sydney Lovelace
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Haobing Wang
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Scott H Greenstein
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Stacey C Brauner
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Lucy Q Shen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
Wang B, Hua Y, Brazile BL, Yang B, Sigal IA. Collagen fiber interweaving is central to sclera stiffness. Acta Biomater 2020; 113:429-437. [PMID: 32585309 DOI: 10.1016/j.actbio.2020.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
The mechanical properties of the microstructural components of sclera are central to eye physiology and pathology. Because these parameters are extremely difficult to measure directly, they are often estimated using inverse-modeling matching deformations of macroscopic samples measured experimentally. Although studies of sclera microstructure show collagen fiber interweaving, current models do not account for this interweaving or the resulting fiber-fiber interactions, which might affect parameter estimates. Our goal was to test the hypothesis that constitutive parameters estimated using inverse modeling differ if models account for fiber interweaving and interactions. We developed models with non-interweaving or interweaving fibers over a wide range of volume fractions (36-91%). For each model, we estimated fiber stiffness using inverse modeling matching biaxial experimental data of human sclera. We found that interweaving increased the estimated fiber stiffness. When the collagen volume fraction was 64% or less, the stiffness of interweaving fibers was about 1.25 times that of non-interweaving fibers. For higher volume fractions, the ratio increased substantially, reaching 1.88 for a collagen volume fraction of 91%. Simulating a model (interweaving/non-interweaving) using the fiber stiffness estimated from the other model produced substantially different behavior, far from that observed experimentally. These results show that estimating microstructural component mechanical properties is highly sensitive to the assumed interwoven/non-interwoven architecture. Moreover, the results suggest that interweaving plays an important role in determining the structural stiffness of sclera, and potentially of other soft tissues in which the collagen fibers interweave. STATEMENT OF SIGNIFICANCE: The collagen fibers of sclera are interwoven, but numerical models do not account for this interweaving or the resulting fiber-fiber interactions. To determine if interweaving matters, we examined the differences in the constitutive model parameters estimated using inverse modeling between models with interweaving and non-interweaving fibers. We found that the estimated stiffness of the interweaving fibers was up to 1.88 times that of non-interweaving fibers, and that the estimate increased with collagen volume fraction. Our results suggest that fiber interweaving is a fundamental characteristic of connective tissues, additional to anisotropy, density and orientation. Better characterization of interweaving, and of its mechanical effects is likely central to understanding microstructure and biomechanics of sclera and other soft tissues.
Collapse
|
32
|
Ling YTT, Pease ME, Jefferys JL, Kimball EC, Quigley HA, Nguyen TD. Pressure-Induced Changes in Astrocyte GFAP, Actin, and Nuclear Morphology in Mouse Optic Nerve. Invest Ophthalmol Vis Sci 2020; 61:14. [PMID: 32910133 PMCID: PMC7488631 DOI: 10.1167/iovs.61.11.14] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To conduct quantitative analysis of astrocytic glial fibrillary acidic protein (GFAP), actin and nuclei distribution in mouse optic nerve (ON) and investigate changes in the measured features after 3 days of ocular hypertension (OHT). Method Serial cross-sections of 3-day microbead-induced OHT and control ONs were fluorescently labelled and imaged using confocal microscope. Eighteen structural features were measured from the acquired images, including GFAP coverage, actin area fraction, process thickness, and aspect ratio of cell nucleus. The measured features were analyzed for variations with axial locations along ON and radial zones transverse to ON, as well as for the correlations with degree of intraocular pressure (IOP) change. Results The most significant changes in structural features after 3-day OHT occurred in the unmyelinated ON region (R1), and the changes were greater with greater IOP elevation. Although the GFAP, actin, axonal, and ON areas all increased in 3-day OHT ONs in R1 (P ≤ 0.004 for all), the area fraction of GFAP actually decreased (P = 0.02), the actin area fraction was stable and individual axon compartments were unchanged in size. Within R1, the number of nuclear clusters increased (P < 0.001), but the mean size of nuclear clusters was smaller (P = 0.02) and the clusters became rounder (P < 0.001). In all cross-sections of control ONs, astrocytic processes were thickest in the rim zone compared with the central and peripheral zones (P ≤ 0.002 for both), whereas the overall process width in R1 decreased after 3 days of OHT (P < 0.001). Conclusions The changes in structure elucidated IOP-generated alterations that underlie astrocyte mechanotranslational responses relevant to glaucoma.
Collapse
Affiliation(s)
- Yik Tung Tracy Ling
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Mary E. Pease
- Wilmer Ophthalmological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Joan L. Jefferys
- Wilmer Ophthalmological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth C. Kimball
- Wilmer Ophthalmological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
33
|
Chuangsuwanich T, Hung PT, Wang X, Liang LH, Schmetterer L, Boote C, Girard MJA. Morphometric, Hemodynamic, and Biomechanical Factors Influencing Blood Flow and Oxygen Concentration in the Human Lamina Cribrosa. Invest Ophthalmol Vis Sci 2020; 61:3. [PMID: 32271886 PMCID: PMC7401712 DOI: 10.1167/iovs.61.4.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose We developed a combined biomechanical and hemodynamic model of the human eye to estimate blood flow and oxygen concentration within the lamina cribrosa (LC) and rank the factors that influence LC oxygen concentration. Methods We generated 5000 finite-element eye models with detailed microcapillary networks of the LC and computed the oxygen concentration of the lamina retinal ganglion cell axons. For each model, we varied the intraocular pressure (IOP) from 10 mm Hg to 55 mm Hg in 5-mm Hg increments, the cerebrospinal fluid pressure (13 ± 2 mm Hg), cup depth (0.2 ± 0.1 mm), scleral stiffness (±20% of the mean values), LC stiffness (0.41 ± 0.2 MPa), LC radius (1.2 ± 0.12 mm), average LC pore size (5400 ± 2400 µm2), the microcapillary arrangement (radial, isotropic, or circumferential), and perfusion pressure (50 ± 9 mm Hg). Blood flow was assumed to originate from the LC periphery and drain via the central retinal vein. Finally, we performed linear regressions to rank the influence of each factor on the LC tissue oxygen concentration. Results LC radius and perfusion pressure were the most important factors in influencing the oxygen concentration of the LC. IOP was another important parameter, and eyes with higher IOP had higher compressive strain and slightly lower oxygen concentration. In general, superior–inferior regions of the LC had significantly lower oxygen concentration than the nasal–temporal regions, resulting in an hourglass pattern of oxygen deficiency. Conclusions To the best of our knowledge, this study is the first to implement a comprehensive hemodynamical model of the eye that accounts for the biomechanical forces and morphological parameters of the LC. The results provide further insight into the possible relationship of biomechanical and vascular pathways leading to ischemia-induced optic neuropathy.
Collapse
|
34
|
Role of radially aligned scleral collagen fibers in optic nerve head biomechanics. Exp Eye Res 2020; 199:108188. [PMID: 32805265 DOI: 10.1016/j.exer.2020.108188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023]
Abstract
Collagen fibers organized circumferentially around the canal in the peripapillary sclera are thought to provide biomechanical support to the sensitive tissues within the optic nerve head (ONH). Recent studies have demonstrated the existence of a family of fibers in the innermost sclera organized radially from the scleral canal. Our goal was to determine the role of these radial fibers in the sensitivity of scleral canal biomechanics to acute increases in intraocular pressure (IOP). Following the same general approach of previous parametric sensitivity studies, we created nonlinear generic finite element models of a posterior pole with various combinations of radial and circumferential fibers at an IOP of 0 mmHg. We then simulated the effects of normal and elevated IOP levels (15 and 30 mmHg). We monitored four IOP-induced geometric changes: peripapillary sclera stretch, scleral canal displacement, lamina cribrosa displacement, and scleral canal expansion. In addition, we examined the radial (maximum tension) and through-thickness (maximum compression) strains within the ONH tissues. Our models predicted that: 1) radial fibers reduced the posterior displacement of the lamina, especially at elevated IOP; 2) radial fibers reduced IOP-induced radial strain within the peripapillary sclera and retinal tissue; and 3) a combination of radial and circumferential fibers maintained strains within the ONH at a level similar to those conferred by circumferential fibers alone. In conclusion, radial fibers provide support for the posterior globe, additional to that provided by circumferential fibers. Most importantly, a combination of both fiber families can better protect ONH tissues from excessive IOP-induced deformation than either alone.
Collapse
|
35
|
Girard MJA, Schmetterer L. Artificial intelligence and deep learning in glaucoma: Current state and future prospects. PROGRESS IN BRAIN RESEARCH 2020; 257:37-64. [PMID: 32988472 DOI: 10.1016/bs.pbr.2020.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past few years, there has been an unprecedented and tremendous excitement for artificial intelligence (AI) research in the field of Ophthalmology; this has naturally been translated to glaucoma-a progressive optic neuropathy characterized by retinal ganglion cell axon loss and associated visual field defects. In this review, we aim to discuss how AI may have a unique opportunity to tackle the many challenges faced in the glaucoma clinic. This is because glaucoma remains poorly understood with difficulties in providing early diagnosis and prognosis accurately and in a timely fashion. In the short term, AI could also become a game changer by paving the way for the first cost-effective glaucoma screening campaigns. While there are undeniable technical and clinical challenges ahead, and more so than for other ophthalmic disorders whereby AI is already booming, we strongly believe that glaucoma specialists should embrace AI as a companion to their practice. Finally, this review will also remind ourselves that glaucoma is a complex group of disorders with a multitude of physiological manifestations that cannot yet be observed clinically. AI in glaucoma is here to stay, but it will not be the only tool to solve glaucoma.
Collapse
Affiliation(s)
- Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
| | - Leopold Schmetterer
- Ocular Imaging, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Institute of Clinical and Experimental Ophthalmology, Basel, Switzerland.
| |
Collapse
|
36
|
Qiu C, Yao J, Zhang X, Zhang R, Sun X, Qian S. The Dynamic Scleral Extracellular Matrix Alterations in Chronic Ocular Hypertension Model of Rats. Front Physiol 2020; 11:682. [PMID: 32719611 PMCID: PMC7349004 DOI: 10.3389/fphys.2020.00682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/26/2020] [Indexed: 11/23/2022] Open
Abstract
Intraocular pressure (IOP) generates stress and strains in the laminar cribrosa and sclera, which may affect the development and progression of glaucoma. Scleral stiffness and material components have changed under elevated IOP. However, the detailed changes of the components of the hypertensive sclera are not well understood. In this study, we aimed to investigate the changes of the main components in the scleral extracellular matrix (ECM), and matrix metalloproteinase 2 (MMP2) and their relationship with time under chronic elevated IOP in Sprague–Dawley rats. An ocular hypertension model was established in the right eyes by anterior chamber injection with 0.3% carbomer solution. The left eye was used as the contralateral control. Immunofluorescent imaging of the tissue frozen sections, Western blot analysis, and quantitative PCR (qPCR) were performed to detect the expressions of type I collagen (COL1), elastin, and MMP2 in the sclera. The ocular hypertension model was successfully established. As compared to the left eyes, the immunofluorescence imaging, Western blot analysis, and qPCR showed that COL1, elastin, and MMP2 were significantly increased in the right eyes at 1 week (all P < 0.05). At 2 weeks, COL1 in the right eyes tended to be lower than that in the left eyes, while elastin and MMP2 were still higher (all P < 0.05) in the right eyes. When the IOP was elevated for 4 weeks, both COL1 and MMP2 were lower than those in the left eyes (all P < 0.05), while elastin between the two eyes was similar (P > 0.05). Under this 4-week hypertensive state, COL1 and elastin were initially elevated at 1 week, and then obviously reduced from 2 to 4 weeks. Consistently, MMP2 was gradually increased, with a peak at 2 weeks, and then decreased at 4 weeks. In conclusion, the chronic elevated IOP induced dynamic scleral ECM alterations in rats in a pressure- and time-dependent manner. MMP2 may play an important role in the balance between ECM synthesis and degradation and could potentially be a novel target for glaucoma intervention.
Collapse
Affiliation(s)
- Chen Qiu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jing Yao
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xi Zhang
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Shaohong Qian
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
37
|
Grytz R, Krishnan K, Whitley R, Libertiaux V, Sigal IA, Girkin CA, Downs JC. A Mesh-Free Approach to Incorporate Complex Anisotropic and Heterogeneous Material Properties into Eye-Specific Finite Element Models. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2020; 358:https://doi.org/10.1016/j.cma.2019.112654. [PMID: 32051652 PMCID: PMC7015153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Commercial finite element modeling packages do not have the tools necessary to effectively incorporate the complex anisotropic and heterogeneous material properties typical of the biological tissues of the eye. We propose a mesh-free approach to incorporate realistic material properties into finite element models of individual human eyes. The method is based on the idea that material parameters can be estimated or measured at so called control points, which are arbitrary and independent of the finite element mesh. The mesh-free approach approximates the heterogeneous material parameters at the Gauss points of each finite element while the boundary value problem is solved using the standard finite element method. The proposed method was applied to an eye-specific model a human posterior pole and optic nerve head. We demonstrate that the method can be used to effectively incorporate experimental measurements of the lamina cribrosa micro-structure into the eye-specific model. It was convenient to define characteristic material orientations at the anterior and posterior scleral surface based on the eye-specific geometry of each sclera. The mesh-free approach was effective in approximating these characteristic material directions with smooth transitions across the sclera. For the first time, the method enabled the incorporation of the complex collagen architecture of the peripapillary sclera into an eye-specific model including the recently discovered meridional fibers at the anterior surface and the depth dependent width of circumferential fibers around the scleral canal. The model results suggest that disregarding the meridional fiber region may lead to an underestimation of local strain concentrations in the retina. The proposed approach should simplify future studies that aim to investigate collagen remodeling in the sclera and optic nerve head or in other biological tissues with similar challenges.
Collapse
Affiliation(s)
- Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kapil Krishnan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ryan Whitley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vincent Libertiaux
- Equine Clinic, Department of Companion Animals and Equids, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- FARAH, Research Center of the Faculty of Veterinary Medicine of Liège, Belgium
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Christopher A. Girkin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
38
|
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
As the eye's main load-bearing connective tissue, the sclera is centrally important to vision. In addition to cooperatively maintaining refractive status with the cornea, the sclera must also provide stable mechanical support to vulnerable internal ocular structures such as the retina and optic nerve head. Moreover, it must achieve this under complex, dynamic loading conditions imposed by eye movements and fluid pressures. Recent years have seen significant advances in our knowledge of scleral biomechanics, its modulation with ageing and disease, and their relationship to the hierarchical structure of the collagen-rich scleral extracellular matrix (ECM) and its resident cells. This review focuses on notable recent structural and biomechanical studies, setting their findings in the context of the wider scleral literature. It reviews recent progress in the development of scattering and bioimaging methods to resolve scleral ECM structure at multiple scales. In vivo and ex vivo experimental methods to characterise scleral biomechanics are explored, along with computational techniques that combine structural and biomechanical data to simulate ocular behaviour and extract tissue material properties. Studies into alterations of scleral structure and biomechanics in myopia and glaucoma are presented, and their results reconciled with associated findings on changes in the ageing eye. Finally, new developments in scleral surgery and emerging minimally invasive therapies are highlighted that could offer new hope in the fight against escalating scleral-related vision disorder worldwide.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, UK; Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research & Innovation Institute Singapore (NewRIIS), Singapore.
| | - Ian A Sigal
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Rafael Grytz
- Department of Ophthalmology & Visual Sciences, University of Alabama at Birmingham, USA
| | - Yi Hua
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore
| |
Collapse
|
39
|
Susanna BN, Ogata NG, Jammal AA, Susanna CN, Berchuck SI, Medeiros FA. Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure. Ophthalmology 2019; 126:1640-1646. [PMID: 31519385 DOI: 10.1016/j.ophtha.2019.07.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the incidence and risk factors for glaucomatous visual field progression in eyes with well-controlled intraocular pressure (IOP). DESIGN Prospective cohort. PARTICIPANTS A total of 460 eyes of 334 patients with glaucoma under treatment. METHODS Study subjects had a mean follow-up of 4.3±0.8 years. Patients were classified as well controlled if all IOP measurements were less than 18 mmHg. Rates of visual field progression were calculated using ordinary least-squares linear regression of standard automated perimetry (SAP) mean deviation (MD) values over time. Progression was defined as a significantly negative MD slope (alpha = 0.05). MAIN OUTCOME MEASURES Rates of SAP MD change; mean and peak IOP, and IOP fluctuation; and corneal biomechanics: corneal hysteresis (CH), central corneal thickness (CCT), and corneal index. RESULTS Of the 179 eyes with well-controlled IOP, 42 (23.5%) demonstrated visual field progression. There was no significant difference between progressing and stable patients in baseline MD (-6.4±7.1 decibels [dB] vs. -6.0±6.2 dB; P = 0.346), mean IOP (11.7±2.0 mmHg vs. 12.1±2.3 mmHg; P = 0.405), IOP fluctuation (1.6±0.6 mmHg vs. 1.6±0.5 mmHg; P = 0.402), or peak IOP (14.3±1.9 mmHg vs. 14.6±2.1 mmHg; P = 0.926). Progressing eyes had significantly lower CH (8.6±1.3 mmHg vs. 9.4±1.6 mmHg; P = 0.014) and thinner CCT (515.1±33.1 μm vs. 531.1±42.4 μm; P = 0.018, respectively) compared with stable eyes. In the multivariate analysis, a 1 standard deviation lower corneal index, a summation of normalized versions of CH and CCT, resulted in a 68% higher risk of progression (odds ratio, 1.68; 95% confidence interval, 1.08-2.62; P = 0.021). CONCLUSIONS Approximately one-quarter of eyes with well-controlled IOP may show visual field progression over time. Thin cornea and low CH are main risk factors.
Collapse
Affiliation(s)
- Bianca N Susanna
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina; ABC Foundation School of Medicine, Santo André, Brazil; Hamilton Glaucoma Center, University of California, San Diego, La Jolla, California
| | - Nara G Ogata
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Alessandro A Jammal
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Carolina N Susanna
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina; ABC Foundation School of Medicine, Santo André, Brazil; Hamilton Glaucoma Center, University of California, San Diego, La Jolla, California
| | - Samuel I Berchuck
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Statistical Science and Forge, Duke University, Durham, North Carolina
| | - Felipe A Medeiros
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina.
| |
Collapse
|
40
|
Tong J, Kedar S, Ghate D, Gu L. Indirect Traumatic Optic Neuropathy Induced by Primary Blast: A Fluid–Structure Interaction Study. J Biomech Eng 2019; 141:2733245. [DOI: 10.1115/1.4043668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 11/08/2022]
Abstract
Current knowledge of traumatic ocular injury is still limited as most studies have focused on the ocular injuries that happened at the anterior part of the eye, whereas the damage to the optic nerve known as traumatic optic neuropathy (TON) is poorly understood. The goal of this study is to understand the mechanism of the TON following the primary blast through a fluid–structure interaction model. An axisymmetric three-dimensional (3D) eye model with detailed orbital components was developed to capture the dynamics of the eye under the blast wave. Our numerical results demonstrated a transient pressure elevation in both vitreous and cerebrospinal fluid (CSF). A high strain rate over 100 s−1 was observed throughout the optic nerve during the blast with the most vulnerable part located at the intracanalicular region. The optic nerve deforming at such a high strain rate may account for the axonal damage and vision loss in patients subjected to the primary blast. The results from this work would enhance the understanding of indirect TON and provide guidance in the design of protective eyewear against such injury.
Collapse
Affiliation(s)
- Junfei Tong
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 e-mail:
| | - Sachin Kedar
- Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119; Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198-8440
| | - Deepta Ghate
- Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656
| |
Collapse
|
41
|
Kistenev YV, Vrazhnov DA, Nikolaev VV, Sandykova EA, Krivova NA. Analysis of Collagen Spatial Structure Using Multiphoton Microscopy and Machine Learning Methods. BIOCHEMISTRY (MOSCOW) 2019; 84:S108-S123. [PMID: 31213198 DOI: 10.1134/s0006297919140074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathogenesis of many diseases is associated with changes in the collagen spatial structure. Traditionally, the 3D structure of collagen in biological tissues is analyzed using histochemistry, immunohistochemistry, magnetic resonance imaging, and X-radiography. At present, multiphoton microscopy (MPM) is commonly used to study the structure of biological tissues. MPM has a high spatial resolution comparable to histological analysis and can be used for direct visualization of collagen spatial structure. Because of a large volume of data accumulated due to the high spatial resolution of MPM, special analytical methods should be used for identification of informative features in the images and quantitative evaluation of relationship between these features and pathological processes resulting in the destruction of collagen structure. Here, we describe current approaches and achievements in the identification of informative features in the MPM images of collagen in biological tissues, as well as the development on this basis of algorithms for computer-aided classification of collagen structures using machine learning as a type of artificial intelligence methods.
Collapse
Affiliation(s)
- Yu V Kistenev
- Tomsk State University, Tomsk, 634050, Russia. .,Siberian State Medical University, Tomsk, 634050, Russia.,Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, Tomsk, 634055, Russia
| | - D A Vrazhnov
- Tomsk State University, Tomsk, 634050, Russia.,Siberian State Medical University, Tomsk, 634050, Russia
| | - V V Nikolaev
- Tomsk State University, Tomsk, 634050, Russia.,Siberian State Medical University, Tomsk, 634050, Russia
| | - E A Sandykova
- Tomsk State University, Tomsk, 634050, Russia.,Siberian State Medical University, Tomsk, 634050, Russia
| | - N A Krivova
- Tomsk State University, Tomsk, 634050, Russia
| |
Collapse
|
42
|
Relative Contributions of Intracranial Pressure and Intraocular Pressure on Lamina Cribrosa Behavior. J Ophthalmol 2019; 2019:3064949. [PMID: 31007950 PMCID: PMC6441528 DOI: 10.1155/2019/3064949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose To characterize the relative contributions of intraocular pressure (IOP) and intracranial pressure (ICP) on lamina cribrosa (LC) behavior, specifically LC depth (LCD) and LC peak strain. Methods An axially symmetric finite element model of the posterior eye was constructed with an elongated optic nerve and retro-orbital subarachnoid space ensheathed by pia and dura mater. The mechanical environment in LC was evaluated with ICP ranging from 5 to 15 mmHg and IOP from 10 to 45 mmHg. LCD and LC peak strains at various ICP and IOP levels were estimated using full factorial experiments. Multiple linear regression analyses were then applied to estimate LCD and LC peak strain using ICP and IOP as independent variables. Results Both increased ICP and decreased IOP led to a smaller LCD and LC peak strain. The regression correlation coefficient for LCD was -1.047 for ICP and 1.049 for IOP, and the ratio of the two regression coefficients was -1.0. The regression correlation coefficient for LC peak strain was -0.025 for ICP and 0.106 for IOP, and the ratio of the two regression coefficients was -0.24. A stiffer sclera increased LCD but decreased LC peak strain; besides, it increased the relative contribution of ICP on the LCD but decreased that on the LC peak strain. Conclusions ICP and IOP have opposing effects on LCD and LC peak strain. While their effects on LCD are equivalent, the effect of IOP on LC peak strain is 3 times larger than that of ICP. The influences of these pressure are dependent on sclera material properties, which might explain the pathogenesis of ocular hypertension and normal-tension glaucoma.
Collapse
|
43
|
Wang X, Teoh CKG, Chan ASY, Thangarajoo S, Jonas JB, Girard MJA. Biomechanical Properties of Bruch's Membrane-Choroid Complex and Their Influence on Optic Nerve Head Biomechanics. Invest Ophthalmol Vis Sci 2019; 59:2808-2817. [PMID: 30029276 DOI: 10.1167/iovs.17-22069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to measure the rupture pressure and the biomechanical properties of porcine Bruch's membrane (BM)-choroid complex (BMCC) and the influences of BM on optic nerve head (ONH) tissues. Methods The biomechanical properties of BMCC were extracted through uniaxial tensile tests of 10 BMCC specimens from 10 porcine eyes; the rupture pressures of BMCC were measured through burst tests of 20 porcine eyes; and the influence of BM on IOP-induced ONH deformations were investigated using finite element (FE) analysis. Results Uniaxial experimental results showed that the average elastic (tangent) moduli of BMCC samples at 0% and 5% strain were 1.60 ± 0.81 and 2.44 ± 1.02 MPa, respectively. Burst tests showed that, on average, BMCC could sustain an IOP of 82 mm Hg before rupture. FE simulation results predicted that, under elevated IOP, prelamina tissue strains increased with increasing BM stiffness. On the contrary, lamina cribrosa strains showed an opposite trend but the effects were small. Conclusions BMCC stiffness is comparable or higher than those of other ocular tissues and can sustain a relatively high pressure before rupture. Additionally, BM may have a nonnegligible influence on IOP-induced ONH deformations.
Collapse
Affiliation(s)
- Xiaofei Wang
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Clarence Ken Guan Teoh
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Anita S Y Chan
- Translational Ophthalmic Pathology, Singapore Eye Research Institute, Ophthalmic Pathology Service, Singapore National Eye Centre, Singapore.,Duke-National University of Singapore Medical School, Singapore
| | - Sathiyan Thangarajoo
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University, Heidelberg, Germany.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, and Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.,Translational Ophthalmic Pathology, Singapore Eye Research Institute, Ophthalmic Pathology Service, Singapore National Eye Centre, Singapore
| |
Collapse
|
44
|
Yamamoto T. The impact of disc hemorrhage studies on our understanding of glaucoma: a systematic review 50 years after the rediscovery of disc hemorrhage. Jpn J Ophthalmol 2018; 63:7-25. [PMID: 30465174 DOI: 10.1007/s10384-018-0641-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW To trace the influence of disc hemorrhage studies on our understanding of glaucoma. SOURCES Major articles published during the last 50 years since the rediscovery of disc hemorrhage were identified. A total of 196 articles were selected from 435 articles retrieved using the keywords glaucoma and disc hemorrhage as of August 9 2018 from PubMed. RECENT FINDINGS The main characteristics of disc hemorrhage, including its morphology, recurrence rate, duration, increased incidence in glaucoma, and role in the progression of normal tension glaucoma was well understood by the year 2000. Since then, studies have focused on more sophisticated and accurate methods of elucidating both structural and functional progression, with special attention to the role of the lamina cribrosa. Nevertheless, both the mechanism of disc hemorrhage development and its fuller relationship with glaucoma remain unclear. Disc hemorrhage research requires careful study of glaucomatous optic neuropathy. This has been facilitated by recent advances in optical coherence tomography (OCT) angiography and other OCT technologies. Furthermore, animal studies of disc hemorrhage promise new insights into glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Ophthalmology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu-shi, 501-1194, Japan.
| |
Collapse
|
45
|
Voorhees AP, Jan NJ, Hua Y, Yang B, Sigal IA. Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications. Acta Biomater 2018; 79:113-122. [PMID: 30142444 DOI: 10.1016/j.actbio.2018.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 01/29/2023]
Abstract
The collagen fiber architecture of the peripapillary sclera (PPS), which surrounds the scleral canal, is a critical factor in determining the mechanical response of the optic nerve head (ONH) to variations in intraocular pressure (IOP). Experimental and clinical evidence point to IOP-induced deformations within the scleral canal as important contributing factors of glaucomatous neural tissue damage and consequent vision loss. Hence, it is imperative to understand PPS architecture and biomechanics. Current consensus is that the fibers of the PPS form a closed ring around the canal to support the delicate neural tissues within. We propose an alternative fiber architecture for the PPS, in which the scleral canal is supported primarily by long-running fibers oriented tangentially to the canal. We present evidence that this tangential model is consistent with histological observations in multiple species, and with quantitative measurements of fiber orientation obtained from small angle light scattering and wide-angle X-ray scattering. Using finite element models, we investigated the biomechanical implications of a tangential fiber PPS architecture. We found that the tangential arrangement of fibers afforded better mechanical support to the tissues within the scleral canal as compared to a simple circumferential ring of fibers or a combination of fibers oriented radially and circumferentially. We also found that subtle variations from a tangential orientation could reproduce clinically observed ONH behavior which has yet to be explained using current theories of PPS architecture and simulation, namely, the contraction of the scleral canal under elevated IOP. STATEMENT OF SIGNIFICANCE It is hypothesized that vision loss in glaucoma is due to excessive mechanical deformation within the neural tissue inside the scleral canal. This study proposes a new model for how the collagen of the peripapillary sclera surrounding the canal is organized to support the delicate neural tissue inside. Previous low-resolution studies of the peripapillary sclera suggested that the collagen fibers are arranged in a ring around the canal. Instead, we provide microscopic evidence suggesting that the canal is also supported by long-running interwoven fibers oriented tangentially to the canal. We demonstrate that this arrangement has multiple biomechanical advantages over a circular collagen arrangement and can explain previously unexplained experimental findings including contraction of the scleral canal under elevated intraocular pressure.
Collapse
Affiliation(s)
- Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Feola AJ, Nelson ES, Myers J, Ethier CR, Samuels BC. The Impact of Choroidal Swelling on Optic Nerve Head Deformation. ACTA ACUST UNITED AC 2018; 59:4172-4181. [DOI: 10.1167/iovs.18-24463] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Andrew J. Feola
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, Georgia, United States
| | | | - Jerry Myers
- NASA Glenn Research Center, Cleveland, Ohio, United States
| | - C. Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
| | - Brian C. Samuels
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
47
|
Susanna BN, Ogata NG, Daga FB, Susanna CN, Diniz-Filho A, Medeiros FA. Association between Rates of Visual Field Progression and Intraocular Pressure Measurements Obtained by Different Tonometers. Ophthalmology 2018; 126:49-54. [PMID: 30114419 DOI: 10.1016/j.ophtha.2018.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/15/2018] [Accepted: 07/31/2018] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the associations between intraocular pressure (IOP) measurements obtained by different tonometric methods and rates of visual field loss in a cohort of patients with glaucoma followed over time. DESIGN Prospective, observational cohort study. PARTICIPANTS This study included 213 eyes of 125 glaucomatous patients who were followed for an average of 2.4±0.6 years. METHODS At each visit, IOP measurements were obtained using Goldmann applanation tonometry (GAT), the Ocular Response Analyzer (ORA) (Reichert, Inc., Depew, NY), corneal-compensated IOP (IOPcc), and the ICare Rebound Tonometer (RBT) (Tiolat, Oy, Helsinki, Finland). Rates of visual field loss were assessed by standard automated perimetry (SAP) mean deviation (MD). Linear mixed models were used to investigate the relationship between mean IOP by each tonometer and rates of visual field loss over time, while adjusting for age, race, central corneal thickness, and corneal hysteresis. MAIN OUTCOME MEASURES Strength of associations (R2) between IOP measurements from each tonometer and rates of SAP MD change over time. RESULTS Average values for mean IOP over time measured by GAT, ORA, and RBT were 14.4±3.3, 15.2±4.2, and 13.4±4.2 mmHg, respectively. Mean IOPcc had the strongest relationship with SAP MD loss over time (R2 = 24.5%) and was significantly different from the models using mean GAT IOP (R2 = 11.1%; 95% confidence interval [CI] of the difference, 6.6-19.6) and mean RBT IOP (R2= 5.8%; 95% CI of the difference, 11.1-25.0). CONCLUSIONS Mean ORA IOPcc was more predictive of rates of visual field loss than mean IOP obtained by GAT or RBT. By correcting for corneal-induced artifacts, IOPcc measurements may present significant advantages for predicting clinically relevant outcomes in patients with glaucoma.
Collapse
Affiliation(s)
- Bianca N Susanna
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Ophthalmology, University of California, San Diego, La Jolla, California; ABC Foundation School of Medicine, Santo André, Brazil
| | - Nara G Ogata
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Fábio B Daga
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Carolina N Susanna
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Ophthalmology, University of California, San Diego, La Jolla, California; ABC Foundation School of Medicine, Santo André, Brazil
| | - Alberto Diniz-Filho
- Department of Ophthalmology, University of California, San Diego, La Jolla, California
| | - Felipe A Medeiros
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Ophthalmology, University of California, San Diego, La Jolla, California.
| |
Collapse
|
48
|
Jin Y, Wang X, Zhang L, Jonas JB, Aung T, Schmetterer L, Girard MJA. Modeling the Origin of the Ocular Pulse and Its Impact on the Optic Nerve Head. ACTA ACUST UNITED AC 2018; 59:3997-4010. [DOI: 10.1167/iovs.17-23454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yuejiao Jin
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Xiaofei Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Liang Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Jost B. Jonas
- Department of Ophthalmology of the Medical Faculty Mannheim of the Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Michaël J. A. Girard
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| |
Collapse
|
49
|
Hua Y, Voorhees AP, Sigal IA. Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics. Invest Ophthalmol Vis Sci 2018; 59:154-165. [PMID: 29332130 PMCID: PMC5769499 DOI: 10.1167/iovs.17-22488] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose To model the sensitivity of the optic nerve head (ONH) biomechanical environment to acute variations in IOP, cerebrospinal fluid pressure (CSFP), and central retinal artery blood pressure (BP). Methods We extended a previously published numerical model of the ONH to include 24 factors representing tissue anatomy and mechanical properties, all three pressures, and constraints on the optic nerve (CON). A total of 8340 models were studied to predict factor influences on 98 responses in a two-step process: a fractional factorial screening analysis to identify the 16 most influential factors, followed by a response surface methodology to predict factor effects in detail. Results The six most influential factors were, in order: IOP, CON, moduli of the sclera, lamina cribrosa (LC) and dura, and CSFP. IOP and CSFP affected different aspects of ONH biomechanics. The strongest influence of CSFP, more than twice that of IOP, was on the rotation of the peripapillary sclera. CSFP had similar influence on LC stretch and compression to moduli of sclera and LC. On some ONHs, CSFP caused large retrolamina deformations and subarachnoid expansion. CON had a strong influence on LC displacement. BP overall influence was 633 times smaller than that of IOP. Conclusions Models predict that IOP and CSFP are the top and sixth most influential factors on ONH biomechanics. Different IOP and CSFP effects suggest that translaminar pressure difference may not be a good parameter to predict biomechanics-related glaucomatous neuropathy. CON may drastically affect the responses relating to gross ONH geometry and should be determined experimentally.
Collapse
Affiliation(s)
- Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Andrew P Voorhees
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
50
|
Susanna CN, Diniz-Filho A, Daga FB, Susanna BN, Zhu F, Ogata NG, Medeiros FA. A Prospective Longitudinal Study to Investigate Corneal Hysteresis as a Risk Factor for Predicting Development of Glaucoma. Am J Ophthalmol 2018; 187:148-152. [PMID: 29305310 DOI: 10.1016/j.ajo.2017.12.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate the role of corneal hysteresis (CH) as a risk factor for development of glaucoma. DESIGN Prospective observational cohort study. METHODS Two hundred and eighty-seven eyes of 199 patients suspected of having glaucoma were followed for an average of 3.9 ± 1.8 years. All eyes had normal visual fields at baseline. Development of glaucoma was defined as occurrence of 3 consecutive abnormal standard automated perimetry tests during follow-up, defined as pattern standard deviation (PSD) < 5%, and/or Glaucoma Hemifield Test outside normal limits. Measurements of CH were acquired at baseline using the Ocular Response Analyzer (ORA). Univariable and multivariable Cox regression models were used to investigate baseline factors associated with development of visual field loss over time. RESULTS Fifty-four (19%) eyes developed repeatable visual field defects during follow-up. Measurements of CH at baseline were significantly lower in patients who developed glaucoma vs those who did not (9.5 ± 1.5 mm Hg vs 10.2 ± 2.0 mm Hg; P = .012). Each 1-mm Hg lower CH was associated with an increase of 21% in the risk of developing glaucoma during follow-up (95% confidence interval [CI]: 1.04-1.41; P = .013). In a multivariable model adjusting for age, intraocular pressure, central corneal thickness, PSD, and treatment, CH was still predictive of development of glaucoma (hazard ratio = 1.20; 95% CI: 1.01-1.42; P = .040). CONCLUSION Baseline lower CH measurements were significantly associated with increased risk of developing glaucomatous visual field defects over time. The prospective longitudinal design of this study supports a role of CH as a risk factor for developing glaucoma.
Collapse
Affiliation(s)
- Carolina N Susanna
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Alberto Diniz-Filho
- Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Fábio B Daga
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Bianca N Susanna
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Feilin Zhu
- Department of Ophthalmology, University of California San Diego, La Jolla, California
| | - Nara G Ogata
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Felipe A Medeiros
- Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Ophthalmology, University of California San Diego, La Jolla, California.
| |
Collapse
|