1
|
Chiang B, Heng K, Jang K, Dalal R, Liao YJ, Myung D, Goldberg JL. Development of a novel SupraChoroidal-to-Optic-NervE (SCONE) drug delivery system. Drug Deliv 2024; 31:2379369. [PMID: 39010743 PMCID: PMC467098 DOI: 10.1080/10717544.2024.2379369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
PURPOSE Targeted drug delivery to the optic nerve head may be useful in the preclinical study and later clinical management of optic neuropathies, however, there are no FDA-approved drug delivery systems to achieve this. The purpose of this work was to develop an optic nerve head drug delivery technique. METHODS Different strategies to approach the optic nerve head were investigated, including standard intravitreal and retroorbital injections. A novel SupraChoroidal-to-Optic-NervE (SCONE) delivery was optimized by creating a sclerotomy and introducing a catheter into the suprachoroidal space. Under direct visualization, the catheter was guided to the optic nerve head. India ink was injected. The suprachoroidal approach was performed in New Zealand White rabbit eyes in vivo (25 animals total). Parameters, including microneedle size and design, catheter design, and catheter tip angle, were optimized ex vivo and in vivo. RESULTS Out of the candidate optic nerve head approaches, intravitreal, retroorbital, and suprachoroidal approaches were able to localize India ink to within 2 mm of the optic nerve. The suprachoroidal approach was further investigated, and after optimization, was able to deposit India ink directly within the optic nerve head in up to 80% of attempts. In eyes with successful SCONE delivery, latency and amplitude of visual evoked potentials was not different than the naïve untreated eye. CONCLUSIONS SCONE delivery can be used for targeted drug delivery to the optic nerve head of rabbits without measurable toxicity measured anatomically or functionally. Successful development of this system may yield novel opportunities to study optic nerve head-specific drug delivery in animal models, and paradigm-shifting management strategies for treating optic neuropathies. TRANSLATIONAL RELEVANCE Here we demonstrate data on a new method for targeted delivery to the optic nerve head, addressing a significant unmet need in therapeutics for optic neuropathies.
Collapse
Affiliation(s)
- Bryce Chiang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Kathleen Heng
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Kyeongwoo Jang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Roopa Dalal
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - David Myung
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| |
Collapse
|
2
|
Chung YG, Fan S, Gulati V, Li HL, Gong H, Toris CB, Prausnitz MR, Ethier CR. IOP Reduction in Nonhuman Primates by Microneedle Injection of Drug-Free Hydrogel to Expand the Suprachoroidal Space. Transl Vis Sci Technol 2024; 13:14. [PMID: 39377753 PMCID: PMC11469220 DOI: 10.1167/tvst.13.10.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose Expansion of the suprachoroidal space (SCS) by a hydrogel injection has been shown to reduce intraocular pressure (IOP) in rabbits as a potential treatment for ocular hypertension in glaucoma. Here, we evaluate the safety and efficacy of this approach in hypertensive and normotensive eyes in nonhuman primates. Methods A microneedle was used to inject a hyaluronic acid-based hydrogel or saline solution (control) into the SCS of cynomolgus monkey eyes that were either normotensive (n = 7 experimental; n = 2 control eyes) or had induced ocular hypertension (n = 6 experimental; n = 3 control eyes). IOP and the degree of SCS expansion were monitored over time by tonometry and ultrasound biomicroscopy, respectively. Safety was evaluated through slit lamp, fundus, and histology examinations. Results In hypertensive eyes, SCS injection with hydrogel initially reduced IOP by 47.5 ± 16.7%, and IOP returned to baseline in 38 days. In normotensive eyes, hydrogel injection initially reduced IOP by 38.8 ± 8.1% and IOP gradually returned to baseline also in 39 days. Sham injections resulted in mild IOP reduction in hypertensive eyes and normotensive eyes. The hydrogel injections were well tolerated by clinical assessments. Conclusions IOP was reduced in nonhuman primates for over one month by sustained SCS expansion. This procedure was safe and simple to perform. These data confirm the translational potential of this treatment method. Further optimization of the hydrogel may provide longer durations of IOP reduction. Translational Relevance A microneedle injection of hydrogel into the suprachoroidal space may provide a non-surgical, non-pharmacologic treatment for ocular hypertension in glaucoma patients.
Collapse
Affiliation(s)
- Yooree G. Chung
- Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shan Fan
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vikas Gulati
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hoi-Lam Li
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Haiyan Gong
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Carol B. Toris
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - Mark R. Prausnitz
- Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - C. Ross Ethier
- Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Wu KY, Gao A, Giunta M, Tran SD. What's New in Ocular Drug Delivery: Advances in Suprachoroidal Injection since 2023. Pharmaceuticals (Basel) 2024; 17:1007. [PMID: 39204112 PMCID: PMC11357265 DOI: 10.3390/ph17081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Despite significant advancements in ocular drug delivery, challenges persist in treating posterior segment diseases like macular edema (ME) and age-related macular degeneration (AMD). Suprachoroidal (SC) injections are a promising new method for targeted drug delivery to the posterior segment of the eye, providing direct access to the choroid and retina while minimizing systemic exposure and side effects. This review examines the anatomical and physiological foundations of the SC space; evaluates delivery devices such as microcatheters, hypodermic needles, and microneedles; and discusses pharmacokinetic principles. Additionally, advancements in gene delivery through SC injections are explored, emphasizing their potential to transform ocular disease management. This review also highlights clinical applications in treating macular edema, diabetic macular edema, age-related macular degeneration, choroidal melanoma, and glaucoma. Overall, SC injections are emerging as a promising novel route for administering ophthalmic treatments, with high bioavailability, reduced systemic exposure, and favorable safety profiles. Key therapeutic agents such as triamcinolone acetonide, dexamethasone, AAV-based gene therapy, and axitinib have shown promise. The field of suprachoroidal injection is progressing rapidly, and this review article, while attempting to encapsulate most of the published preclinical and clinical studies, mainly focuses on those that are published within 2023 and 2024.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Angel Gao
- Faculty of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
4
|
Mulkutkar M, Damani M, Sawarkar S. Polymeric microneedles for the eye: An overview of advances and ocular applications for minimally invasive drug delivery. Eur J Pharm Biopharm 2024; 197:114209. [PMID: 38336234 DOI: 10.1016/j.ejpb.2024.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Ocular drug delivery is challenging due to the presence of tissue barriers and clearance mechanisms. Most widely used topical formulations need frequent application because of poor permeability, short retention, and low bioavailability. Invasive intraocular injections and implants that deliver drugs at the target site are associated with infections, inflammation, and even vision loss post-use. These gaps can be addressed by a delivery platform that can efficiently deliver drug with minimal tissue damage. Microneedles were introduced as a delivery platform for overcoming dermal barriers with minimal tissue damage. After the successful clinical transition of microneedles in the transdermal drug delivery, they are now being extensively studied for ocular applications. The attributes of minimally invasive application and the capability to deliver a wide range of therapeutics make microneedles an attractive candidate for ocular drug delivery. The current manuscript provides a detailed overview of the recent advancements in the field of microneedles for ocular use. This paper reviews research focusing on polymeric microneedles and their pharmaceutical and biopharmaceutical properties. A brief discussion about their clinical translation and regulatory concerns is also covered. The multitude of research articles supports the fact that microneedles are a potential, minimally invasive drug delivery platform for ophthalmic use.
Collapse
Affiliation(s)
- Madhura Mulkutkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Mansi Damani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India.
| |
Collapse
|
5
|
Chiang B, Jang K, Goldberg J, Myung D. Design and ex vivo development of a suprachoroidal spacer implant to treat glaucoma. RESEARCH SQUARE 2024:rs.3.rs-3895533. [PMID: 38352508 PMCID: PMC10862960 DOI: 10.21203/rs.3.rs-3895533/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Glaucoma is a leading cause of visual impairment and blindness in the United States and worldwide. Elevated intraocular pressure (IOP) has been identified as the only modifiable risk factor in glaucoma, and there exists a need for a glaucoma procedure that is safe, efficacious, and can be performed in the outpatient clinic setting. Suprachoroidal expansion has been explored as a method to lower IOP previously. The purpose of this work was to design a monolithic hydrogel implant that would not clear or degrade to potentially achieve long term (possibly permanent) IOP reduction. Here, we developed and showed ex vivo testing of a novel photo-crosslinked polyethylene glycol (PEG) suprachoroidal spacer implant delivered via a custom-designed injector system. We optimized the composition, shape, and mechanics of the implant to be suitable for implantation with the suprachoroidal space. We developed a microneedle injector system to deliver this implant. We showed precise control over implant location and volume occupied within the suprachoroidal space. Further preclinical testing is needed to demonstrate efficacy.
Collapse
|
6
|
Wu KY, Fujioka JK, Gholamian T, Zaharia M, Tran SD. Suprachoroidal Injection: A Novel Approach for Targeted Drug Delivery. Pharmaceuticals (Basel) 2023; 16:1241. [PMID: 37765048 PMCID: PMC10535603 DOI: 10.3390/ph16091241] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Treating posterior segment and retinal diseases poses challenges due to the complex structures in the eye that act as robust barriers, limiting medication delivery and bioavailability. This necessitates frequent dosing, typically via eye drops or intravitreal injections, to manage diseases, often leading to side effects with long-term use. Suprachoroidal injection is a novel approach for targeted drug delivery to the posterior segment. The suprachoroidal space is the region between the sclera and the choroid and provides a potential route for minimally invasive medication delivery. Through a more targeted delivery to the posterior segment, this method offers advantages over other routes of administration, such as higher drug concentrations, increased bioavailability, and prolonged duration of action. Additionally, this approach minimizes the risk of corticosteroid-related adverse events such as cataracts and intraocular pressure elevation via compartmentalization. This review focuses on preclinical and clinical studies published between 2019 and 2023, highlighting the potential of suprachoroidal injection in treating a variety of posterior segment diseases. However, to fully harness its potential, more research is needed to address current challenges and limitations, such as the need for technological advancements, refinement of injection techniques, and consideration of cost and accessibility factors. Future studies exploring its use in conjunction with biotech products, gene therapies, and cell-based therapies can lead to personalized treatments that can revolutionize the field of ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Jamie K. Fujioka
- Faculty of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Tara Gholamian
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marian Zaharia
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
7
|
Wang L, Zhang H. Ocular barriers as a double-edged sword: preventing and facilitating drug delivery to the retina. Drug Deliv Transl Res 2023; 13:547-567. [PMID: 36129668 DOI: 10.1007/s13346-022-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
In recent decades, the growing of the aging population in the world brings increasingly heavy burden of vision-threatening retinal diseases. One of the biggest challenges in the treatment of retinal diseases is the effective drug delivery to the diseased area. Due to the existence of multiple anatomical and physiological barriers of the eye, commonly used oral drugs or topical eye drops cannot effectively reach the retinal lesions. Innovations in new drug formulations and delivery routes have been continuously applied to improve current drug delivery to the back of the eye. Unique ocular anatomical structures or physiological activities on these ocular barriers, in turn, can facilitate drug delivery to the retina if compatible formulations or delivery routes are properly designed or selected. This paper focuses on key barrier structures of the eye and summarizes advances of corresponding drug delivery means to the retina, including various local drug delivery routes by invasive approaches, as well as systemic eye drug delivery by non-invasive approaches.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhang
- Triapex Laboratories Co., Ltd No. 9 Xinglong Road, Jiangbei New Area, Jiangsu, Nanjing, China.
| |
Collapse
|
8
|
Yeh S, Henry CR, Kapik B, Ciulla TA. Triamcinolone Acetonide Suprachoroidal Injectable Suspension for Uveitic Macular Edema: Integrated Analysis of Two Phase 3 Studies. Ophthalmol Ther 2023; 12:577-591. [PMID: 36399237 PMCID: PMC9834475 DOI: 10.1007/s40123-022-00603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Macular edema, a common complication of uveitis, may result in vision loss. The aim of this analysis was to report integrated phase 3 trial data for triamcinolone acetonide injectable suspension for suprachoroidal use (SCS-TA) in the treatment of macular edema secondary to noninfectious uveitis using strict inclusion criteria. METHODS This analysis included patients with central subfield thickness (CST) ≥ 300 µm and best-corrected visual acuity (BCVA) of ≥ 5 and ≤ 70 Early Treatment Diabetic Retinopathy Study (ETDRS) letters at both screening and baseline who received ≥ 1 study treatment in either PEACHTREE (randomized, double-masked SCS-TA or sham control) or AZALEA (open-label SCS-TA). Patients received SCS-TA 4.0 mg (0.1 ml of 40 mg/ml) or control at baseline and week 12. RESULTS In the SCS-TA group (n = 95), 47.4% of patients gained ≥ 15 ETDRS letters from baseline to week 24 versus 16.7% of patients in the control group (n = 60; P < 0.001). Mean change in BCVA in the SCS-TA group was 9.6 letters at week 4 and 13.9 letters at week 24. CST also improved rapidly in the SCS-TA group (mean change: - 158.4 µm at week 4), with sustained reduction throughout the study (mean change: - 163.9 µm at week 24 versus - 19.3 µm in the control group; P < 0.001). No treatment-related serious adverse events (AEs) were reported. Incidence of AEs pertaining to elevated intraocular pressure was 12.6% and 15.0% in the SCS-TA and control groups, respectively; incidence of cataract formation/worsening AEs was 7.4% and 6.7%, respectively. CONCLUSION In this integrated analysis utilizing strict inclusion criteria, SCS-TA was found effective in the treatment of patients with macular edema associated with noninfectious uveitis and was generally well tolerated. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02595398, NCT03097315.
Collapse
Affiliation(s)
- Steven Yeh
- grid.266813.80000 0001 0666 4105Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Christopher R. Henry
- Retina Consultants of Texas, Houston, TX USA ,grid.63368.380000 0004 0445 0041Blanton Eye Institute, Houston Methodist Hospital, Houston, TX USA ,grid.267308.80000 0000 9206 2401Department of Ophthalmology, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Barry Kapik
- grid.470250.40000 0004 7480 2989Clearside Biomedical, Inc., 900 North Point Parkway, Suite 200, Alpharetta, GA 30005 USA
| | - Thomas A. Ciulla
- grid.470250.40000 0004 7480 2989Clearside Biomedical, Inc., 900 North Point Parkway, Suite 200, Alpharetta, GA 30005 USA
| |
Collapse
|
9
|
Anand A, Sinha S, Gupta A, Shree S, Ambasta A, Sinha BP, Azad R. Single Low-dose Suprachoroidal Triamcinolone Acetonide Injection in Macular Edema Secondary to Noninfectious Posterior Uveitis. Middle East Afr J Ophthalmol 2023; 30:6-12. [PMID: 38435103 PMCID: PMC10903718 DOI: 10.4103/meajo.meajo_78_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 03/05/2024] Open
Abstract
PURPOSE The purpose was to study the anatomical and functional outcome following single low-dose suprachoroidal triamcinolone acetonide (LD-SCTA) (2 mg) injection in noninfectious posterior uveitis. METHODS Eleven patients with macular edema (ME) more than 280 μ secondary to noninfectious uveitis were included in the study. A single LD-SCTA (0.5 ml) injection was performed in the study eye with the help of a novel suprachoroidal microneedle (Pricon, Iscon Surgicals, Jodhpur, Rajasthan, India). The study parameters were noted at 4 and 12 weeks post LD-SCTA injection. RESULTS Ten of 11 patients had a significant decrease in central macular thickness (CMT). The mean CMT measurement at baseline was 513.6 ± 191.73 μm for the 10 patients who responded to the treatment, which reduced significantly to 265.1 ± 34.72 μm (P < 0.003) and 260.6 ± 34.72 μm (P < 0.002) at 4 and 12 weeks, respectively. The mean best-corrected visual acuity (BCVA) at baseline was 0.84 ± 0.41 logMAR unit which improved to 0.52 ± 0.33 (P < 0.001) and 0.25 ± 0.22 (P < 0.000) at weeks 4 and 12, respectively. The mean intraocular pressure at baseline recorded was 16.36 ± 2.97 mmHg, 19.45 ± 4.80 mmHg (P = 0.06) at 4 weeks, and 17.27 ± 2.53 mmHg (P = 0.35) at 12 weeks. One eye which did not respond to LD-SCTA was a case of recurrent Vogt-Koyanagi-Harada disease. CONCLUSION Single LD-SCTA injection is efficacious in reducing CMT in ME, improving BCVA, and controlling the inflammation in noninfectious posterior uveitis. LD-SCTA can be used as a first-line therapy in noninfectious uveitis over other routes of steroid administration with a favorable outcome and safety profile.
Collapse
Affiliation(s)
- Abhishek Anand
- Department of Ophthalmology, Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Shivani Sinha
- Department of Ophthalmology, Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Abhishek Gupta
- Department of Ophthalmology, Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Srishtee Shree
- Department of Ophthalmology, Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Anita Ambasta
- Department of Ophthalmology, Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Bibhuti P. Sinha
- Department of Ophthalmology, Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Rajvardhan Azad
- Department of Ophthalmology, Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| |
Collapse
|
10
|
Jung JH, Kim SS, Chung H, Hejri A, Prausnitz MR. Six-month sustained delivery of anti-VEGF from in-situ forming hydrogel in the suprachoroidal space. J Control Release 2022; 352:472-484. [PMID: 36309098 DOI: 10.1016/j.jconrel.2022.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022]
Abstract
Patients with wet age-related macular degeneration (AMD) require intravitreal injections of bevacizumab (Bev) or other drugs, often on a monthly basis, which is a burden on the healthcare system. Here, we developed an in-situ forming hydrogel comprised of Bev and hyaluronic acid (HA) crosslinked with poly(ethylene glycol) diacrylate for slow release of Bev after injection into the suprachoroidal space (SCS) of the eye using a microneedle. Liquid Bev formulations were cleared from SCS within 5 days, even when formulated with high viscosity, unless Bev was conjugated to a high molecular-weight HA (2.6 MDa), which delayed clearance until 1 month. To extend release to 6 months, we synthesized in-situ forming Bev-HA hydrogel initially as a low-viscosity mixture suitable for injection and flow in the SCS to cover a large area extending to the posterior pole of the eye where the macula is located in humans. Within 1 h after injection, Bev and HA were crosslinked, which retained Bev for slow release as the hydrogel biodegraded. In vivo studies in the rabbit eye reported Bev release for >6 months, depending on gel formulation and Bev assay. The in-situ forming Bev-HA hydrogel was well tolerated, as assessed by clinical exam, fundus imaging, histological analysis, and intraocular pressure measurement. We conclude that Bev released from an in-situ forming hydrogel may enable long-acting treatments of AMD and other posterior ocular indications.
Collapse
Affiliation(s)
- Jae Hwan Jung
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Dankook University, Department of Pharmaceutical Engineering, Republic of Korea
| | - Seong Shik Kim
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyunwoo Chung
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Amir Hejri
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark R Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
11
|
Gadziński P, Froelich A, Wojtyłko M, Białek A, Krysztofiak J, Osmałek T. Microneedle-based ocular drug delivery systems - recent advances and challenges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1167-1184. [PMID: 36348935 PMCID: PMC9623140 DOI: 10.3762/bjnano.13.98] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Eye diseases and injuries constitute a significant clinical problem worldwide. Safe and effective delivery of drugs to the eye is challenging mostly due to the presence of ocular barriers and clearance mechanisms. In everyday practice, the traditional eye drops, gels and ointments are most often used. Unfortunately, they are usually not well tolerated by patients due to the need for frequent use as well as the discomfort during application. Therefore, novel drug delivery systems with improved biopharmaceutical properties are a subject of ongoing scientific investigations. Due to the developments in microtechnology, in recent years, there has been a remarkable advance in the development of microneedle-based systems as an alternative, non-invasive form for administering drugs to the eye. This review summarizes the latest achievements in the field of obtaining microneedle ocular patches. In the manuscript, the most important manufacturing technologies, microneedle classification, and the research studies related to ophthalmic application of microneedles are presented. Finally, the most important advantages and drawbacks, as well as potential challenges related to the unique anatomy and physiology of the eye are summarized and discussed.
Collapse
Affiliation(s)
- Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Antoni Białek
- Student Research Group of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Julia Krysztofiak
- Student Research Group of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| |
Collapse
|
12
|
Suprachoroidal delivery enables targeting, localization and durability of small molecule suspensions. J Control Release 2022; 349:1045-1051. [PMID: 35868358 DOI: 10.1016/j.jconrel.2022.05.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
Abstract
Drug delivery to the suprachoroidal space (SCS®) has become a clinical reality after the 2021 FDA approval of CLS-TA, a triamcinolone acetonide injectable suspension for suprachoroidal use (XIPERE®), administered via a microneedle-based device, the SCS Microinjector®. Suprachoroidal (SC) delivery facilitates targeting, compartmentalization, and durability of small molecule suspensions, thereby potentially addressing some of the efficacy, safety, and treatment burden limitations of current retinal therapies. Herein, the design features of the SCS Microinjector are reviewed, along with the biomechanics of SC drug delivery. Also presented are preclinical evaluations of SC small molecule suspensions from 4 different therapeutic classes (plasma kallikrein inhibitor, receptor tyrosine kinase inhibitor, corticosteroid, complement factor D inhibitor), highlighting their potential for durability, targeted compartmentalization, and acceptable safety profiles following microinjector-based SC delivery. The clinical evaluations of the safety, tolerability and efficacy of SC delivered triamcinolone further supports potential of SC small molecule suspensions as a clinically viable strategy for the treatment of chorioretinal diseases. Also highlighted are current limitations, key pharmacological considerations, and future opportunities to optimize the SC microinjector platform for safe, effective, and potentially long-acting drug delivery for the treatment of chorioretinal disorders.
Collapse
|
13
|
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med (Lausanne) 2022; 8:787644. [PMID: 35155469 PMCID: PMC8831705 DOI: 10.3389/fmed.2021.787644] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.
Collapse
Affiliation(s)
- Megan M. Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Richard H. Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elle B. Hellwarth
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Katelyn E. Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Patil MA, Kompella UB. Noninvasive monitoring of suprachoroidal, subretinal, and intravitreal implants using confocal scanning laser ophthalmoscope (cSLO) and optical coherence tomography (OCT). Int J Pharm 2021; 606:120887. [PMID: 34271155 DOI: 10.1016/j.ijpharm.2021.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
To address the need for noninvasive monitoring of injectable preformed drug delivery implants in the eye, we developed noninvasive methods to monitor such implants in different locations within the eye. Cylindrical polymeric poly(lactide-co-glycolide) or metal implants were injected into isolated bovine eyes at suprachoroidal, subretinal, and intravitreal locations and imaged noninvasively using the cSLO and OCT modes of a Heidelberg Spectralis HRA + OCT instrument after adjusting for the corneal curvature. Length and diameter of implants were obtained using cSLO images for all three locations, and the volume was calculated. Additionally, implant volume for suprachoroidal and subretinal location was estimated by integrating the cross-sectional bleb area over the implant length in multiple OCT images or using the maximum thickness of the implant based on thickness map along with length in cSLO image. Simultaneous cSLO and OCT imaging identified implants in different regions of the eye. Image-based measurements of implant dimensions mostly correlated well with the values prior to injection using blade micrometer. The accuracy (82-112%) and precision (1-19%) for noninvasive measurement of length was better than the diameter (accuracy 69-130%; precision 3-38%) using cSLO image for both types of implants. The accuracy for the measurement of volume of both types of implants from all three intraocular locations was better with cSLO imaging (42-152%) compared to those obtained using OCT cross-sectional bleb area integration (117-556%) or cSLO and thickness map (32-279%) methods. Suprachoroidal, subretinal, and intravitreal implants can be monitored for length, diameter, and volume using cSLO and OCT imaging. Such measurements may be useful in noninvasively monitoring implant degradation and drug release in the eye.
Collapse
Affiliation(s)
- Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
15
|
Naftali Ben Haim L, Moisseiev E. Drug Delivery via the Suprachoroidal Space for the Treatment of Retinal Diseases. Pharmaceutics 2021; 13:pharmaceutics13070967. [PMID: 34206925 PMCID: PMC8309112 DOI: 10.3390/pharmaceutics13070967] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The suprachoroidal space (SCS), a potential space between the sclera and choroid, is becoming an applicable method to deliver therapeutics to the back of the eye. In recent years, a vast amount of research in the field has been carried out, with new discoveries in different areas of interest, such as imaging, drug delivery methods, pharmacokinetics, pharmacotherapies in preclinical and clinical trials and advanced therapies. The SCS can be visualized via advanced techniques of optical coherence tomography (OCT) in eyes with different pathologies, and even in healthy eyes. Drugs can be delivered easily and safely via hollow microneedles fitted to the length of the approximate thickness of the sclera. SCS injections were found to reach greater baseline concentrations in the target layers compared to intravitreal (IVT) injection, while agent clearance was faster with highly aqueous soluble molecules. Clinical trials with SCS injection of triamcinolone acetonide (TA) were executed with promising findings for patients with noninfectious uveitis (NIU), NIU implicated with macular edema and diabetic macular edema (DME). Gene therapy is evolving rapidly with viral and non-viral vectors that were found to be safe and efficient in preclinical trials. Here, we review these novel different aspects and new developments in clinical treatment of the posterior segment of the eye.
Collapse
Affiliation(s)
- Liron Naftali Ben Haim
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, 59 Tshernichovsky St., Kfar Saba 4428164, Israel;
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-97471527; Fax: +972-97472427
| | - Elad Moisseiev
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, 59 Tshernichovsky St., Kfar Saba 4428164, Israel;
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
16
|
Hancock SE, Wan CR, Fisher NE, Andino RV, Ciulla TA. Biomechanics of suprachoroidal drug delivery: From benchtop to clinical investigation in ocular therapies. Expert Opin Drug Deliv 2021; 18:777-788. [PMID: 33393391 DOI: 10.1080/17425247.2021.1867532] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As research in suprachoroidal drug delivery advances, and therapeutic candidates, ranging from small molecule suspensions to gene therapy, progress through clinical trials, an understanding of suprachoroidal space (SCS) biomechanics assumes increasing importance.Areas covered:Numerous anatomic features play an important role in therapeutic access to the SCS. Methods of access include a catheter, a standard hypodermic needle, and a microinjector with microneedle. Physical and fluidic properties of injectates into the SCS, such as volume, viscosity, particle size, osmotic pressure, and ionic charge of formulation can impact the spread and extent of opening of the SCS. Pharmacokinetic data of several small molecule suspensions yielded favorable ocular distribution and pharmacokinetic profiles. Phase 2 and 3 clinical trials have been completed with a suprachoroidally injected corticosteroid; results and information on procedural details with the microinjector are discussed. EXPERT OPINION Suprachoroidal drug delivery has been demonstrated to be a reliable and consistent drug delivery method for targeted treatment of retinal and choroidal disorders to potentially maximize efficacy, while compartmentalizing therapies away from the unaffected tissues to potentially enhance safety. These delivery attributes, along with fluid transport properties and formula customization for pharmacological agents, may allow for more tailored treatment of diseases affecting chorio-retinal tissues.
Collapse
|
17
|
Kansara VS, Cooper M, Sesenoglu-Laird O, Muya L, Moen R, Ciulla TA. Suprachoroidally Delivered DNA Nanoparticles Transfect Retina and Retinal Pigment Epithelium/Choroid in Rabbits. Transl Vis Sci Technol 2020; 9:21. [PMID: 33364076 PMCID: PMC7745627 DOI: 10.1167/tvst.9.13.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose This study evaluated ocular tolerability and transfectability of nonviral DNA nanoparticles (DNPs) after microneedle-based suprachoroidal (SC) administration, in comparison to subretinal (SR) administration. Methods The DNPs consisted of a single copy of plasmid DNA with a polyubiquitin C/luciferase transcriptional cassette compacted with 10 kDa PEG-substituted lysine 30-mer peptides (CK30PEG10k). New Zealand White rabbits (n = 4 per group) received a unilateral SC injection (0.1 mL via a microneedle technique) of ellipsoid-shaped DNPs, rod-shaped DNPs, or saline (negative control). A cohort of rabbits (n = 4) also received a single unilateral SR injection (0.05 mL via a transvitreal approach) of rod-shaped DNPs. At day 7, luciferase activity was measured in the retina and retinal pigment epithelium (RPE)–choroid via bioluminescence assay. A cohort of rabbits received a SC injection of analogous DNPs to assess spread of DNP injectate in the suprachoroidal space (SCS) via optical coherent tomography and histology. Results Suprachoroidal injection of DNPs resulted in reversible opening of the SCS circumferentially and posteriorly and was generally well tolerated, with no significant ocular examination score changes, intraocular pressure abnormalities, or changes in electroretinography amplitudes on day 7 compared to the baseline. High luciferase activity was observed in the retina and RPE-choroid of eyes that received SC DNPs (rod and ellipsoid shape) and SR DNPs (rod shape) compared to controls. The mean luciferase activity in RPE-choroid and retina was comparable between SC and SR administrations. Transfection in the RPE-choroid was approximately 10-fold higher than in the retina after either SC or SR administration of DNPs. Conclusions Suprachoroidal and SR administration of DNPs resulted in comparable transfection of retina and RPE-choroid. Translational Relevance Suprachoroidal delivery of DNPs offers the potential to precisely target chorioretinal tissues while avoiding surgical risks associated with SR injection, and it may offer an office-based nonsurgical gene therapy option for the treatment of retinal diseases.
Collapse
Affiliation(s)
| | - Mark Cooper
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | | - Leroy Muya
- Clearside Biomedical, Inc., Alpharetta, GA, USA
| | - Robert Moen
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | |
Collapse
|
18
|
Wan CR, Kapik B, Wykoff CC, Henry CR, Barakat MR, Shah M, Andino RV, Ciulla TA. Clinical Characterization of Suprachoroidal Injection Procedure Utilizing a Microinjector across Three Retinal Disorders. Transl Vis Sci Technol 2020; 9:27. [PMID: 33150052 PMCID: PMC7585395 DOI: 10.1167/tvst.9.11.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose This study assessed physician-investigator experience with suprachoroidal (SC) injections, an investigational therapeutic administration technique using a 900 or 1100 µm microneedle to inject drugs into the SC space. Methods Datasets from six clinical trials across three diseases (noninfectious uveitis; diabetic macula edema, and retinal vein occlusion) were assessed. In addition to a user survey, retrospective correlations were performed between procedural variables (needle length), and demographics, and ocular characteristics. Results In the user survey, 84% (31/37) of physician-investigators did not perceive the SC injections to be meaningfully more challenging than other ocular injections. For the correlation analysis, the 900 µm needle was used for 71% (412/581) of baseline injections, and switching to the longer needle occured in the remaining 29% of baseline injections. No statistical correlations were found between needle lengths and age, race, disorder, refraction, visual acuity, intraocular pressure, retinal central subfield thickness, or lens status. Patient gender and needle length were statistically associated, with 76% (210/275) versus 66% (202/306) of injections administered with 900 µm needles for female and male gender, respectively. Injection quadrant correlated to needle length with 78% (214/275) of superotemporal quadrant injections administered with 900 µm needles, compared with 65% (73/113) of inferotemporal quadrant injections. Conclusions Both the user survey and the correlation analysis demonstrated that SC injection is well accepted by physician-investigators, and the two needle lengths accommodate a wide range of anatomic and demographic variables. Translational Relevance These results, along with the presented ex-vivo endoscopic imaging, suggest that SC injection could be readily adopted in clinical practice for targeted compartmentalized delivery of ocular therapeutics.
Collapse
Affiliation(s)
| | | | - Charles C Wykoff
- Retina Consultants of Houston, Retina Consultants of America; Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX, USA
| | - Christopher R Henry
- Retina Consultants of Houston, Retina Consultants of America; Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX, USA
| | | | - Milan Shah
- Midwest Eye Institute, Indianapolis, IN, USA
| | | | | |
Collapse
|
19
|
Lee KJ, Jeong SS, Roh DH, Kim DY, Choi HK, Lee EH. A practical guide to the development of microneedle systems – In clinical trials or on the market. Int J Pharm 2020; 573:118778. [DOI: 10.1016/j.ijpharm.2019.118778] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
|
20
|
Jung JH, Park S, Chae JJ, Prausnitz MR. Collagenase injection into the suprachoroidal space of the eye to expand drug delivery coverage and increase posterior drug targeting. Exp Eye Res 2019; 189:107824. [PMID: 31585119 DOI: 10.1016/j.exer.2019.107824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
Injection into the suprachoroidal space (SCS) allows drug delivery targeted to sclera, choroid, and retina. Here, we studied SCS injection formulated with collagenase to expand drug delivery coverage and increase posterior drug targeting within SCS by breaking down collagen fibrils that link sclera and choroid in the SCS. When 1 μm latex microparticles were injected with a collagenase formulation using microneedles into the SCS of rabbit eyes ex vivo and incubated at 37 °C for 4 h, microparticle delivery coverage increased from 20% to 45% and enhanced posterior drug targeting. Collagenase concentration was optimized to 0.5 mg/mL to maximize expanded posterior delivery and minimize tissue damage. Effects of collagenase injection within SCS increased and then plateaued 4 h after injection. Simultaneous injection of collagenase and microparticles had a greater effect on expanded delivery in the SCS compared to sequential injection. Collagenase injection into the SCS of rabbit eyes in vivo was also effective to expand delivery and was generally well-tolerated, showing transiently lowered IOP, but no apparent lasting adverse effects on ocular tissues such as sclera, choroid, and retina, as determined by analyzing histology, sclera tensile strength, and fundus imaging. We conclude that addition of collagenase during SCS injection can expand drug delivery coverage and increase posterior drug targeting.
Collapse
Affiliation(s)
- Jae Hwan Jung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Sanghyun Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - J Jeremy Chae
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
21
|
A resistance-sensing mechanical injector for the precise delivery of liquids to target tissue. Nat Biomed Eng 2019; 3:621-631. [PMID: 31391590 PMCID: PMC6688633 DOI: 10.1038/s41551-019-0350-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/11/2019] [Indexed: 11/21/2022]
Abstract
The precision of the delivery of therapeutics to the desired injection site by using syringes and hollow needles typically depends on the operator. Here, we introduce a highly sensitive, completely mechanical and cost-effective injector for targeting tissue reliably and precisely. As the operator pushes on the syringe plunger, the injector senses the loss-of-resistance on encountering a softer tissue or a cavity, stops advancing the needle, and delivers the payload. We demonstrate that the injector can reliably deliver liquids to the suprachoroidal space — a challenging injection site that provides access to the back of the eye — for a wide range of eye sizes, scleral thicknesses and intraocular pressures, and to target sites relevant for epidural injections, subcutaneous injections and intraperitoneal access. The design of this simple and effective injector can be adapted for a broad variety of clinical applications.
Collapse
|
22
|
Habot‐Wilner Z, Noronha G, Wykoff CC. Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: a targeted approach. Acta Ophthalmol 2019; 97:460-472. [PMID: 30702218 DOI: 10.1111/aos.14042] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
Delivery of pharmaceuticals to the posterior segment presents challenges that arise from the anatomy and clearance pharmacokinetics of the eye. Systemic and several local administration options [topical, periocular, intravitreal (IVT) and subretinal] are in clinical use, each with a unique benefit to risk profile shaped by factors including the administered agent, frequency of dosing, achievable pharmaceutical concentrations within posterior segment structures versus elsewhere in the eye or the body, invasiveness of the procedure and the inherent challenges with some administration methods. The use of the suprachoroidal space (SCS), which is the region between the sclera and the choroid, is being explored as a potential approach to target pharmacotherapies to the posterior segment via a minimally invasive injection procedure. Preclinical data on agents such as vascular endothelial growth factor inhibitors and triamcinolone acetonide (TA) indicate that administration via suprachoroidal injection results in more posterior distribution of the pharmacologic agent, with higher exposure to the sclera, choroid, retinal pigment epithelium cells and retina, and lesser exposure to the anterior segment, than observed with IVT administration. Based in part on these findings, clinical trials have explored the efficacy and safety of suprachoroidal administration of pharmacologic therapies in conditions affecting the posterior segment. Data on a proprietary formulation of TA administered by suprachoroidal injection show improvement in anatomic and visual outcomes in subjects with noninfectious uveitis, with the potential to mitigate the known risks of cataract and increased intraocular pressure (IOP) associated with the use of intraocular corticosteroids. Suprachoroidal administration appears to be a promising treatment modality and is also in the early stages of investigation for other possible applications, such as injection of antiglaucoma agents into the anterior SCS for long-lasting control of elevated IOP, and as a mode of delivery for gene- or cell-based therapies for retinal disorders.
Collapse
Affiliation(s)
- Zohar Habot‐Wilner
- Division of Ophthalmology Tel Aviv Medical Center Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | | | - Charles C. Wykoff
- Retina Consultants of Houston Houston Texas USA
- Blanton Eye Institute Houston Methodist Hospital & Weill Cornell Medical College Houston Texas USA
| |
Collapse
|
23
|
Zhang Y, Bazzazi H, Lima E Silva R, Pandey NB, Green JJ, Campochiaro PA, Popel AS. Three-Dimensional Transport Model for Intravitreal and Suprachoroidal Drug Injection. Invest Ophthalmol Vis Sci 2019; 59:5266-5276. [PMID: 30383198 PMCID: PMC6207998 DOI: 10.1167/iovs.17-23632] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Quantitative understanding of the transport of therapeutic macromolecules following intraocular injections is critical for the design of efficient strategies in treating eye diseases, such as neovascular (wet) age-related macular degeneration (AMD) and macular edema (ME). Antiangiogenic treatments, such as neutralizing antibodies against VEGF or recently characterized antiangiogenic peptides, have shown promise in slowing disease progression. Methods We developed a comprehensive three-dimensional (3D) transport model for intraocular injections using published data on drug distribution in rabbit eyes following intravitreal and suprachoroidal (SC) injection of sodium fluorescein (SF), bevacizumab, and ranibizumab. The model then was applied to evaluate the distribution of small molecules and antiangiogenic proteins following intravitreal and SC injections in human eyes. Results The model predicts that intravitreally administered molecules are substantially mixed within the vitreous following injection, and that the long-term behavior of the injected drug does not depend on the initial mixing. Ocular pharmacokinetics of different drugs is sensitive to different clearance mechanisms. Effective retinal drug delivery is impacted by RPE permeability. For VEGF antibody, intravitreal injection provides sustained delivery to the retina, whereas SC injection provides more efficient, but short-lived, retinal delivery for smaller-sized molecules. Long-term suppression of neovascularization through SC administration of antiangiogenic drugs necessitates frequent injection or sustained delivery, such as microparticle-based delivery of antiangiogenic peptides. Conclusions A comprehensive 3D model for intravitreal and SC drug injection is developed to provide a framework and platform for testing drug delivery routes and sustained delivery devices for new and existing drugs.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Hojjat Bazzazi
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Raquel Lima E Silva
- Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Niranjan B Pandey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordan J Green
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States.,Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Peter A Campochiaro
- Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
24
|
Lampen SIR, Khurana RN, Noronha G, Brown DM, Wykoff CC. Suprachoroidal Space Alterations Following Delivery of Triamcinolone Acetonide: Post-Hoc Analysis of the Phase 1/2 HULK Study of Patients With Diabetic Macular Edema. Ophthalmic Surg Lasers Imaging Retina 2019; 49:692-697. [PMID: 30222804 DOI: 10.3928/23258160-20180831-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To study anatomic changes in the suprachoroidal space (SCS) following suprachoroidal injection of CLS-TA, triamcinolone acetonide injectable suspension. PATIENTS AND METHODS Eyes with diabetic macular edema receiving CLS-TA were imaged serially using anterior segment spectral-domain optical coherence tomography to examine the SCS. RESULTS At the final imaging session, the SCS was not significantly different in study eyes (n = 14; 8.4 μm) compared to fellow eyes (n = 10; 8.1 μm; P = .698). Two eyes were imaged immediately before and 30 minutes after suprachoroidal injections; in these eyes, mean suprachoroidal width increased significantly following CLS-TA injection, 9.9 μm to 75.1 μm (P < .001), and subsequently returned to 14.9 μm 1 month after the final injection (P = .221). CONCLUSION Suprachoroidal CLS-TA injection caused a measurable increase in the SCS, which returned to preinjection levels by 1 month following injection with no apparent lasting impact on SCS anatomy. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:692-697.].
Collapse
|
25
|
Abstract
In recent years, advances in ocular imaging, drug delivery, and ophthalmic surgery have allowed for better visualization and access to the suprachoroidal space. Although previously considered as only a potential space, the suprachoroidal space may serve as a route for drug delivery to the posterior pole, an egress for glaucoma drainage devices, a location for temporary buckling, and a site for prosthesis implantation. Drugs delivered to the suprachoroidal space may achieve higher concentrations in the retina while minimizing exposure to anterior segment tissues, potentially reducing risks of glaucoma or cataracts. Finally, advanced multimodal imaging now allows not only a better understanding of the physiology of the suprachoroid, but also in vivo monitoring of pathologies and drug delivery to the suprachoroidal space. Here, we discuss the newest developments in the medical and surgical applications of this space with potential.
Collapse
Affiliation(s)
- Parisa Emami-Naeini
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| |
Collapse
|
26
|
Jung JH, Chiang B, Grossniklaus HE, Prausnitz MR. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release 2018; 277:14-22. [PMID: 29505807 DOI: 10.1016/j.jconrel.2018.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 11/19/2022]
Abstract
Treatment of many posterior-segment ocular indications would benefit from improved targeting of drug delivery to the back of the eye. Here, we propose the use of iontophoresis to direct delivery of negatively charged nanoparticles through the suprachoroidal space (SCS) toward the posterior pole of the eye. Injection of nanoparticles into the SCS of the rabbit eye ex vivo without iontophoresis led to a nanoparticle distribution mostly localized at the site of injection near the limbus and <15% of nanoparticles delivered to the most posterior region of SCS (>9 mm from the limbus). Iontophoresis using a novel microneedle-based device increased posterior targeting with >30% of nanoparticles in the most posterior region of SCS. Posterior targeting increased with increasing iontophoresis current and increasing application time up to 3 min, but further increasing to 5 min was not better, probably due to the observed collapse of the SCS within 5 min after injection ex vivo. Reversing the direction of iontophoretic flow inhibited posterior targeting, with just ~5% of nanoparticles reaching the most posterior region of SCS. In the rabbit eye in vivo, iontophoresis at 0.14 mA for 3 min after injection of a 100 μL suspension of nanoparticles resulted in ~30% of nanoparticles delivered to the most posterior region of the SCS, which was consistent with ex vivo findings. The procedure was well tolerated, with only mild, transient tissue effects at the site of injection. We conclude that iontophoresis in the SCS using a microneedle has promise as a method to target ocular drug delivery within the eye, especially toward the posterior pole.
Collapse
Affiliation(s)
- Jae Hwan Jung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bryce Chiang
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA; Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans E Grossniklaus
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
27
|
Chiang B, Jung JH, Prausnitz MR. The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev 2018; 126:58-66. [PMID: 29545195 DOI: 10.1016/j.addr.2018.03.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
The suprachoroidal space (SCS) is a potential space between the sclera and choroid that traverses the circumference of the posterior segment of the eye. The SCS is an attractive site for drug delivery because it targets the choroid, retinal pigment epithelium, and retina with high bioavailability, while maintaining low levels elsewhere in the eye. Indeed, phase III clinical trials are investigating the safety and efficacy of SCS drug delivery. Here, we review the anatomy and physiology of the SCS; methods to access the SCS; kinetics of SCS drug delivery; strategies to target within the SCS; current and potential clinical indications; and the safety and efficacy of this approach in preclinical animal studies and clinical trials.
Collapse
|
28
|
Willoughby AS, Vuong VS, Cunefare D, Farsiu S, Noronha G, Danis RP, Yiu G. Choroidal Changes After Suprachoroidal Injection of Triamcinolone Acetonide in Eyes With Macular Edema Secondary to Retinal Vein Occlusion. Am J Ophthalmol 2018; 186:144-151. [PMID: 29199012 PMCID: PMC5805638 DOI: 10.1016/j.ajo.2017.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate choroidal and suprachoroidal changes following suprachoroidal injection of triamcinolone acetonide injectable suspension (CLS-TA), in eyes with macular edema due to retinal vein occlusion (RVO). DESIGN Prospective cohort study within a randomized, controlled phase 2 clinical trial. METHODS Enhanced depth imaging optical coherence tomography (EDI-OCT) images were analyzed from 38 eyes of 38 treatment-naïve patients with macular edema due to RVO, enrolled in the prospective Suprachoroidal Injection of Triamcinolone Acetonide with Intravitreal Aflibercept in Subjects with Macular Edema Due to Retinal Vein Occlusion (TANZANITE) study who received either a suprachoroidal injection of CLS-TA with an intravitreal injection of aflibercept (combination arm) or only an intravitreal injection of aflibercept (monotherapy arm), followed by monthly intravitreal aflibercept injections in both arms based on pro re nata criteria. RESULTS Macular choroidal thickness measured to the outer choroidal vessel lumen (vascular choroidal thickness, VCT), outer choroid stroma (stromal choroidal thickness, SCT), or inner scleral border (total choroidal thickness, TCT) showed no significant changes over 3 months in both study arms (P = .231-.342). Eyes that received combination therapy showed a trend toward thickening of the suprachoroidal space (SCS) compared with monotherapy alone (13.4 μm vs 5.3 μm at 3 months; P = .077). In the 15 eyes that demonstrated a visible SCS at baseline, the SCS expanded significantly after suprachoroidal CLS-TA injection (16.2 μm to 27.8 μm at 3 months; P = .033). CONCLUSIONS Suprachoroidal injection of CLS-TA does not alter choroidal thickness in eyes with macular edema due to RVO, but may result in expansion of the SCS.
Collapse
Affiliation(s)
- Alex S Willoughby
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California
| | - Vivian S Vuong
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California
| | - David Cunefare
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - Ronald P Danis
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin
| | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California.
| |
Collapse
|
29
|
Chiang B, Wang K, Ethier CR, Prausnitz MR. Clearance Kinetics and Clearance Routes of Molecules From the Suprachoroidal Space After Microneedle Injection. Invest Ophthalmol Vis Sci 2017; 58:545-554. [PMID: 28125841 PMCID: PMC5283080 DOI: 10.1167/iovs.16-20679] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To determine clearance kinetics and routes of clearance of molecules from the suprachoroidal space (SCS) of live New Zealand White rabbits. Methods Suprachoroidal space collapse rate and pressure changes after microneedle injection into SCS were determined. Fluorescent fundus images were acquired to determine clearance rates of molecules ranging in size from 332 Da to 2 MDa. Microneedle injections of fluorescein were performed, and samples were taken from various sites over time to determine amount of fluorescein exiting the eye. Clearance transport was modeled theoretically and compared with experimental data. Results After injection, pressures in SCS and vitreous humor spiked and returned to baseline within 20 minutes; there was no difference between these two pressures. Suprachoroidal space collapse occurred within 40 minutes. One hour after fluorescein injection, 46% of fluorescein was still present in the eye, 15% had transported across sclera, 6% had been cleared by choroidal vasculature, and 4% had exited via leakage pathways. Characteristic clearance time increased in proportion with molecular radius, but total clearance of 2 MDa FITC-dextran was significantly slower (21 days) than smaller molecules. These data generally agreed with predictions from a theoretical model of molecular transport. Conclusions Guided by experimental data in the context of model predictions, molecular clearance from SCS occurred in three regimes: (1) on a time scale of approximately 10 minutes, fluid and molecules exited SCS by diffusion into sclera and choroid, and by pressure-driven reflux via transscleral leakage sites; (2) in approximately 1 hour, molecules cleared from choroid by blood flow; and (3) in 1 to 10 hours, molecules cleared from sclera by diffusion and convection.
Collapse
Affiliation(s)
- Bryce Chiang
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Ke Wang
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Mark R Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, United States 2School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|