1
|
Dorado-Cortez O, Crouzet E, Trone MC, Gain P, He Z, Vaitinadapoule H, Mentek M, Mascarelli F, Poinard S, Yasunaga M, Nishiuchi G, Koizumi N, Okumura N, Thuret G. Change in Visual Acuity of Patients With Fuchs Endothelial Corneal Dystrophy Over 1 Year. Cornea 2024; 43:1207-1215. [PMID: 39288343 DOI: 10.1097/ico.0000000000003590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/03/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE To determine whether the clinical and paraclinical course of Fuchs endothelial corneal dystrophy (FECD) over 1 year is related to the extent of triplet repetition in the transcription factor 4 (TCF4) gene. METHODS A prospective study with a 1-year follow-up was conducted. A total of 104 patients (160 eyes) with FECD and an equivalent number of age- and sex-matched control subjects without FECD were included. At inclusion, the corneas were graded using the modified Krachmer grade (KG) and patients were genotyped for the number of trinucleotide repeats (TNRs) in the TCF4 gene by the short tandem repeat assay. Visual acuity, Scheimpflug tomographic features, and the Visual Function and Corneal Health Status using a visual disability instrument were measured on 2 visits at 1-year intervals. RESULTS KGs ranged from 1 to 6, and 46% of eyes had grades 1 to 4. 71% of the patients harbored TNR expansion (>40) versus 13% in control subjects ( P < 0.001). Severity at inclusion was higher in the presence of TNR expansion when considering eyes independently (mean grade ±SD, 4.08 ± 1.42) without TNR expansion and 4.66 ± 1.27 with TNR expansion ( P = 0.024). In 1 year, the ETDRS score significantly decreased by -2.97 (95% confidence interval -4.69 to -1.26, P = 0.001) and the ETDRS score with glare by -4.25 (95% confidence interval -6.22 to -2.27, P < 10 -5 ). There was no relationship between the rate of decline and TNR expansion or KG. Central corneal thickness and Visual Function and Corneal Health Status scores did not significantly vary. CONCLUSIONS It is possible to measure a subtle progression of FECD over a period as short as 1 year. We did not find a relationship between the presence of TNR expansion and the speed of deterioration over 1 year. This work should facilitate the design of future clinical trials on FECD.
Collapse
Affiliation(s)
- Oliver Dorado-Cortez
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
- Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Emmanuel Crouzet
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Marie Caroline Trone
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Philippe Gain
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
- Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Zhiguo He
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Hanielle Vaitinadapoule
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Marielle Mentek
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Frédéric Mascarelli
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
- Cordeliers Research Center, Paris Descartes University, Paris, France; and
| | - Sylvain Poinard
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
- Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Mari Yasunaga
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Go Nishiuchi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Gilles Thuret
- Laboratory for Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
- Ophthalmology Department, University Hospital, Saint-Etienne, France
| |
Collapse
|
2
|
Owete AC, Ionin R, Huryn LA, Cukras CA, Blain D, Agather AR, Hufnagel RB, Brooks BP, Nwanyanwu K, Zein WM. Seeing in Color: Inclusion and Characterization of Hereditary Eye Disease in African Americans. Transl Vis Sci Technol 2024; 13:4. [PMID: 39226063 PMCID: PMC11373706 DOI: 10.1167/tvst.13.9.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Purpose Hereditary eye diseases (HEDs) are individually rare but affect millions globally. The era of molecular genetics has ushered major advances in the study of these disorders; however, the inclusivity and population diversity of this research is unknown. Questions on the accuracy and applicability of these findings in diverse populations, especially African American patients, came up consistently during counselling sessions. This also raised the possibility of missed opportunities for broader understanding of these rare diseases. We conducted a literature review to measure the representation of African Americans in genomic research surrounding nine HEDs. Methods A detailed literature search using a predetermined set of search terms for each of nine HED categories was performed across PubMed, Embase, Web of Science, and Scopus focusing on studies published between Jan 1990 and July 2021. Predetermined inclusion criteria were applied to filter the sources. Results We identified 46 studies clearly reporting HED characterization in African Americans. Analysis of these inclusive studies revealed unique findings demonstrating the known usefulness of including diverse cohorts in genomics research. Conclusions HED characterization in diverse participants, specifically African Americans, is identified as a knowledge gap area. Genomic research is more applicable to patients when conducted in populations that share their ancestral background. Greater inclusion of African Americans in ophthalmic genetics research is a scientific imperative and a needed step in the pursuit of the best possible patient care for populations of all ancestries. Translational Relevance This work reveals gaps in genomic research in African Americans with HEDs.
Collapse
Affiliation(s)
- Agnes C Owete
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Ionin
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Catherine A Cukras
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Delphine Blain
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Aime R Agather
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Kristen Nwanyanwu
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Gorman BR, Francis M, Nealon CL, Halladay CW, Duro N, Markianos K, Genovese G, Hysi PG, Choquet H, Afshari NA, Li YJ, Gaziano JM, Hung AM, Wu WC, Greenberg PB, Pyarajan S, Lass JH, Peachey NS, Iyengar SK. A multi-ancestry GWAS of Fuchs corneal dystrophy highlights the contributions of laminins, collagen, and endothelial cell regulation. Commun Biol 2024; 7:418. [PMID: 38582945 PMCID: PMC10998918 DOI: 10.1038/s42003-024-06046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular etiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program followed by multi-ancestry meta-analysis with the previous largest FECD GWAS, for a total of 3970 cases and 333,794 controls. We confirm the previous four loci, and identify eight novel loci: SSBP3, THSD7A, LAMB1, PIDD1, RORA, HS3ST3B1, LAMA5, and COL18A1. We further confirm the TCF4 locus in GWAS for admixed African and Hispanic/Latino ancestries and show an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling, validated through homology, suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and colocalization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Michael Francis
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, RI, USA
| | - Nalvi Duro
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- UCL Great Ormond Street Hospital Institute of Child Health, King's College London, London, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Natalie A Afshari
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, RI, USA
| | - Paul B Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, RI, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Jonathan H Lass
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
4
|
Oie Y, Yamaguchi T, Nishida N, Okumura N, Maeno S, Kawasaki R, Jhanji V, Shimazaki J, Nishida K. Systematic Review of the Diagnostic Criteria and Severity Classification for Fuchs Endothelial Corneal Dystrophy. Cornea 2023; 42:1590-1600. [PMID: 37603692 DOI: 10.1097/ico.0000000000003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/28/2023] [Indexed: 08/23/2023]
Abstract
PURPOSE There are no defined diagnostic criteria and severity classification for Fuchs endothelial corneal dystrophy (FECD), which are required for objective standardized assessments. Therefore, we performed a systematic literature review of the current diagnosis and severity classification of FECD. METHODS We searched the Ovid MEDLINE and Web of Science databases for studies published until January 13, 2021. We excluded review articles, conference abstracts, editorials, case reports with <5 patients, and letters. RESULTS Among 468 articles identified, we excluded 173 and 165 articles in the first and second screenings, respectively. Among the 130 included articles, 61 (47%) and 99 (76%) mentioned the diagnostic criteria for FECD and described its severity classification, respectively. Regarding diagnosis, slitlamp microscope alone was the most frequently used device in 31 (51%) of 61 articles. Regarding diagnostic findings, corneal guttae alone was the most common parameter [adopted in 23 articles (38%)]. Regarding severity classification, slitlamp microscopes were used in 88 articles (89%). The original or modified Krachmer grading scale was used in 77 articles (78%), followed by Adami's classification in six (6%). Specular microscopes or Scheimpflug tomography were used in four articles (4%) and anterior segment optical coherence tomography in one (1%). CONCLUSIONS FECD is globally diagnosed by the corneal guttae using slitlamp examination, and its severity is predominantly determined by the original or modified Krachmer grading scale. Objective severity grading using Scheimpflug or anterior segment optical coherence tomography can be applied in the future innovative therapies such as cell injection therapy or novel small molecules.
Collapse
Affiliation(s)
- Yoshinori Oie
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Nozomi Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan; and
| | - Sayo Maeno
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryo Kawasaki
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jun Shimazaki
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
5
|
Nealon CL, Halladay CW, Gorman BR, Simpson P, Roncone DP, Canania RL, Anthony SA, Rogers LRS, Leber JN, Dougherty JM, Bailey JNC, Crawford DC, Sullivan JM, Galor A, Wu WC, Greenberg PB, Lass JH, Iyengar SK, Peachey NS. Association Between Fuchs Endothelial Corneal Dystrophy, Diabetes Mellitus, and Multimorbidity. Cornea 2023; 42:1140-1149. [PMID: 37170406 PMCID: PMC10523841 DOI: 10.1097/ico.0000000000003311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE The aim of this study was to assess risk for demographic variables and other health conditions that are associated with Fuchs endothelial corneal dystrophy (FECD). METHODS We developed a FECD case-control algorithm based on structured electronic health record data and confirmed accuracy by individual review of charts at 3 Veterans Affairs (VA) Medical Centers. This algorithm was applied to the Department of VA Million Veteran Program cohort from whom sex, genetic ancestry, comorbidities, diagnostic phecodes, and laboratory values were extracted. Single-variable and multiple variable logistic regression models were used to determine the association of these risk factors with FECD diagnosis. RESULTS Being a FECD case was associated with female sex, European genetic ancestry, and a greater number of comorbidities. Of 1417 diagnostic phecodes evaluated, 213 had a significant association with FECD, falling in both ocular and nonocular conditions, including diabetes mellitus (DM). Five of 69 laboratory values were associated with FECD, with the direction of change for 4 being consistent with DM. Insulin dependency and type 1 DM raised risk to a greater degree than type 2 DM, like other microvascular diabetic complications. CONCLUSIONS Female sex, European ancestry, and multimorbidity increased FECD risk. Endocrine/metabolic clinic encounter codes and altered patterns of laboratory values support DM increasing FECD risk. Our results evoke a threshold model in which the FECD phenotype is intensified by DM and potentially other health conditions that alter corneal physiology. Further studies to better understand the relationship between FECD and DM are indicated and may help identify opportunities for slowing FECD progression.
Collapse
Affiliation(s)
- Cari L. Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Christopher W. Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Bryan R. Gorman
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, Massachusetts
- Booz Allen Hamilton, McLean, Virginia, USA
| | - Piana Simpson
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - David P. Roncone
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - Scott A. Anthony
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - Jenna N. Leber
- Ophthalmology Section, VA Western NY Health Care System, Buffalo, New York, USA
| | | | - Jessica N. Cooke Bailey
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Dana C. Crawford
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Jack M. Sullivan
- Ophthalmology Section, VA Western NY Health Care System, Buffalo, New York, USA
- Research Service, VA Western NY Health Care System, Buffalo, New York, USA
- Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, New York, USA
| | - Anat Galor
- Miami Veterans Affairs Medical Center, Miami, Florida, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Paul B. Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, Rhode Island, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | | - Jonathan H. Lass
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Eye Institute, Cleveland, Ohio, USA
| | - Sudha K. Iyengar
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Neal S. Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Peachey N, Gorman B, Francis M, Nealon C, Halladay C, Duro N, Markianos K, Genovese G, Hysi P, Choquet H, Afshari N, Li YJ, Gaziano JM, Hung A, Wu WC, Greenberg P, Pyarajan S, Lass J, Iyengar S. Multi-ancestry GWAS of Fuchs corneal dystrophy highlights roles of laminins, collagen, and endothelial cell regulation. RESEARCH SQUARE 2023:rs.3.rs-2762003. [PMID: 37205546 PMCID: PMC10187421 DOI: 10.21203/rs.3.rs-2762003/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular pathophysiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program (MVP) and meta-analyzed with the previous largest FECD GWAS, finding twelve significant loci (eight novel). We further confirmed the TCF4 locus in admixed African and Hispanic/Latino ancestries, and found an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and co-localization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California
| | | | | | | | | | | | | | - Saiju Pyarajan
- Center for Data and Computational Sciences, Veterans Affairs Boston Healthcare System
| | - Jonathan Lass
- Case Western Reserve University and University Hospitals Case Medical Center
| | | |
Collapse
|
7
|
Heckenlaible NJ, Dun C, Prescott C, Eghrari AO, Woreta F, Makary MA, Srikumaran D. Predictors of Receiving Keratoplasty for Fuchs' Endothelial Corneal Dystrophy among Medicare Beneficiaries. Ophthalmology 2023; 130:28-38. [PMID: 35932840 DOI: 10.1016/j.ophtha.2022.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To identify factors associated with receipt of endothelial keratoplasty (EK) and penetrating keratoplasty (PK) in patients with Fuchs' endothelial corneal dystrophy (FECD). DESIGN Retrospective cohort study. PARTICIPANTS Medicare beneficiaries 65 years of age or older with a FECD diagnosis between 2011 and 2019. METHODS The 100% Medicare fee-for-service administrative claims database was queried for treatment-naïve FECD patients. A multivariate logistic regression model including age, race and ethnicity, sex, geography, ocular comorbidities and surgeries, Charlson comorbidity index (CCI), and socioeconomic status was used to identify factors associated with receipt of EK and PK. Kaplan-Meier survival analyses were used to determine the rate of EK after cataract or complex or other anterior segment surgery. MAIN OUTCOME MEASURES Factors associated with receipt of an EK or PK, plus rate of EK after cataract or complex or other anterior segment surgery. RESULTS Of 719 066 beneficiaries identified, 31 372 (4.4%) received an EK and 2426 (0.3%) received a PK. In a multivariate analysis, female sex decreased likelihood of both EK and PK (adjusted odds ratio 0.83 [95% confidence interval 0.81-0.85] and 0.84 [0.78-0.92], respectively), while Western residence (1.33 [1.29-1.38]; 1.25 [1.11-1.42]) compared to Southern and history of complex or other anterior segment surgery (1.62 [1.54-1.70]; 5.52 [4.97-6.12]) increased the likelihood of both. Compared to Whites, the likelihood of EK was decreased for Black (0.76 [0.72-0.80]), Asian or Pacific Islander (0.54 [0.48-0.61]), and Hispanic or Latino (0.62 [0.55-0.70]) race and ethnicity, while for the same groups likelihood of PK was increased (for Black 1.32 [1.14-1.53]; Asian/Pacific Islander 1.46 [1.13-1.89]; and Hispanic/Latino 1.62 [1.25-2.11]). Following cataract or complex/other anterior segment surgery, rates of EK were 1.3% and 3.3% at 1 year and 2.3% and 5.6% at 8 years, respectively. CONCLUSIONS In a multivariate analysis, women beneficiaries are less likely to receive EK or PK for FECD compared with men, whereas non-White beneficiaries are less likely to receive EK and more likely to receive PK compared with White beneficiaries.
Collapse
Affiliation(s)
- Nicolas J Heckenlaible
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chen Dun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina Prescott
- NYU Langone Eye Center, NYU Grossman School of Medicine, New York, New York
| | - Allen O Eghrari
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fasika Woreta
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin A Makary
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Johns Hopkins University Carey Business School, Johns Hopkins University, Baltimore, Maryland
| | - Divya Srikumaran
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
8
|
Xu TT, Li YJ, Afshari NA, Aleff RA, Rinkoski TA, Patel SV, Maguire LJ, Edwards AO, Brown WL, Fautsch MP, Wieben ED, Baratz KH. Disease Expression and Familial Transmission of Fuchs Endothelial Corneal Dystrophy With and Without CTG18.1 Expansion. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 33444430 PMCID: PMC7814354 DOI: 10.1167/iovs.62.1.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To characterize inheritance, penetrance, and trinucleotide repeat expansion stability in Fuchs endothelial corneal dystrophy (FECD). Methods One thousand unrelated and related subjects with and without FECD were prospectively recruited. CTG18.1 repeat length (CTG18.1L) was determined via short tandem repeat assay and Southern blotting of leukocyte DNA. Multivariable logistic regression and generalized estimating equation models were employed. Results There were 546 unrelated FECD cases (67.6% female; 70 ± 10 years) and 235 controls (63.8% female; 73 ± 8 years; all ≥ 50 years). CTG18.1 expansion (CTG18.1exp+) was observed in 424 (77.7%) cases and 18 (7.7%) controls (P = 2.48 × 10-44). CTG18.1 expansion was associated with FECD severity (P = 5.62 × 10-7). The family arm of the study included 331 members from 112 FECD-affected families; 87 families were CTG18.1exp+. Autosomal dominant inheritance with variable expression of FECD was observed, regardless of expansion status. FECD penetrance of CTG18.1 expansion increased with age, ranging from 44.4% in the youngest (19-46 years) to 86.2% in the oldest (64-91 years) age quartiles. Among 62 parent-offspring transmissions of CTG18.1exp+, 48 (77.4%) had a change in CTG18.1L ≤ 10 repeats, and eight (12.9%) were ≥50 repeats, including five large expansions (∼1000-2000 repeats) that contracted. Among 44 offspring who did not inherit the CTG18.1exp+ allele, eight (18.2%) exhibited FECD. Conclusions CTG18.1 expansion was highly associated with FECD but demonstrated incomplete penetrance. CTG18.1L instability occurred in a minority of parent-offspring transmissions, with large expansions exhibiting contraction. The observation of FECD without CTG18.1 expansion among family members in CTG18.1exp+ families highlights the complexity of the relationship between the FECD phenotype and CTG18.1 expansion.
Collapse
Affiliation(s)
- Timothy T. Xu
- Alix School of Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Natalie A. Afshari
- Shiley Eye Institute, University of California, San Diego, La Jolla, California, United States
| | - Ross A. Aleff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Tommy A. Rinkoski
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Sanjay V. Patel
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Leo J. Maguire
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Albert O. Edwards
- Oregon Retina Division, Sterling Vision, Eugene, Oregon, United States
- Casey Eye Institute, Oregon Health Sciences University, Portland, Oregon, United States
| | - William L. Brown
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael P. Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Eric D. Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Keith H. Baratz
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
9
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
10
|
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, Tuft SJ, Davidson AE. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res 2020; 81:100883. [PMID: 32735996 PMCID: PMC7988464 DOI: 10.1016/j.preteyeres.2020.100883] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a common cause for heritable visual loss in the elderly. Since the first description of an association between FECD and common polymorphisms situated within the transcription factor 4 (TCF4) gene, genetic and molecular studies have implicated an intronic CTG trinucleotide repeat (CTG18.1) expansion as a causal variant in the majority of FECD patients. To date, several non-mutually exclusive mechanisms have been proposed that drive and/or exacerbate the onset of disease. These mechanisms include (i) TCF4 dysregulation; (ii) toxic gain-of-function from TCF4 repeat-containing RNA; (iii) toxic gain-of-function from repeat-associated non-AUG dependent (RAN) translation; and (iv) somatic instability of CTG18.1. However, the relative contribution of these proposed mechanisms in disease pathogenesis is currently unknown. In this review, we summarise research implicating the repeat expansion in disease pathogenesis, define the phenotype-genotype correlations between FECD and CTG18.1 expansion, and provide an update on research tools that are available to study FECD as a trinucleotide repeat expansion disease. Furthermore, ongoing international research efforts to develop novel CTG18.1 expansion-mediated FECD therapeutics are highlighted and we provide a forward-thinking perspective on key unanswered questions that remain in the field. FECD is a common, age-related corneal dystrophy. The majority of cases are associated with expansion of a CTG repeat (CTG18.1). FECD is the most common trinucleotide repeat expansion disease in humans. Evidence supports multiple molecular mechanisms underlying the pathophysiology. Novel CTG18.1-targeted therapeutics are in development.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA.
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Amanda N Sadan
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| | | | - Stephen J Tuft
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK; Moorfields Eye Hospital, London, EC1V 2PD, UK.
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| |
Collapse
|
11
|
Association of rs613872 and Trinucleotide Repeat Expansion in the TCF4 Gene of German Patients With Fuchs Endothelial Corneal Dystrophy. Cornea 2019; 38:799-805. [PMID: 30973406 DOI: 10.1097/ico.0000000000001952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate single nucleotide polymorphisms (SNPs) and trinucleotide repeat (TNR) expansion in the transcription factor 4 (TCF4) gene in a large cohort of German patients with Fuchs endothelial corneal dystrophy (FECD). METHODS Genomic DNA was obtained from 398 patients with FECD and from 58 non-FECD controls. Thirty-seven previously reported SNPs were evaluated by genotyping. The 398 FECD samples were analyzed for TNR expansions by short tandem repeat assays and Southern blotting. The possible associations between the TNR length and clinical parameters (age, sex, visual acuity, and central corneal thickness) were analyzed in 132 patients. RESULTS The SNPs in COL8A2, TCF8, LOXHD1, and AGBL1 showed no heterogeneity in 36 cases, although SLCA411 showed 3 nonsense mutations. SNPs were detected for TCF4 (rs613872, rs2123392, rs17089887, rs1452787, and rs1348047), but only rs613872 showed a significant association with FECD (P = 9.93 × 10). Overall, 315/398 (79%) patients harbored TNR lengths >50, whereas no non-FECD controls harbored TNR lengths >50. The TCF4 SNP rs613872 genotype was TT: 39 (67%), TG: 18 (31%), and GG: 1 (2%) in non-FECD controls; TT: 39 (47%), TG: 38 (46%), and GG: 6 (7%) in FECD cases harboring TNR <50; and TT: 23 (8%), TG: 224 (79%), and GG: 38 (13%) in FECD cases harboring TNR >50 (P = 2.93 × 10). No significant association was detected between the TNR length and clinical parameters. CONCLUSIONS Our large German cohort demonstrated a significant association between the risk allele G in rs613872 and FECD, irrespective of TNR expansion, although this risk allele was more frequent in FECD cases with TNR expansion than without.
Collapse
|
12
|
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is a common disease resulting from corneal endothelial cell dysfunction. It is inherited in an autosomal dominant fashion with incomplete penetrance, and with a female bias. Approximately half of cases occur sporadically, and the remainder are familial. Early and late-onset forms of the disease exist. A review of the literature has revealed more than 15 genes harbouring mutations and/or single nucleotide polymorphisms associated with FECD. The proteins encoded by these genes cover a wide range of endothelial function, including transcription regulation, DNA repair, mitochondrial DNA mutations, targeting of proteins to the cell membrane, deglutamylation of proteins, extracellular matrix secretion, formation of cell-cell and cell-extracellular matrix junctions, water pump, and apoptosis. These genetic variations will form the platform for the further understanding of the pathological basis of the disease, and the development of targeted treatments. This review aims to summarise known genetic variations associated with FECD, discuss any known molecular effects of the variations, how these provide opportunities for targeted therapies, and what therapies are currently in development.
Collapse
|