1
|
Pasricha ND, Lindgren ES, Yan R, Kuo YM, Chan M, Verkman AS, Chu T, Yottasan P, de Souza Goncalves L, Cil O. Calcium-sensing receptor (CaSR) modulates ocular surface chloride transport and its inhibition promotes ocular surface hydration. Ocul Surf 2024; 34:30-37. [PMID: 38871216 DOI: 10.1016/j.jtos.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Ocular surface hydration is critical for eye health and its impairment can lead to dry eye disease. Extracellular calcium-sensing receptor (CaSR) is regulator of ion transport in epithelial cells expressing cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. CFTR is also a major ion channel in ocular surface epithelia, however the roles of CaSR in ocular surface are not well studied. This study aims to investigate expression and functional roles of CaSR in ocular surface. METHODS CaSR immunostaining was performed in mouse and human cornea and conjunctiva. Ocular surface potential difference (OSPD) and tear fluid volume measurements were performed in mice with topically applied cinacalcet (CaSR activator) and NPS-2143 (CaSR inhibitor). RESULTS CaSR is expressed in corneal and conjunctival epithelia of mice and humans. Topically administered CaSR activator cinacalcet inhibits cAMP agonist forskolin-induced Cl- secretion and CFTR activity up to 90 %. CaSR inhibitor NPS-2143 stimulates CFTR-mediated Cl- secretion in mouse ocular surface, after which cAMP agonist forskolin had minimal additional secretory effects. Single dose NPS-2143 treatment (as an eye drop) increases tear fluid volume in mice by ∼60 % compared to vehicle treatment. NPS-2143 effect on tear volume lasts at least 8 h after single dose. CONCLUSIONS CaSR is a key regulator of ocular surface ion transport and CaSR inhibition promotes Cl- and tear secretion in the ocular surface. If they are found to be effective in in dry eye models, CaSR inhibitors (currently in clinical development) can potentially be repurposed as novel prosecretory treatments for dry eye disease.
Collapse
Affiliation(s)
- Neel D Pasricha
- Department of Ophthalmology, University of California, San Francisco, United States; Francis I. Proctor Foundation, University of California, San Francisco, United States
| | - Ethan S Lindgren
- Department of Ophthalmology, University of California, San Francisco, United States
| | - Rongshan Yan
- Department of Ophthalmology, University of California, San Francisco, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, United States
| | - Matilda Chan
- Department of Ophthalmology, University of California, San Francisco, United States; Francis I. Proctor Foundation, University of California, San Francisco, United States
| | - Alan S Verkman
- Department of Medicine and Physiology, University of California, San Francisco, United States
| | - Tifany Chu
- Department of Pediatrics, University of California, San Francisco, United States
| | - Pattareeya Yottasan
- Department of Pediatrics, University of California, San Francisco, United States
| | | | - Onur Cil
- Department of Pediatrics, University of California, San Francisco, United States.
| |
Collapse
|
2
|
Wu J, Wang X, Zhao Y, Hou Y, Gong P. Overview of CFTR activators and their recent studies for dry eye disease: a review. RSC Med Chem 2023; 14:2459-2472. [PMID: 38107177 PMCID: PMC10718525 DOI: 10.1039/d3md00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 12/19/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gets activated via the cAMP signaling pathway and is present in various secretory epithelial cells, including conjunctival and corneal epithelial cells. Activation of CFTR leads to fluid secretion in both mouse and human ocular surfaces. Dry eye disease is a significant health problem for which limited therapeutic options are available. In this review, on the one hand, small molecule CFTR activators with different chemical structures are summarized, and on the other hand, the pharmacological activity test and structural optimization of small molecule CFTR activators in the treatment of dry eye are outlined. The purpose of this review is to highlight the important role of CFTR activators in the treatment of dry eye disease and their potential as a new strategy for the treatment of dry eye disease.
Collapse
Affiliation(s)
- Jie Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| |
Collapse
|
3
|
Lindgren ES, Cil O, Verkman AS, Pasricha ND. Ocular Surface Ion Transport and Dry Eye Disease. CURRENT OPHTHALMOLOGY REPORTS 2022; 10:188-197. [PMID: 38213468 PMCID: PMC10783585 DOI: 10.1007/s40135-022-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 10/24/2022]
Abstract
Purpose of Review To review the role of ocular surface epithelial (corneal and conjunctival) ion transporters in the pathogenesis and treatment of dry eye disease (DED). Recent Findings Currently, anti-inflammatory agents are the mainstay of DED treatment, though there are several agents in development that target ion transport proteins on the ocular surface, acting by pro-secretory or anti-absorptive mechanisms to increase the tear fluid Film volume. Activation or inhibition of selected ion transporters can alter tear fluid osmolality, driving water transport onto the ocular surface via osmosis. Several ion transporters have been proposed as potential therapeutic targets for DED, including the cystic fibrosis transmembrane conductance regulator (CFTR), calcium-activated chloride channels (CaCCs), and the epithelial sodium channel (ENaC). Summary Ocular surface epithelial cell ion transporters are promising targets for pro-secretory and anti-absorptive therapies of DED.
Collapse
Affiliation(s)
- Ethan S. Lindgren
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Neel D. Pasricha
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Yang S, Wu Y, Wang C, Jin X. Ocular Surface Ion-Channels Are Closely Related to Dry Eye: Key Research Focus on Innovative Drugs for Dry Eye. Front Med (Lausanne) 2022; 9:830853. [PMID: 35308542 PMCID: PMC8927818 DOI: 10.3389/fmed.2022.830853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abundant ion-channels, including various perceptual receptors, chloride channels, purinergic receptor channels, and water channels that exist on the ocular surface, play an important role in the pathogenesis of dry eye. Channel-targeting activators or inhibitor compounds, which have shown positive effects in in vivo and in vitro experiments, have become the focus of the dry eye drug research and development, and individual compounds have been applied in clinical experimental treatment. This review summarized various types of ion-channels on the ocular surface related to dry eye, their basic functions, and spatial distribution, and discussed basic and clinical research results of various channel receptor regulatory compounds. Therefore, further elucidating the relationship between ion-channels and dry eye will warrant research of dry eye targeted drug therapy.
Collapse
Affiliation(s)
| | | | | | - Xiuming Jin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Abstract
Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.
Collapse
Affiliation(s)
- Alan S Verkman
- Department of Medicine, University of California, San Francisco, California.,Department of Physiology, University of California, San Francisco, California
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Pasricha ND, Smith AJ, Levin MH, Schallhorn JM, Verkman AS. Ocular Surface Potential Difference Measured in Human Subjects to Study Ocular Surface Ion Transport. Transl Vis Sci Technol 2020; 9:20. [PMID: 33117611 PMCID: PMC7571274 DOI: 10.1167/tvst.9.11.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The epithelium lining the ocular surface, which includes corneal and conjunctival epithelia, expresses the prosecretory chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) and the proabsorptive epithelial sodium channel (ENaC). Here, methodology was established to measure the millivolt (mV) potential differences at the ocular surface, called ocular surface potential difference (OSPD), in human subjects produced by ion transport. Methods OSPD was measured in human subjects in which a fluid-filled measuring electrode contacted a fluid pool created by eversion of the lateral lower eyelid, with a reference electrode placed subcutaneously in the forearm. Through the use of a high-impedance voltmeter, OSPD was measured continuously over 10 to 15 minutes in response to a series of perfusate fluid exchanges. Results Baseline OSPD (± SEM) in six normal human subjects was -21.3 ± 3.6 mV. OSPD depolarized by 1.7 ± 0.6 mV following the addition of the ENaC inhibitor amiloride, hyperpolarized by 6.8 ± 1.5 mV with a zero chloride solution, and further hyperpolarized by 15.9 ± 1.6 mV following CFTR activation by isoproterenol. The isoproterenol-induced hyperpolarization was absent in two cystic fibrosis subjects lacking functional CFTR. OSPD measurement produced minimal epithelial injury. Conclusions Our results establish the feasibility and safety of OSPD measurement in humans and demonstrate robust CFTR activity, albeit minimal ENaC activity, at the ocular surface. OSPD measurement may be broadly applicable to investigate fluid transport mechanisms and test drug candidates to treat ocular surface disorders. Translational Relevance To the best of our knowledge, this is the first measurement of the electrical potential generated by the ocular surface epithelium in human subjects, offering a new approach to study ocular surface function and health.
Collapse
Affiliation(s)
- Neel D Pasricha
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Alex J Smith
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA.,Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Marc H Levin
- Department of Ophthalmology, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Julie M Schallhorn
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Chen X, Lee S, Zhang T, Duan T, Pasricha ND, Schallhorn JM, Levin MH, Koprivica V, Verkman AS. Nanomolar Potency Aminophenyltriazine CFTR Activator Reverses Corneal Epithelial Injury in a Mouse Model of Dry Eye. J Ocul Pharmacol Ther 2020; 36:147-153. [PMID: 31934802 DOI: 10.1089/jop.2019.0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: Dry eye disorders are a major health care burden. We previously reported the identification of N-methyl-N-phenyl-6-(2,2,3,3-tetrafluoropropoxy)-1,3,5-triazine-2,4-diamine [cystic fibrosis transmembrane conductance regulator (CFTR)act-K267], which activated human wild-type CFTR chloride conductance with EC50 ∼ 30 nM. Here, we report in vivo evidence for CFTRact-K267 efficacy in an experimental mouse model of dry eye using a human compatible ophthalmic vehicle. Methods: CFTR activation in mice in vivo was demonstrated by ocular surface potential difference (OSPD) measurements. Ocular surface pharmacodynamics was measured in tear fluid samples obtained at different times after topical administration of CFTRact-K267. Dry eye was produced by lacrimal duct cautery (LDC) and corneal epithelial injury and was assessed by Lissamine green (LG) staining. Results: OSPD measurements demonstrated a hyperpolarization of -8.6 ± 3 mV (standard error of the mean, 5 mice) in response to CFTRact-K267 exposure in low chloride solution that was reversed by a CFTR inhibitor. Following single-dose topical administration of 2 nmol CFTRact-K267, tear fluid CFTRact-K267 concentration was >500 nM for more than 6 h. Following LDC, corneal surface epithelial injury, as assessed by LG staining, was substantially reversed in 10 of 12 eyes receiving 2 nmol CFTRact-K267 3 times daily starting on day 2, when marked epithelial injury had already occurred. Improvement was seen in 3 of 12 vehicle-treated eyes. Conclusion: These studies provide in vivo evidence in mice for the efficacy of a topical, human use compatible CFTRact-K267 formulation in stimulating chloride secretion and reversing corneal epithelial injury in dry eye.
Collapse
Affiliation(s)
- Xiaolan Chen
- Department of Medicine and Physiology and University of California, San Francisco, California.,Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Sujin Lee
- Department of Medicine and Physiology and University of California, San Francisco, California
| | - Tianyi Zhang
- Department of Medicine and Physiology and University of California, San Francisco, California
| | - Tianying Duan
- Department of Medicine and Physiology and University of California, San Francisco, California
| | - Neel D Pasricha
- Department of Ophthalmology, University of California, San Francisco, California
| | - Julie M Schallhorn
- Department of Ophthalmology, University of California, San Francisco, California
| | - Marc H Levin
- Department of Ophthalmology, Palo Alto Medical Foundation, Palo Alto, California
| | - Vuk Koprivica
- Vanda Pharmaceuticals, Inc., Washington, District of Columbia
| | - Alan S Verkman
- Department of Medicine and Physiology and University of California, San Francisco, California
| |
Collapse
|