1
|
Schneider-Futschik EK, Zhu Y, Li D, Habgood MD, Nguyen BN, Pankonien I, Amaral MD, Downie LE, Chinnery HR. The role of CFTR in the eye, and the effect of early highly effective modulator treatment for cystic fibrosis on eye health. Prog Retin Eye Res 2024; 103:101299. [PMID: 39245300 DOI: 10.1016/j.preteyeres.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a protein that plays a crucial role in various human organs, including the respiratory and digestive systems. Dysfunctional CFTR is the key variant of the lethal genetic disorder, cystic fibrosis (CF). In the past decade, highly effective CFTR modulator therapies, including elexacaftor-tezacaftor-ivacaftor, have revolutionised CF management by correcting the underlying molecular defect to improve patient outcomes and life expectancy. Despite demonstrating multiorgan efficacy, clinical studies have largely overlooked the potential for ocular disturbances with CFTR modulator therapy, with the exception of a few case studies reporting the presence of crystalline lens pathologies in young children on CFTR modulators, and in breastfed infants born to individuals who were on CFTR modulator treatment during pregnancy. CFTR is present in multiple tissues during embryonic development, including the eye, and its expression can be influenced by genetic and environmental factors. This review summarises the role of CFTR in the eye, and the potential impact of CFTR on eye function and vision later in life. This information provides a framework for understanding the use and possible effects of CFTR-modulating therapeutics in the context of eye health, including the potential to leverage the eye for non-invasive and accessible diagnostic and monitoring capabilities in patients with CF.
Collapse
Affiliation(s)
- Elena K Schneider-Futschik
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Yimin Zhu
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Danni Li
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mark D Habgood
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bao N Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ines Pankonien
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016, Lisboa, Portugal
| | - Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016, Lisboa, Portugal
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia; Lions Eye Institute, Nedlands, Western Australia, 6009, Australia; The University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
2
|
Elekes G, Csapó V, Szarka D, Szalay L, Korsós MM, Tálosi D, Török D, Tóth-Molnár E. The Role of Aquaporin 4 in Lacrimal Gland Ductal Fluid Secretion in Mice. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 38771571 PMCID: PMC11114615 DOI: 10.1167/iovs.65.5.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Earlier reports highlighted the predominant presence of aquaporin 4 (AQP4) in the duct cells of rabbit lacrimal glands (LGs). Whereas significant alterations in AQP4 mRNA levels have been observed in experimental dry eye and during pregnancy, the impact of AQP4 in LG ductal fluid production remains unclear. In our recent work, the role of AQP4 in LG ductal fluid secretion was investigated utilizing wild type (WT) and AQP4 knock out (KO) mice. Methods Tear production was assessed in both WT and KO animals. Immunostaining was used to identify AQP4 protein. Duct segments were harvested from LGs of WT and KO mice. Fluid secretion and filtration permeability (Pf) were quantified using video-microscopy. Ductal tear production, elicited by a cell-permeable cAMP analogue (8-bromo cAMP), carbachol, vasoactive intestinal peptide (VIP), and phenylephrine (PHE), were assessed in both WT and KO ducts. Results A higher expression of AQP4 protein was noted in the duct cells from WT mice when compared to acinar cells. Pf did not show notable alterations between WT and AQP4 KO ducts. Carbachol elicited comparable secretory responses in ducts from both WT and KO animals. However, 8-bromo cAMP, VIP, and PHE stimulation resulted in decreased secretion in ducts from AQP4 KO LGs. Conclusions Our findings underscore the functional relevance of AQP4 in the fluid production of mouse LG ducts. AQP4 seems to play different roles in fluid secretions elicited by different secretagogues. Specifically, cAMP-mediated, and adrenergic agonist-related secretions were reduced in AQP4 KO ducts.
Collapse
Affiliation(s)
- Gréta Elekes
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Virág Csapó
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Dóra Szarka
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - László Szalay
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | | | - Dorottya Tálosi
- Albert Szent-Gyorgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dénes Török
- Department of Anatomy, University of Szeged, Szeged, Hungary
| | - Edit Tóth-Molnár
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Jeon HS, Kang B, Li X, Song JS. Differences in vulnerability to desiccating stress between corneal and conjunctival epithelium in rabbit models of short-term ocular surface exposure. Sci Rep 2022; 12:16941. [PMID: 36209216 PMCID: PMC9547869 DOI: 10.1038/s41598-022-21478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
We evaluate the difference in vulnerability to desiccating stress (DS) between the corneal and conjunctival epithelia to understand different ocular surface staining patterns in dry eye patients. We generated a rabbit model of short-term exposure keratopathy. To induce DS in the ocular surface, rabbit right eyelids were opened for 30 min, with blinking once/minute. Corneal staining scores increased from 3-min post-DS exposure, while conjunctival staining increased from 20-min post-DS. At 20 min, the tear MUC5AC level doubled as compared to pre-DS (p = 0.007). In Western blot analysis, conjunctival AQP5, MUC5AC, and CFTR expression increased significantly in response to DS, compared to control (p = 0.039, 0.002, 0.039, respectively). Immunohistochemistry for CD31 and LYVE-1 were performed. CD31-positive cells and lymphatic space surrounded by LYVE-1-positive cells increased significantly in conjunctival tissue post-DS, compared to control (p = 0.0006, p < 0.0001, respectively). Surface damage was worse in the corneal than in the conjunctival epithelium after DS, by scanning electron microscopy. This study showed that the cornea and conjunctival epithelium show differences in vulnerability to DS. Increased blood vessels and dilated lymphatics, accompanied by increased conjunctival epithelial AQP5, MUC5AC, and CFTR expression, underlie the protective mechanism of the conjunctiva to desiccating stress.
Collapse
Affiliation(s)
- Hyun Sun Jeon
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
| | - Boram Kang
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Xuemin Li
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jong Suk Song
- grid.222754.40000 0001 0840 2678Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Zabek O, Calzetti G, Prétot D, Scholl HPN, Della Volpe Waizel M. Full-field sensitivity threshold and the relation to the oxygen metabolic retinal function in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2022; 260:2517-2527. [PMID: 35355116 DOI: 10.1007/s00417-022-05638-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 03/19/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of our study was to evaluate retinal function with white light dark-adapted full-field sensitivity threshold (FST) and find possible correlations with metabolic function measured with retinal oximetry (RO) in patients with retinitis pigmentosa (RP). METHODS In this prospective observational study (BASEC 2020-00,122), FST and RO measurements were performed on 66 RP eyes (33 subjects, 12♀ 21♂) aged between 18 and 80 years (mean 43.2 years); all eyes were graded for disease severity. Main outcome parameters were white FST thresholds using the Diagnosys Espion system with the ColorDomeTM LED full-field stimulator (Diagnosys LLC, Lowell, MA) as well as the main RO parameters: the mean arterial (A-SO2; %), venular (V-SO2; %) oxygen saturation, their difference (A-V SO2; %), and the corresponding mean diameters of the peripapillary retinal arterioles (D-A; μm) and venules (D-V; μm) recorded with the oxygen saturation tool of the Retinal Vessel Analyser (RVA; IMEDOS Systems UG, Jena, Germany). In addition, semi-automated kinetic perimetry (V4e, III4e, I4e, III3e isopters, Octopus 900®, Haag-Streit AG Bern, Switzerland) was performed and included in the linear mixed-effects models analysis calculated with SPSS®. RESULTS Neither the oxygen saturation parameters (p > 0.21) nor the D-A and D-V (p > 0.13) showed significant correlations with the FST. However, when compared systematically with the visual field (VF) areas of the different isopters, RO parameters V-SO2 (p = 0.024) and A-V SO2 (p < 0.02) showed significant correlations. Furthermore, both V-SO2 and A-V SO2 showed gradual changes with more pronounced impairment in oxygen metabolic function in advanced stages of RP when analyzed in subgroups of disease severity grades. CONCLUSION In contrast to standardized VF parameters, white dark-adapted FST appears not to correlate with retinal oxygen metabolic function measured with RO in patients with RP, suggesting that the two examinations may capture unrelated aspects of the retinal pathological process. However, RO showed a significant association with standardized VF testing parameters and may, therefore, offer an alternative outcome measure for interventional trials.
Collapse
Affiliation(s)
- Olga Zabek
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giacomo Calzetti
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | | | - Hendrik P N Scholl
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Maria Della Volpe Waizel
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland. .,Heuberger Eye Clinic, Olten, Switzerland.
| |
Collapse
|
5
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Mousa AM, Aldebasi YH. L-carnosine mitigates interleukin-1α-induced dry eye disease in rabbits via its antioxidant, anti-inflammatory, antiapoptotic, and antifibrotic effects. Cutan Ocul Toxicol 2021; 40:241-251. [PMID: 34056995 DOI: 10.1080/15569527.2021.1935995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To elucidate the implications of L-carnosine on interleukin-1α (IL-1α)-induced inflammation of lacrimal glands (LGs). MATERIALS AND METHODS Forty rabbits were divided equally into four groups: control group (G1), IL-1α (G2), L-carnosine (G3), and L-carnosine plus IL-1α (G4). Several clinical, histopathological, immunohistochemical, morphometric, and biochemical investigations were performed, followed by statistical analysis to diagnose the presence of dry eye disease (DED). RESULTS The LGs of G2 rabbits showed degeneration of the acinar cells, increased deposition of collagen fibers, and marked immunoexpression of FasL; elevated levels of interferon-γ, tumor necrosis factor-α, transforming growth factor-β1, and malondialdehyde; and decreased levels of glutathione peroxidase, superoxide dismutase, catalase, and reactive oxygen species compared with those of G1 rabbits. In contrast, administration of L-carnosine to G4 rabbits revealed marked improvement of all previously harmful changes in G2 rabbits, indicating the cytoprotective effects of L-carnosine against IL-1α-induced inflammation of LGs. CONCLUSIONS IL-1α induced inflammation of LGs and eye dryness via oxidative stress, proinflammatory, apoptotic, and profibrotic effects, whereas L-carnosine mitigated DED through antioxidant, anti-inflammatory, antiapoptotic, and antifibrotic effects on LGs. Therefore, this work demonstrates for the first time that L-carnosine may be used as adjuvant therapy for the preservation of visual integrity in patients with DED.HighlightsIL-1α induced dry eye disease through its oxidative stress, proinflammatory, apoptotic and profibrotic effects on the lacrimal glands of rabbit.L-carnosine has antioxidant, anti-inflammatory, antiapoptotic and antifibrotic effects.L-carnosine mitigated IL-1α induced dry eye disease via elevating the levels of FasL, IFN-γ, TNF-α, TGFβ1 and MDA as well as reducing the levels of antioxidants (GPx, SOD, and catalase) and ROS in the lacrimal glands of rabbit.L-carnosine could be used as a novel adjuvant therapy for the treatment of dry eye disease.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
7
|
Szarka D, Elekes G, Berczeli O, Vizvári E, Szalay L, Ding C, Tálosi L, Tóth-Molnár E. Alpha-Adrenergic Agonists Stimulate Fluid Secretion in Lacrimal Gland Ducts. Invest Ophthalmol Vis Sci 2021; 61:3. [PMID: 33259608 PMCID: PMC7718821 DOI: 10.1167/iovs.61.14.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose The role of adrenergic innervation in the regulation of lacrimal gland (LG) ductal fluid secretion is unknown. The Aim of the present study was to investigate the effect of adrenergic stimulation on fluid secretion in isolated LG duct segments and to study the underlying intracellular mechanisms. Methods Fluid secretion of isolated mouse LG ducts was measured using video-microscopy. Effect of various adrenergic agonists (norepinephrine, phenylephrine, and isoproterenol) on fluid secretion as well as inhibitory effects of specific antagonists on adrenergic agonist-stimulated secretory response were analyzed. Changes in intracellular Ca2+ level [Ca2+i] were investigated with microfluorometry. Results Both norepinephrine and phenylephrine initiated a rapid and robust fluid secretory response, whereas isoproterenol did not cause any secretion. Phenylephrine-induced secretion was completely blocked by α1D-adrenergic receptor blocker BMY-7378. The endothelial nitric oxide synthase (eNOS) inhibitor L-NAME or guanylyl cyclase inhibitor ODQ reduced but not completely abolished the phenylephrine-induced fluid secretion, whereas co-administration of Ca2+-chelator BAPTA-AM resulted in a complete blockade. Phenylephrine stimulation induced a small, but statistically significant elevation in [\(Ca_i^{2 + }\)]. Conclusions Our results prove the direct role of α1-adrenergic stimulation on LG ductal fluid secretion. Lack of isoproterenol-induced fluid secretory response suggests the absence of β-receptor mediated pathway in mouse LG ducts. Complete blockade of phenylephrine-induced fluid secretion by BMY-7378 and predominant inhibition of the secretory response either by L-NAME or ODQ suggest that α-adrenergic agonists use the NO/cGMP pathway through α1D receptor. Ca2+ signaling independent from NO/cGMP pathway may also play an at least partial role in α-adrenergic induced ductal fluid secretion.
Collapse
Affiliation(s)
- Dóra Szarka
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Gréta Elekes
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Orsolya Berczeli
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Eszter Vizvári
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - László Szalay
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Chuanqing Ding
- Pharmacology & Pharmaceutical Sciences, Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - László Tálosi
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Edit Tóth-Molnár
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Crul T, Maléth J. Endoplasmic Reticulum-Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. Int J Mol Sci 2021; 22:4703. [PMID: 33946838 PMCID: PMC8124356 DOI: 10.3390/ijms22094703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic cells, ultimate specificity in activation and action-for example, by means of second messengers-of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple-sometimes opposite-cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER-PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field.
Collapse
Affiliation(s)
- Tim Crul
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| |
Collapse
|
9
|
Berczeli O, Szarka D, Elekes G, Vizvári E, Szalay L, Almássy J, Tálosi L, Ding C, Tóth-Molnár E. The regulatory role of vasoactive intestinal peptide in lacrimal gland ductal fluid secretion: A new piece of the puzzle in tear production. Mol Vis 2020; 26:780-788. [PMID: 33311973 PMCID: PMC7722779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose Vasoactive intestinal peptide (VIP) is an important regulator of lacrimal gland (LG) function although the effect of VIP on ductal fluid secretion is unknown. Therefore, the aim of the present study was to investigate the role of VIP in the regulation of fluid secretion of isolated LG ducts and to analyze the underlying intracellular mechanisms. Methods LGs from wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) knockout (KO) mice were used. Immunofluorescence was applied to confirm the presence of VIP receptors termed VPAC1 and VPAC2 in LG duct cells. Ductal fluid secretion evoked by VIP (100 nM) was measured in isolated ducts using videomicroscopy. Intracellular Ca2+ signaling underlying VIP stimulation was investigated with microfluorometry. Results VIP stimulation resulted in a robust and continuous fluid secretory response in isolated duct segments originated from WT mice. In contrast, CFTR KO ducts exhibited only a weak pulse-like secretion. A small but statistically significant increase was detected in the intracellular Ca2+ level [Ca2+]i during VIP stimulation in the WT and in CFTR KO ducts. VIP-evoked changes in [Ca2+]i did not differ considerably between the WT and CFTR KO ducts. Conclusions These results suggest the importance of VIP in the regulation of ductal fluid secretion and the determining role of the adenylyl cyclase-cAMP-CFTR route in this process.
Collapse
Affiliation(s)
- Orsolya Berczeli
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Dóra Szarka
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Gréta Elekes
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - Eszter Vizvári
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - László Szalay
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Tálosi
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Chuanqing Ding
- Department of Pharmacology & Pharmaceutical Sciences, Ophthalmology, University of Southern California, Los Angeles, CA
| | - Edit Tóth-Molnár
- Department of Ophthalmology, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Tóth-Molnár E, Ding C. New insight into lacrimal gland function: Role of the duct epithelium in tear secretion. Ocul Surf 2020; 18:595-603. [DOI: 10.1016/j.jtos.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
|
11
|
Panigrahi T, D'Souza S, Shetty R, Padmanabhan Nair A, Ghosh A, Jacob Remington Nelson E, Ghosh A, Sethu S. Genistein-Calcitriol Mitigates Hyperosmotic Stress-Induced TonEBP, CFTR Dysfunction, VDR Degradation and Inflammation in Dry Eye Disease. Clin Transl Sci 2020; 14:288-298. [PMID: 32896986 PMCID: PMC7877851 DOI: 10.1111/cts.12858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023] Open
Abstract
Dry eye disease (DED) signs and symptoms are causally associated with increased ocular surface (OS) inflammation. Modulation of key regulators of aberrant OS inflammation is of interest for clinical management. We investigated the status and the potential to harness key endogenous protective factors, such as cystic fibrosis transmembrane conductance regulator (CFTR) and vitamin D receptor (VDR) in hyperosmotic stress‐associated inflammation in patients with DED and in vitro. Conjunctival impression cytology samples from control subjects (n = 11) and patients with DED (n = 15) were used to determine the status of hyperosmotic stress (TonEBP/NFAT5), inflammation (IL‐6, IL‐8, IL‐17A/F, TNFα, MMP9, and MCP1), VDR, and intracellular chloride ion (GLRX5) by quantitative polymerase chain reaction and/or immunofluorescence. Human corneal epithelial cells (HCECs) were used to study the effect of CFTR activator (genistein) and vitamin D (calcitriol) in hyperosmotic stress (HOs)‐induced response in vitro. Western blotting was used to determine the expression of these proteins, along with p‐p38. Significantly, higher expression of inflammatory factors, TonEBP, GLRX5, and reduced VDR were observed in patients with DED and in HOs‐induced HCECs in vitro. Expression of TonEBP positively correlated with expression of inflammatory genes in DED. Increased TonEBP and GLRX5 provides confirmation of osmotic stress and chloride ion imbalance in OS epithelium in DED. These along with reduced VDR suggests dysregulated OS homeostasis in DED. Combination of genistein and calcitriol reduced HOs‐induced TonEBP, inflammatory gene expression, and p‐p38, and abated VDR degradation in HCECs. Henceforth, this combination should be further explored for its relevance in the management of DED.
Collapse
Affiliation(s)
- Trailokyanath Panigrahi
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.,Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Archana Padmanabhan Nair
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Anuprita Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Everette Jacob Remington Nelson
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.,Singapore Eye Research Institute, Singapore, Singapore
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
12
|
Chen X, Lee S, Zhang T, Duan T, Pasricha ND, Schallhorn JM, Levin MH, Koprivica V, Verkman AS. Nanomolar Potency Aminophenyltriazine CFTR Activator Reverses Corneal Epithelial Injury in a Mouse Model of Dry Eye. J Ocul Pharmacol Ther 2020; 36:147-153. [PMID: 31934802 DOI: 10.1089/jop.2019.0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: Dry eye disorders are a major health care burden. We previously reported the identification of N-methyl-N-phenyl-6-(2,2,3,3-tetrafluoropropoxy)-1,3,5-triazine-2,4-diamine [cystic fibrosis transmembrane conductance regulator (CFTR)act-K267], which activated human wild-type CFTR chloride conductance with EC50 ∼ 30 nM. Here, we report in vivo evidence for CFTRact-K267 efficacy in an experimental mouse model of dry eye using a human compatible ophthalmic vehicle. Methods: CFTR activation in mice in vivo was demonstrated by ocular surface potential difference (OSPD) measurements. Ocular surface pharmacodynamics was measured in tear fluid samples obtained at different times after topical administration of CFTRact-K267. Dry eye was produced by lacrimal duct cautery (LDC) and corneal epithelial injury and was assessed by Lissamine green (LG) staining. Results: OSPD measurements demonstrated a hyperpolarization of -8.6 ± 3 mV (standard error of the mean, 5 mice) in response to CFTRact-K267 exposure in low chloride solution that was reversed by a CFTR inhibitor. Following single-dose topical administration of 2 nmol CFTRact-K267, tear fluid CFTRact-K267 concentration was >500 nM for more than 6 h. Following LDC, corneal surface epithelial injury, as assessed by LG staining, was substantially reversed in 10 of 12 eyes receiving 2 nmol CFTRact-K267 3 times daily starting on day 2, when marked epithelial injury had already occurred. Improvement was seen in 3 of 12 vehicle-treated eyes. Conclusion: These studies provide in vivo evidence in mice for the efficacy of a topical, human use compatible CFTRact-K267 formulation in stimulating chloride secretion and reversing corneal epithelial injury in dry eye.
Collapse
Affiliation(s)
- Xiaolan Chen
- Department of Medicine and Physiology and University of California, San Francisco, California.,Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Sujin Lee
- Department of Medicine and Physiology and University of California, San Francisco, California
| | - Tianyi Zhang
- Department of Medicine and Physiology and University of California, San Francisco, California
| | - Tianying Duan
- Department of Medicine and Physiology and University of California, San Francisco, California
| | - Neel D Pasricha
- Department of Ophthalmology, University of California, San Francisco, California
| | - Julie M Schallhorn
- Department of Ophthalmology, University of California, San Francisco, California
| | - Marc H Levin
- Department of Ophthalmology, Palo Alto Medical Foundation, Palo Alto, California
| | - Vuk Koprivica
- Vanda Pharmaceuticals, Inc., Washington, District of Columbia
| | - Alan S Verkman
- Department of Medicine and Physiology and University of California, San Francisco, California
| |
Collapse
|
13
|
Fini ME, Jeong S, Gong H, Martinez-Carrasco R, Laver NMV, Hijikata M, Keicho N, Argüeso P. Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse. Prog Retin Eye Res 2019; 75:100777. [PMID: 31493487 DOI: 10.1016/j.preteyeres.2019.100777] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/17/2023]
Abstract
The mucosal glycocalyx of the ocular surface constitutes the point of interaction between the tear film and the apical epithelial cells. Membrane-associated mucins (MAMs) are the defining molecules of the glycocalyx in all mucosal epithelia. Long recognized for their biophysical properties of hydration, lubrication, anti-adhesion and repulsion, MAMs maintain the wet ocular surface, lubricate the blink, stabilize the tear film and create a physical barrier to the outside world. However, it is increasingly appreciated that MAMs also function as cell surface receptors that transduce information from the outside to the inside of the cell. A number of excellent review articles have provided perspective on the field as it has progressed since 1987, when molecular cloning of the first MAM was reported. The current article provides an update for the ocular surface, placing it into the broad context of findings made in other organ systems, and including new genes, new protein functions and new biological roles. We discuss the epithelial tissue-equivalent with mucosal differentiation, the key model system making these advances possible. In addition, we make the first systematic comparison of MAMs in human and mouse, establishing the basis for using knockout mice for investigations with the complexity of an in vivo system. Lastly, we discuss findings from human genetics/genomics, which are providing clues to new MAM roles previously unimagined. Taken together, this information allows us to generate hypotheses for the next stage of investigation to expand our knowledge of MAM function in intracellular signaling and roles unique to the ocular surface.
Collapse
Affiliation(s)
- M Elizabeth Fini
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Shinwu Jeong
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA.
| | - Rafael Martinez-Carrasco
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Nora M V Laver
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo, 204-8533, Japan.
| | - Naoto Keicho
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo, 204-8533, Japan.
| | - Pablo Argüeso
- Department of Ophthalmology, Harvard Medical School, at Schepens Eye Research Institute of Mass. Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA.
| |
Collapse
|