1
|
Cideciyan AV, Roman AJ, Warner RL, Sumaroka A, Wu V, Jiang YY, Swider M, Garafalo AV, Viarbitskaya I, Russell RC, Kohl S, Wissinger B, Ripamonti C, Barbur JL, Bach M, Carroll J, Morgan JIW, Aleman TS. Evaluation of Retinal Structure and Visual Function in Blue Cone Monochromacy to Develop Clinical Endpoints for L-opsin Gene Therapy. Int J Mol Sci 2024; 25:10639. [PMID: 39408969 PMCID: PMC11477341 DOI: 10.3390/ijms251910639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
L-cone opsin expression by gene therapy is a promising treatment for blue cone monochromacy (BCM) caused by congenital lack of long- and middle-wavelength-sensitive (L/M) cone function. Eight patients with BCM and confirmed pathogenic variants at the OPN1LW/OPN1MW gene cluster participated. Optical coherence tomography (OCT), chromatic perimetry, chromatic microperimetry, chromatic visual acuity (VA), and chromaticity thresholds were performed with unmodified commercial equipment and/or methods available in the public domain. Adaptive optics scanning laser ophthalmoscope (AOSLO) imaging was performed in a subset of patients. Outer retinal changes were detectable by OCT with an age-related effect on the foveal disease stage. Rod and short-wavelength-sensitive (S) cone functions were relatively retained by perimetry, although likely impacted by age-related increases in the pre-retinal absorption of short-wavelength lights. The central macula showed a large loss of red sensitivity on dark-adapted microperimetry. Chromatic VAs with high-contrast red gratings on a blue background were not detectable. Color vision was severely deficient. AOSLO imaging showed reduced total cone density with majority of the population being non-waveguiding. This study developed and evaluated specialized outcomes that will be needed for the determination of efficacy and safety in human clinical trials. Dark-adapted microperimetry with a red stimulus sampling the central macula would be a key endpoint to evaluate the light sensitivity improvements. VA changes specific to L-opsin can be measured with red gratings on a bright blue background and should also be considered as outcome measures in future interventional trials.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Raymond L. Warner
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Yu Y. Jiang
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Robert C. Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Susanne Kohl
- Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany; (S.K.); (B.W.)
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany; (S.K.); (B.W.)
| | | | - John L. Barbur
- Centre for Applied Vision Research, School of Health & Psychological Sciences, City St. George’s, University of London, London EC1V 0HB, UK;
| | - Michael Bach
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany;
| | - Joseph Carroll
- Departments of Ophthalmology & Visual Science, Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Tomas S. Aleman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| |
Collapse
|
2
|
Sechrest ER, Chmelik K, Tan WD, Deng WT. Blue cone monochromacy and gene therapy. Vision Res 2023; 208:108221. [PMID: 37001420 PMCID: PMC10182257 DOI: 10.1016/j.visres.2023.108221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Blue cone monochromacy (BCM) is a congenital vision disorder characterized by complete loss or severely reduced long- and middle-wavelength cone function, caused by mutations in the OPN1LW/OPN1MW gene cluster on the X-chromosome. BCM patients typically suffer from poor visual acuity, severely impaired color discrimination, myopia, and nystagmus. In this review, we cover the genetic causes of BCM, clinical features of BCM patients, genetic testing, and clinical outcome measurements for future BCM clinical trials. However, our emphasis is on detailing the animal models for BCM and gene therapy using adeno-associated vectors (AAV). We describe two mouse models resembling the two most common causes of BCM, current progress in proof-of-concept studies to treat BCM with deletion mutations, the challenges we face, and future directions.
Collapse
Affiliation(s)
- Emily R Sechrest
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, United States
| | - Kathryn Chmelik
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, United States; Department of Biochemistry, West Virginia University, Morgantown, WV 26505, United States
| | - Wendy D Tan
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, United States
| | - Wen-Tao Deng
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, United States; Department of Biochemistry, West Virginia University, Morgantown, WV 26505, United States.
| |
Collapse
|
3
|
Yan B, Nirenberg S. An Engineering Platform for Clinical Application of Optogenetic Therapy in Retinal Degenerative Diseases. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:296-305. [PMID: 37250684 PMCID: PMC10217532 DOI: 10.1109/jtehm.2023.3275103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Optogenetics is a new approach for controlling neural circuits with numerous applications in both basic and clinical science. In retinal degenerative diseases, the photoreceptors die, but inner retinal cells remain largely intact. By expressing light sensitive proteins in the remaining cells, optogenetics has the potential to offer a novel approach to restoring vision. In the past several years, optogenetics has advanced into an early clinical stage, and promising results have been reported. At the current stage, there is an urgent need to develop hardware and software for clinical training, testing, and rehabilitation in optogenetic therapy, which is beyond the capability of existing ophthalmic equipment. In this paper, we present an engineering platform consisting of hardware and software utilities, which allow clinicians to interactively work with patients to explore and assess their vision in optogenetic treatment, providing the basis for prosthetic design, customization, and prescription. This approach is also applicable to other therapies that utilize light activation of neurons, such as photoswitches.Clinical and Translational Impact Statement-The engineering platform allows clinicians to conduct training, testing, and rehabilitation in optogenetic gene therapy for retinal degenerative diseases, providing the basis for prosthetic design, customization, and prescription.
Collapse
Affiliation(s)
- Boyuan Yan
- Department of Physiology and Biophysics, Weill Cornell MedicineCornell UniversityNew YorkNY10065USA
- Bionic Sight Inc.New YorkNY10065USA
| | - Sheila Nirenberg
- Department of Physiology and Biophysics, Weill Cornell MedicineCornell UniversityNew YorkNY10065USA
- Bionic Sight Inc.New YorkNY10065USA
| |
Collapse
|
4
|
Cojocaru AE, Corna A, Reh M, Zeck G. High spatial resolution artificial vision inferred from the spiking output of retinal ganglion cells stimulated by optogenetic and electrical means. Front Cell Neurosci 2022; 16:1033738. [PMID: 36568888 PMCID: PMC9780279 DOI: 10.3389/fncel.2022.1033738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
With vision impairment affecting millions of people world-wide, various strategies aiming at vision restoration are being undertaken. Thanks to decades of extensive research, electrical stimulation approaches to vision restoration began to undergo clinical trials. Quite recently, another technique employing optogenetic therapy emerged as a possible alternative. Both artificial vision restoration strategies reported poor spatial resolution so far. In this article, we compared the spatial resolution inferred ex vivo under ideal conditions using a computational model analysis of the retinal ganglion cell (RGC) spiking activity. The RGC spiking was stimulated in epiretinal configuration by either optogenetic or electrical means. RGCs activity was recorded from the ex vivo retina of transgenic late-stage photoreceptor-degenerated mice (rd10) using a high-density Complementary Metal Oxide Semiconductor (CMOS) based microelectrode array. The majority of retinal samples were stimulated by both, optogenetic and electrical stimuli using a spatial grating stimulus. A population-level analysis of the spiking activity of identified RGCs was performed and the spatial resolution achieved through electrical and optogenetic photo-stimulation was inferred using a support vector machine classifier. The best f1 score of the classifier for the electrical stimulation in epiretinal configuration was 86% for 32 micron wide gratings and increased to 100% for 128 microns. For optogenetically activated cells, we obtained high f1 scores of 82% for 10 microns grid width for a photo-stimulation frequency of 2.5 Hz and 73% for a photo-stimulation frequency of 10 Hz. A subsequent analysis, considering only the RGCs modulated in both electrical and optogenetic stimulation protocols revealed no significant difference in the prediction accuracy between the two stimulation modalities. The results presented here indicate that a high spatial resolution can be achieved for electrical or optogenetic artificial stimulation using the activated retinal ganglion cell output.
Collapse
Affiliation(s)
| | - Andrea Corna
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Miriam Reh
- Institute for Ophthalmic Research at the University of Tübingen, Tübingen, Germany
| | - Günther Zeck
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| |
Collapse
|
5
|
Jacobson SG, Cideciyan AV, Ho AC, Roman AJ, Wu V, Garafalo AV, Sumaroka A, Krishnan AK, Swider M, Mascio AA, Kay CN, Yoon D, Fujita KP, Boye SL, Peshenko IV, Dizhoor AM, Boye SE. Night vision restored in days after decades of congenital blindness. iScience 2022; 25:105274. [PMID: 36274938 PMCID: PMC9579015 DOI: 10.1016/j.isci.2022.105274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Signaling of vision to the brain starts with the retinal phototransduction cascade which converts visible light from the environment into chemical changes. Vision impairment results when mutations inactivate proteins of the phototransduction cascade. A severe monogenically inherited blindness, Leber congenital amaurosis (LCA), is caused by mutations in the GUCY2D gene, leading to a molecular defect in the production of cyclic GMP, the second messenger of phototransduction. We studied two patients with GUCY2D-LCA who were undergoing gene augmentation therapy. Both patients had large deficits in rod photoreceptor-based night vision before intervention. Within days of therapy, rod vision in both patients changed dramatically; improvements in visual function and functional vision in these hyper-responding patients reached more than 3 log10 units (1000-fold), nearing healthy rod vision. Quick activation of the complex molecular pathways from retinal photoreceptor to visual cortex and behavior is thus possible in patients even after being disabled and dormant for decades.
Collapse
Affiliation(s)
- Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arun K. Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abraham A. Mascio
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dan Yoon
- Atsena Therapeutics, Inc., Durham, NC 27709, USA
| | | | - Sanford L. Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32601, USA
| | - Igor V. Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | | | - Shannon E. Boye
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Lindner M, Gilhooley MJ, Hughes S, Hankins MW. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog Retin Eye Res 2022; 91:101089. [PMID: 35691861 DOI: 10.1016/j.preteyeres.2022.101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Degenerative retinal disorders are a diverse family of diseases commonly leading to irreversible photoreceptor death, while leaving the inner retina relatively intact. Over recent years, innovative gene replacement therapies aiming to halt the progression of certain inherited retinal disorders have made their way into clinics. By rendering surviving retinal neurons light sensitive optogenetic gene therapy now offers a feasible treatment option that can restore lost vision, even in late disease stages and widely independent of the underlying cause of degeneration. Since proof-of-concept almost fifteen years ago, this field has rapidly evolved and a detailed first report on a treated patient has recently been published. In this article, we provide a review of optogenetic approaches for vision restoration. We discuss the currently available optogenetic tools and their relative advantages and disadvantages. Possible cellular targets will be discussed and we will address the question how retinal remodelling may affect the choice of the target and to what extent it may limit the outcomes of optogenetic vision restoration. Finally, we will analyse the evidence for and against optogenetic tool mediated toxicity and will discuss the challenges associated with clinical translation of this promising therapeutic concept.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037, Marburg, Germany
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom; The Institute of Ophthalmology, University College London, EC1V 9EL, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Jules Thorn SCNi, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
7
|
Chen W, Li C, Liang W, Li Y, Zou Z, Xie Y, Liao Y, Yu L, Lin Q, Huang M, Li Z, Zhu X. The Roles of Optogenetics and Technology in Neurobiology: A Review. Front Aging Neurosci 2022; 14:867863. [PMID: 35517048 PMCID: PMC9063564 DOI: 10.3389/fnagi.2022.867863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023] Open
Abstract
Optogenetic is a technique that combines optics and genetics to control specific neurons. This technique usually uses adenoviruses that encode photosensitive protein. The adenovirus may concentrate in a specific neural region. By shining light on the target nerve region, the photosensitive protein encoded by the adenovirus is controlled. Photosensitive proteins controlled by light can selectively allow ions inside and outside the cell membrane to pass through, resulting in inhibition or activation effects. Due to the high precision and minimally invasive, optogenetics has achieved good results in many fields, especially in the field of neuron functions and neural circuits. Significant advances have also been made in the study of many clinical diseases. This review focuses on the research of optogenetics in the field of neurobiology. These include how to use optogenetics to control nerve cells, study neural circuits, and treat diseases by changing the state of neurons. We hoped that this review will give a comprehensive understanding of the progress of optogenetics in the field of neurobiology.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Wanmin Liang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunqi Li
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zhuoheng Zou
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yunxuan Xie
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Yangzeng Liao
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Lin Yu
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Meiying Huang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
8
|
Taylor LJ, Josan AS, Pfau M, Simunovic MP, Jolly JK. Scotopic microperimetry: evolution, applications and future directions. Clin Exp Optom 2022; 105:793-800. [PMID: 35025727 DOI: 10.1080/08164622.2021.2023477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
For many inherited and acquired retinal diseases, reduced night vision is a primary symptom. Despite this, the clinical testing options for spatially resolved scotopic vision have until recently been limited. Scotopic microperimetry is a relatively new visual function test that combines two-colour perimetry with fundus-controlled perimetry performed in scotopic luminance conditions. The technique enables spatially resolved mapping of central retinal sensitivity alongside the ability to distinguish between rod and cone photoreceptor sensitivities. Two companies produce commercially available scotopic microperimeters - Nidek (Nidek Technologies Srl, Padova, Italy) and CenterVue (CenterVue S.p.A., Padova, Italy). Scotopic microperimetry is a promising technology capable of detecting changes in retinal sensitivity before changes in other measures of visual function. Scotopic microperimetry is a promising functional biomarker that has the potential as a useful clinical trial outcome measure. This review summarises the evolution and applications of scotopic microperimetry, and discusses testing options, including testing grid selection, dark-adaptation time and threshold sensitivity analyses.
Collapse
Affiliation(s)
- Laura J Taylor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Amandeep S Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maximilian Pfau
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew P Simunovic
- Save Sight Institute, Discipline of Ophthalmology, University of Sydney, Sydney, Australia
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Vision and Eye Research Institute, Anglia Ruskin University Medical School, Cambridge, UK
| |
Collapse
|
9
|
Krishnan AK, Roman AJ, Swider M, Jacobson SG, Cideciyan AV. Macular Rod Function in Retinitis Pigmentosa Measured With Scotopic Microperimetry. Transl Vis Sci Technol 2021; 10:3. [PMID: 34473224 PMCID: PMC8419874 DOI: 10.1167/tvst.10.11.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose To investigate the validity and reliability of macular rod photoreceptor function measurement with a microperimeter. Methods Macular sensitivity in dark-adapted retinitis pigmentosa (RP) patients (22 eyes; 9–67 years of age) and controls (five eyes; 22–55 years of age) was assessed with a modified Humphrey field analyzer (mHFA), as well as a scotopic microperimeter (Nidek MP-1S). Sensitivity loss (SL) was estimated at rod-mediated locations. All RP eyes were re-evaluated at a second visit 6 months later. The dynamic range of the MP-1S was expanded with a range of neutral-density filters (NDFs). Results In controls, a 4 NDF was used at all macular locations tested. In patients with RP, 0 to 3 NDFs were used, depending on the local disease severity. At rod-mediated locations (n = 281), SL estimates obtained with the MP-1S were highly correlated (r = 0.80) with those of the mHFA. The inter-perimeter difference of SL averaged less than 3 decibels (dB) with all NDFs, except those with most severe locations evaluated with a 0 NDF, where the difference averaged more than 6 dB. The results were similar on the second visit. Conclusions The MP-1S estimates of SL are highly correlated with those of the mHFA over a wide range of disease severity replicated at two visits; however, there was an unexplained bias in the magnitude of SL estimated by the MP-1S especially at loci with severe disease. Translational Relevance MP-1S scotopic microperimetry can be used to evaluate changes to macular rod function, but evaluation of treatment potential by quantitative comparison of SL to retinal structure will be more challenging.
Collapse
Affiliation(s)
- Arun K Krishnan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Pfau M, Jolly JK, Wu Z, Denniss J, Lad EM, Guymer RH, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials. Prog Retin Eye Res 2021; 82:100907. [PMID: 33022378 DOI: 10.1016/j.preteyeres.2020.100907] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Fundus-controlled perimetry (FCP, also called 'microperimetry') allows for spatially-resolved mapping of visual sensitivity and measurement of fixation stability, both in clinical practice as well as research. The accurate spatial characterization of visual function enabled by FCP can provide insightful information about disease severity and progression not reflected by best-corrected visual acuity in a large range of disorders. This is especially important for monitoring of retinal diseases that initially spare the central retina in earlier disease stages. Improved intra- and inter-session retest-variability through fundus-tracking and precise point-wise follow-up examinations even in patients with unstable fixation represent key advantages of these technique. The design of disease-specific test patterns and protocols reduces the burden of extensive and time-consuming FCP testing, permitting a more meaningful and focused application. Recent developments also allow for photoreceptor-specific testing through implementation of dark-adapted chromatic and photopic testing. A detailed understanding of the variety of available devices and test settings is a key prerequisite for the design and optimization of FCP protocols in future natural history studies and clinical trials. Accordingly, this review describes the theoretical and technical background of FCP, its prior application in clinical and research settings, data that qualify the application of FCP as an outcome measure in clinical trials as well as ongoing and future developments.
Collapse
Affiliation(s)
- Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Jasleen Kaur Jolly
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, USA.
| |
Collapse
|
11
|
Lindner M, Gilhooley MJ, Peirson SN, Hughes S, Hankins MW. The functional characteristics of optogenetic gene therapy for vision restoration. Cell Mol Life Sci 2021; 78:1597-1613. [PMID: 32728765 PMCID: PMC7904736 DOI: 10.1007/s00018-020-03597-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Optogenetic strategies to restore vision in patients blind from end-stage retinal degenerations aim to render remaining retinal neurons light-sensitive. We present an innovative combination of multi-electrode array recordings together with a complex pattern-generating light source as a toolset to determine the extent to which neural retinal responses to complex light stimuli can be restored following viral delivery of red-shifted channelrhodopsin in the retinally degenerated mouse. Our data indicate that retinal output level spatiotemporal response characteristics achieved by optogenetic gene therapy closely parallel those observed for normal mice but equally reveal important limitations, some of which could be mitigated using bipolar-cell targeted gene-delivery approaches. As clinical trials are commencing, these data provide important new information on the capacity and limitations of channelrhodopsin-based gene therapies. The toolset we established enables comparing optogenetic constructs and stem-cell-based techniques, thereby providing an efficient and sensitive starting point to identify future approaches for vision restoration.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Marburg, Germany.
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Neuroophthalmology, Institute of Ophthalmology, London, UK
| | - Stuart N Peirson
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Ku CA, Pennesi ME. The new landscape of retinal gene therapy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:846-859. [PMID: 32888388 DOI: 10.1002/ajmg.c.31842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Novel therapeutics for inherited retinal dystrophies (IRDs) have rapidly evolved since groundbreaking clinical trials for LCA due to RPE65 mutations led to the first FDA-approved in vivo gene therapy. Since then, advancements in viral vectors have led to more efficient AAV transduction and developed other viral vectors for gene augmentation therapy of large gene targets. Furthermore, significant developments in gene editing and RNA modulation technologies have introduced novel capabilities for treatment of autosomal dominant diseases, intronic mutations, and/or large genes otherwise unable to be treated with current viral vectors. We highlight strategies currently being evaluated in gene therapy clinical trials and promising preclinical developments for IRDs.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
13
|
Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JWB, Besirli CG, Birch DG, Branham KE, Cideciyan AV, Daiger SP, Dalkara D, Duncan JL, Fahim AT, Flannery JG, Gattegna R, Heckenlively JR, Heon E, Jayasundera KT, Khan NW, Klassen H, Leroy BP, Molday RS, Musch DC, Pennesi ME, Petersen-Jones SM, Pierce EA, Rao RC, Reh TA, Sahel JA, Sharon D, Sieving PA, Strettoi E, Yang P, Zacks DN. Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Transl Vis Sci Technol 2020; 9:2. [PMID: 32832209 PMCID: PMC7414644 DOI: 10.1167/tvst.9.7.2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Major advances in the study of inherited retinal diseases (IRDs) have placed efforts to develop treatments for these blinding conditions at the forefront of the emerging field of precision medicine. As a result, the growth of clinical trials for IRDs has increased rapidly over the past decade and is expected to further accelerate as more therapeutic possibilities emerge and qualified participants are identified. Although guided by established principles, these specialized trials, requiring analysis of novel outcome measures and endpoints in small patient populations, present multiple challenges relative to study design and ethical considerations. This position paper reviews recent accomplishments and existing challenges in clinical trials for IRDs and presents a set of recommendations aimed at rapidly advancing future progress. The goal is to stimulate discussions among researchers, funding agencies, industry, and policy makers that will further the design, conduct, and analysis of clinical trials needed to accelerate the approval of effective treatments for IRDs, while promoting advocacy and ensuring patient safety.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alessandro Iannaccone
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Institute of Ophthalmology, University College London, London, UK
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Isabelle Audo
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven P Daiger
- Human Genetics Center, School of Public Health, University of Texas Health Science Center Houston, Houston, TX, USA
| | - Deniz Dalkara
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France
| | - Jacque L Duncan
- Department of Ophthalmology, University of California-San Francisco, San Francisco, CA, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA
| | | | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Ontario, Canada
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Bart P Leroy
- Department of Ophthalmology and Center Medical Genetics, Ghent University Hospital and University, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert S Molday
- Department of Biochemistry/Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C Musch
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science Center, Portland, OR, USA
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jose A Sahel
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul A Sieving
- Department of Ophthalmology and Center for Ocular Regenerative Therapy, University of California-Davis School of Medicine, Sacramento, CA, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Enrica Strettoi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science Center, Portland, OR, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
14
|
Sumaroka A, Garafalo AV, Cideciyan AV, Charng J, Roman AJ, Choi W, Saxena S, Aksianiuk V, Kohl S, Wissinger B, Jacobson SG. Blue Cone Monochromacy Caused by the C203R Missense Mutation or Large Deletion Mutations. Invest Ophthalmol Vis Sci 2019; 59:5762-5772. [PMID: 30516820 DOI: 10.1167/iovs.18-25280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare the phenotype of blue cone monochromacy (BCM) caused by large deletion mutations with those having the C203R missense mutation. Methods BCM patients with large deletion mutations (n = 21; age range, 5-60 years), and with the C203R missense mutation (n = 13; age range, 5-70 years), were studied with optical coherence tomography, visual acuity, and perimetric sensitivity in a retrospective observational case series. Perceptual estimates of spatial resolution driven by rods, S-cones, and L/M-cones were obtained by the choice of chromatic gratings presented on varied adapting conditions with a modified microperimeter. Results Both genotypes had abnormal foveal photoreceptor structure early in life. Patients with the C203R mutation, however, had decades-longer persistence of foveal photoreceptor outer nuclear layer thickness and a slower rate of development of inner segment/outer segment defects than did patients with large deletion mutations. At late ages, both genotypes had comparably severe losses of central structure. At the rod-rich hot spot, there was no difference in structure between cohorts with age. Grating acuities in all BCM patients were driven by S-cones and rods; the foveal structural differences were not reflected in a difference between cohorts in visual sensitivity and spatial resolution. Conclusions A difference in structural phenotype due to the C203R mutation versus large deletion mutations in BCM was detected as a more prolonged persistence of foveal photoreceptor structure in patients with the missense mutation. This should be taken into account in planning natural history studies, selecting outcomes for clinical trials, and defining the time window for possible therapies.
Collapse
Affiliation(s)
- Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jason Charng
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Windy Choi
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Supna Saxena
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Valeryia Aksianiuk
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
15
|
Aleman TS, Uyhazi KE, Serrano LW, Vasireddy V, Bowman SJ, Ammar MJ, Pearson DJ, Maguire AM, Bennett J. RDH12 Mutations Cause a Severe Retinal Degeneration With Relatively Spared Rod Function. Invest Ophthalmol Vis Sci 2019; 59:5225-5236. [PMID: 30372751 DOI: 10.1167/iovs.18-24708] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe the retinal phenotype of pediatric patients with mutations in the retinol dehydrogenase 12 (RDH12) gene. Methods Twenty-one patients from 14 families (ages 2-17 years) with RDH12-associated inherited retinal degeneration (RDH12-IRD) underwent a complete ophthalmic exam and imaging with spectral domain optical coherence tomography (SD-OCT) and near infrared and short-wavelength fundus autofluorescence. Visual field extent was measured with Goldmann kinetic perimetry, visual thresholds with dark-adapted static perimetry or with dark-adapted chromatic full-field stimulus testing (FST) and transient pupillometry. Results Visual acuity ranged from 20/40 to light perception. There was parafoveal depigmentation or atrophic maculopathies accompanied by midperipheral intraretinal pigment migration. SD-OCT revealed foveal thinning in all patients and detectable but thinned outer nuclear layer (ONL) at greater eccentricities from the fovea. Photoreceptor outer segment (POS) signals were only detectable in small pockets within the central retina. Measurable kinetic visual fields were limited to small (<5-10°) central islands of vision. Electroretinograms were reported as undetectable or severely reduced in amplitude. FST sensitivities to a 467 nm stimulus were rod-mediated and reduced on average by ∼2.5 log units. A thinned central ONL colocalized with severely reduced to nondetectable cone-mediated sensitivities. Pupillometry confirmed the psychophysically measured abnormalities. Conclusions RDH12-IRD causes an early-onset, retina-wide disease with particularly severe central retinal abnormalities associated with relatively less severe rod photoreceptor dysfunction, a pattern consistent with an early-onset cone-rod dystrophy. Severely abnormal POS but detectable ONL in the pericentral and peripapillary retina suggest these regions may become targets for gene therapy.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Department of Ophthalmology, Center for Advanced Ocular and Retinal Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Katherine E Uyhazi
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Leona W Serrano
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Vidyullatha Vasireddy
- Department of Ophthalmology, Center for Advanced Ocular and Retinal Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Scott J Bowman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Michael J Ammar
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Denise J Pearson
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States
| | - Albert M Maguire
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Department of Ophthalmology, Center for Advanced Ocular and Retinal Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jean Bennett
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Department of Ophthalmology, Center for Advanced Ocular and Retinal Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
16
|
Patterson EJ, Kalitzeos A, Kasilian M, Gardner JC, Neitz J, Hardcastle AJ, Neitz M, Carroll J, Michaelides M. Residual Cone Structure in Patients With X-Linked Cone Opsin Mutations. Invest Ophthalmol Vis Sci 2019; 59:4238-4248. [PMID: 30128495 PMCID: PMC6103386 DOI: 10.1167/iovs.18-24699] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose To assess residual cone structure in subjects with mutations in exon 2, 3, and 4 of the OPN1LW or OPN1MW opsin. Methods Thirteen males had their OPN1LW/OPN1MW opsin genes characterized. The cone mosaic was imaged using both confocal and nonconfocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO), and retinal thickness was evaluated using optical coherence tomography (OCT). Six subjects completed serial imaging over a maximum period of 18 months and cone density was measured across imaging sessions. Results Ten subjects had an OPN1LW/OPN1MW "interchange" opsin mutation designated as LIAVA or LVAVA, which both introduce exon 3 splicing defects leading to a lack of functional photopigment in cones expressing LIAVA and greatly reduced functional photopigment in cones expressing LVAVA. Despite disrupted cone reflectivity and reduced numerosity, residual inner segments could be visualized. Similar patterns were observed in individuals with an exon 2 insertion, or an exon 4 splice defect, both of which are also expected to produce cones that are devoid of functional opsin protein. OCT revealed variably reduced retinal thickness. A significant inverse relationship was found between the proportion of waveguiding cones and axial length. Conclusions Split-detection imaging revealed that the altered appearance of the cone mosaic in confocal images for subjects with exon 2, 3, and 4 mutations was generally due to disrupted waveguiding, rather than structural loss, making them possible candidates for gene therapy to restore cone function. The relative fraction of waveguiding cones was highly variable across subjects, which appears to influence emmetropization in these subjects.
Collapse
Affiliation(s)
- Emily J Patterson
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Angelos Kalitzeos
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Melissa Kasilian
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Jessica C Gardner
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Alison J Hardcastle
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
17
|
Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J, Garafalo AV, Roman AJ, Sumaroka A, Han IC, Hochstedler MD, Pfeifer WL, Sohn EH, Taiel M, Schwartz MR, Biasutto P, Wit WD, Cheetham ME, Adamson P, Rodman DM, Platenburg G, Tome MD, Balikova I, Nerinckx F, Zaeytijd JD, Van Cauwenbergh C, Leroy BP, Russell SR. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med 2018; 25:225-228. [PMID: 30559420 DOI: 10.1038/s41591-018-0295-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/02/2018] [Indexed: 11/09/2022]
Abstract
Photoreceptor ciliopathies constitute the most common molecular mechanism of the childhood blindness Leber congenital amaurosis. Ten patients with Leber congenital amaurosis carrying the c.2991+1655A>G allele in the ciliopathy gene centrosomal protein 290 (CEP290) were treated (ClinicalTrials.gov no. NCT03140969 ) with intravitreal injections of an antisense oligonucleotide to restore correct splicing. There were no serious adverse events, and vision improved at 3 months. The visual acuity of one exceptional responder improved from light perception to 20/400.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Allen C Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jason Charng
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Maria D Hochstedler
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wanda L Pfeifer
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Elliott H Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | - Peter Adamson
- ProQR Therapeutics, Leiden, the Netherlands.,UCL Institute of Ophthalmology, London, UK
| | | | | | | | - Irina Balikova
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Fanny Nerinckx
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Bart P Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stephen R Russell
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
18
|
Yan B, Nirenberg S. An Embedded Real-Time Processing Platform for Optogenetic Neuroprosthetic Applications. IEEE Trans Neural Syst Rehabil Eng 2017; 26:233-243. [PMID: 29035219 DOI: 10.1109/tnsre.2017.2763130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Optogenetics offers a powerful new approach for controlling neural circuits. It has numerous applications in both basic and clinical science. These applications require stimulating devices with small processors that can perform real-time neural signal processing, deliver high-intensity light with high spatial and temporal resolution, and do not consume a lot of power. In this paper, we demonstrate the implementation of neuronal models in a platform consisting of an embedded system module and a portable digital light processing projector. As a replacement for damaged neural circuitry, the embedded module processes neural signals and then directs the projector to optogenetically activate a downstream neural pathway. We present a design in the context of stimulating circuits in the visual system, but the approach is feasible for a broad range of biomedical applications.
Collapse
|
19
|
Zhang Y, Deng WT, Du W, Zhu P, Li J, Xu F, Sun J, Gerstner CD, Baehr W, Boye SL, Zhao C, Hauswirth WW, Pang JJ. Gene-based Therapy in a Mouse Model of Blue Cone Monochromacy. Sci Rep 2017; 7:6690. [PMID: 28751656 PMCID: PMC5532293 DOI: 10.1038/s41598-017-06982-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/14/2017] [Indexed: 02/08/2023] Open
Abstract
Cones are responsible for daylight, central, high acuity and color vision. Three proteins found in human cones, i.e. long-wavelength (L)-, middle-wavelength (M)-, and short-wavelength sensitive (S)-opsins, are responsible for red, green and blue color recognition, respectively. Human blue cone monochromacy (BCM) is characterized by functional loss of both L- and M-cone opsins due to mutations in the OPN1LW/OPN1MW gene cluster on the X chromosome. BCM patients, who rely on their vision from only S-cones and rods, suffer severely reduced visual acuity and impaired color vision. Recent studies show that there is sufficient cone structure remaining in the central fovea of BCM patients to consider AAV-mediated gene augmentation therapy. In contrast, mouse retina has only two opsins, S-opsin and M-opsin, but no L-opsin. We generated an M-opsin knockout mouse (Opn1mw -/-) expressing only S-opsin as a model for human BCM. We show that recombinant M-opsin delivered by AAV5 vectors rescues M-cone function in Opn1mw -/- mice. We also show that AAV delivered M-opsin localizes in the dorsal cone outer segments, and co-localizes with S-opsin in the ventral retina. Our study demonstrates that cones without M-opsin remain viable and respond to gene augmentation therapy, thereby providing proof-of-concept for cone function restoration in BCM patients.
Collapse
Affiliation(s)
- Yuxin Zhang
- Ophthalmology, University of Florida, Gainesville, FL, USA
- Department of Ophthalmology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Tao Deng
- Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Wei Du
- Ophthalmology, University of Florida, Gainesville, FL, USA
- Ophthalmology Department of Peking University People's Hospital, Peking University People's Eye Center and Eye Institute, Beijing, China
| | - Ping Zhu
- Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Jie Li
- Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Fan Xu
- Ophthalmology, University of Florida, Gainesville, FL, USA
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jingfen Sun
- Ophthalmology, University of Florida, Gainesville, FL, USA
- Department of Obstetrics and Gynecology, Shanxi Dayi Hospital, Taiyuan, Shanxi Province, China
| | - Cecilia D Gerstner
- Opthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Wolfgang Baehr
- Opthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Sanford L Boye
- Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Chen Zhao
- Department of Ophthalmology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | | | - Ji-Jing Pang
- Ophthalmology, University of Florida, Gainesville, FL, USA.
- Department of Ophthalmology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|